Exploring The Mechanism of Action of Curcuma longa and Phyllanthus niruri as Inflammatory Inhibitors in Cancer Via JAK3, STAT3, iNOS, and NF-κB Pathways Based on Computational Prediction
Main Article Content
Abstract
The inflammatory response is triggered by various stimuli, including the precursor to carcinogenesis. Curcuma longa and Phyllanthus niruri are herbal that have anti-inflammatory activity. This study employed computational predictions, including molecular docking and molecular dynamics simulations. The protein targets for computational analysis included iNOS (PDB ID: 4NOS), JAK3 (PDB ID: 6NY4), STAT3