Evaluation of Mandibular Osteogenesis Under Hypobaric Hypoxia Exposure: Immunoexpression of HIF-1α, VEGF, and Micro-CT Analysis
Main Article Content
Abstract
Intermittent hypobaric hypoxia (IHH) is critical in osteogenesis and angiogenesis via the HIF-1α and VEGF signaling pathways. However, its specific effect on mandibular bone regeneration remains underexplored. This study aims to evaluate the impact of IHH on the expression of Hypoxia Inducible Factor-1 alpha (HIF-1α), Vascular Endothelial Growth Factor (VEGF), immature bone formation, and changes in mandibular bone microarchitecture. This true experimental study was conducted on 27 male Sprague Dawley rats, randomly divided into three groups: acute bone defect (ABD), bone defect (BD), and hypoxic bone defect (HBD). The HBD group received IHH exposure in a hypobaric chamber simulating 25,000 feet altitude for 5 minutes daily over five consecutive days. HIF-1α and VEGF expression were evaluated using immunohistochemistry. Bone matrix formation was assessed using Masson's Trichrome staining, and bone microarchitecture was analyzed by Micro-Computed Tomography (Micro-CT), including Bone Volume/Total Volume (BV/TV), Bone Surface/Total Volume (BS/TV), Trabecular Thickness (Tb.Th), Trabecular Separation (Tb.Sp), and Trabecular Number (Tb.N). Statistical analysis was conducted using ANOVA and path analysis with a significance level of p < 0.05. Results showed that the HBD group had significantly higher expression of HIF-1α and VEGF (p < 0.05) and increased BV/TV, BS/TV, and Tb.Th, without significant differences in Tb.Sp and Tb.N. These findings demonstrate that IHH enhances osteogenesis and angiogenesis by upregulating HIF-1α and VEGF, improving bone volume and structure. This supports IHH as a promising non-invasive strategy for mandibular bone regeneration, especially in trauma-induced defects.
Downloads
Article Details
Section

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
How to Cite
References
1.Tan B, Tang Q, Zhong Y, Wei Y, He L, Wu Y, Wu J, Liao J. Biomaterial-based strategies for maxillofacial tumour therapy and bone defect regeneration. Int J Oral Sci. 2021;13(1):9. Doi: 10.1038/s41368-021-00113-9.
2.Stahl A, Yang YP. Regenerative Approaches for the Treatment of Large Bone Defects. Tissue Eng Part B Rev. 2021;27(6):539-547. Doi: 10.1089/ten.TEB.2020.0281.
3.Zam S, Reza F. Management of Le Fort III Fracture: A Case Report and Review of Maxillofacial Surgical Treatment. J Syiah Kuala Dent Soc. 9(2). 147-152. Doi: 10.24815/jds.v9i2.44429.
4.Jiang S, Wang M, He J. A review of biomimetic scaffolds for bone regeneration: Toward a cell-free strategy. Bioeng Transl Med. 2020;6(2):e10206. Doi: 10.1002/btm2.10206.
5.Ziello JE, Jovin IS, Huang Y. Hypoxia-Inducible Factor (HIF)-1 regulatory pathway and its potential for therapeutic intervention in malignancy and ischemia. Yale J Biol Med. 2007;80(2):51-60.
6.Lee P, Chandel NS, Simon MC. Cellular adaptation to hypoxia through hypoxia inducible factors and beyond. Nat Rev Mol Cell Biol. 2020;21(5):268-283. Doi: 10.1038/s41580-020-0227-y
7.Chen W, Wu P, Yu F, Luo G, Qing L, Tang J. HIF-1α Regulates Bone Homeostasis and Angiogenesis, Participating in the Occurrence of Bone Metabolic Diseases. Cells. 2022;11(22):3552. Doi: 10.3390/cells11223552.
8.Diomede F, Marconi GD, Fonticoli L, Pizzicanella J, Merciaro I, Bramanti P, Mazzon E, Trubiani O. Functional Relationship between Osteogenesis and Angiogenesis in Tissue Regeneration. Int J Mol Sci. 2020;21(9):3242. Doi: 10.3390/ijms21093242.
9.Tao J, Miao R, Liu G, Qiu X, Yang B, Tan X, Liu L, Long J, Tang W, Jing W. Spatiotemporal correlation between HIF-1α and bone regeneration. FASEB J. 2022;36(10):e22520. Doi: 10.1096/fj.202200329RR. PMID: 36065633.
10.Linawati L, Sitam S, Mulyawan W, Purba A, Syawqie A, Handharyani E, Subiakto Y, Amaliya A. Effect of Intermittent Hypobaric Hypoxia Exposure on HIF-1α, VEGF, and Angiogenesis in the Healing Process of Post-Tooth Extraction Sockets in Rats. Eur J Dent. 2024;18(1):304-313. Doi: 10.1055/s-0043-1768639.
11.Qin Q, Liu Y, Yang Z, Aimaijiang M, Ma R, Yang Y, Zhang Y, Zhou Y. Hypoxia-Inducible Factors Signaling in Osteogenesis and Skeletal Repair. Int J Mol Sci. 2022 ;23(19):11201. Doi: 10.3390/ijms231911201.
12.Amini AR, Laurencin CT, Nukavarapu SP. Bone tissue engineering: recent advances and challenges. Crit Rev Biomed Eng. 2012;40(5):363-408. Doi: 10.1615/critrevbiomedeng.v40.i5.10.
13.Zhu F, Qiu Y, Yeung HY, Lee KM, Cheng CY. Trabecular bone microarchitecture and bone mineral density in adolescent idiopathic and congenital scoliosis. Orthop Surg. 2009;1(1):78-83. Doi: 10.1111/j.1757-7861.2008.00014.x.
14.Setiawan K, Primarti RS. Sitam S. Suridwan W. Usri K. Latief FD. Microstructural Evaluation of Dental Implant Success Using Micro-CT: A Comprehensive Review. Appl. Sci. 2024;14 (23) 11016. Doi:10.3390/app142311016.
15.Schlund M, Depeyre A, Kotagudda Ranganath S, Marchandise P, Ferri J, Chai F. Rabbit calvarial and mandibular critical-sized bone defects as an experimental model for the evaluation of craniofacial bone tissue regeneration. J Stomatol Oral Maxillofac Surg. 2022;123(6):601-609. Doi: 10.1016/j.jormas.2021.12.001.
16.Wardaya W, Sukmawati D, Ibrahim N, Ferdinal F, Mudjihartini N, Sadikin M, Jusman SWA, Satriotomo I, Mulyawan W.. Intermittent Exposure to Hypobaric Hypoxia Increases VEGF, HIF-1α, and Nrf-2 Expressions in Brain Tissue. Indones Biome J. 2025; 17(2).197-206.
17.Magaki S, Hojat SA, Wei B, So A, Yong WH. An Introduction to the Performance of Immunohistochemistry. Methods Mol Biol. 2019;1897:289-298. Doi: 10.1007/978-1-4939-8935-5_25.
18.Van De Vlekkert D, Machado E, d'Azzo A. Analysis of Generalized Fibrosis in Mouse Tissue Sections with Masson's Trichrome Staining. Bio Protoc. 2020;10(10):e3629. Doi: 10.21769/BioProtoc.3629.
19.Lee, C., Lee, JH., Han, SS. Site-specific and time-course changes of postmenopausal osteoporosis in rat mandible: comparative study with femur. Sci Rep. 2019; (9)14155 Doi:10.1038/s41598-019-50554-w.
20.Fröhlich LF. Micrornas at the Interface between Osteogenesis and Angiogenesis as Targets for Bone Regeneration. Cells. 2019;8(2):121. Doi: 10.3390/cells8020121..
21.Song S, Zhang G, Chen X, Zheng J, Liu X, Wang Y, Chen Z, Wang Y, Song Y, Zhou Q. HIF-1α increases the osteogenic capacity of ADSCs by coupling angiogenesis and osteogenesis via the HIF-1α/VEGF/AKT/mTOR signaling pathway. J Nanobiotechnology. 2023;21(1):257. Doi: 10.1186/s12951-023-02020-z.
22.Xu X, Liao L, Tian W. Strategies of Prevascularization in Tissue Engineering and Regeneration of Craniofacial Tissues. Tissue Eng Part B Rev. 2022;28(2):464-475. Doi: 10.1089/ten.teb.2021.0004.
23.Liu Y, Zhu S, Liu J, et al. Vitexin regulates angiogenesis and osteogenesis in ovariectomy-induced osteoporosis of rats via the VDR/PI3K/AKT/eNOS signaling pathway. J Agric Food Chem. 2022;71(1):546-56. Doi:10.1021/acs.jafc.2c07005
24.Usategui-Martín R, Rigual R, Ruiz-Mambrilla M, Fernández-Gómez JM, Dueñas A, Pérez-Castrillón JL. Molecular Mechanisms Involved in Hypoxia-Induced Alterations in Bone Remodeling. Int J Mol Sci. 2022;23(6):3233. Doi: 10.3390/ijms23063233.
25.Liu Y, Ren L, Li M, Zheng B, Liu Y. The Effects of Hypoxia-Preconditioned Dental Stem Cell-Derived Secretome on Tissue Regeneration. Tissue Eng Part B Rev. 2025 Feb;31(1):44-60. Doi: 10.1089/ten.
26.Hosseini FS, Abedini AA, Chen F, Whitfield T, Ude CC, Laurencin CT. Oxygen-Generating Biomaterials for Translational Bone Regenerative Engineering. ACS Appl Mater Interfaces. 2023. Doi: 10.1021/acsami.2c20715.
27.Toosi S, Behravan J. Osteogenesis and bone remodeling: A focus on growth factors and bioactive peptides. Biofactors. 2020;46(3):326-340. Doi: 10.1002/biof.1598.
28.Ahmad A, Nawaz MI. Molecular mechanism of VEGF and its role in pathological angiogenesis. J Cell Biochem. 2022123(12):1938-1965. doi: 10.1002/jcb.30344.
29.Wu V, Helder MN, Bravenboer N, Ten Bruggenkate CM, Jin J, Klein-Nulend J, Schulten EAJM. Bone Tissue Regeneration in the Oral and Maxillofacial Region: A Review on the Application of Stem Cells and New Strategies to Improve Vascularization. Stem Cells Int. 2019;2019:6279721. Doi: 10.1155/2019/6279721.
30.Li C, Zhao R, Yang H, Ren L. Construction of Bone Hypoxic Microenvironment Based on Bone-on-a-Chip Platforms. Int J Mol Sci. 2023 ;24(8):6999. Doi: 10.3390/ijms24086999.
31.Izquierdo-Barba I, Santos-Ruiz L, Becerra J, Feito MJ, Fernández-Villa D, Serrano MC, Díaz-Güemes I, Fernández-Tomé B, Enciso S, Sánchez-Margallo FM, Monopoli D, Afonso H, Portolés MT, Arcos D, Vallet-Regí M. Synergistic effect of Si-hydroxyapatite coating and VEGF adsorption on Ti6Al4V-ELI scaffolds for bone regeneration in an osteoporotic bone environment. Acta Biomater. 2019;83:456-466. Doi: 10.1016/j.actbio.2018.11.017.
32.Isojima T, Sims NA. Cortical bone development, maintenance and porosity: genetic alterations in humans and mice influencing chondrocytes, osteoclasts, osteoblasts and osteocytes. Cell Mol Life Sci. 2021;78(15):5755-5773. Doi: 10.1007/s00018-021-03884-w.
33.Narasimhan S, Al Kawas S, Shetty SR, Al-Daghestani HS, Samsudin R. Impact of hypoxia on alveolar bone dynamics and remodeling. Heliyon. 2024;10(23):e40868. Doi: 10.1016/j.heliyon.2024.e40868.
34.Chu X, Mi B, Xiong Y, Wang R, Liu T, Hu L, Yan C, Zeng R, Lin J, Fu H, Liu G, Zhang K, Bian L. Bioactive nanocomposite hydrogel enhances postoperative immunotherapy and bone reconstruction for osteosarcoma treatment. Biomaterials. 2025;312:122714. Doi: 10.1016/j.biomaterials.2024.122714
35.Tan JK, Mohamad Hazir NS, Alias E. Impacts of Hypoxia on Osteoclast Formation and Activity: Systematic Review. Int J Mol Sci. 2021;22(18):10146. Doi: 10.3390/ijms221810146.
36.Xue Y, Li Z, Wang Y, Zhu X, Hu R, Xu W. Role of the HIF1α/SDF1/CXCR4 signaling axis in accelerated fracture healing after craniocerebral injury. Mol Med Rep. 2020;22(4):2767-2774. Doi: 10.3892/mmr.2020.11361.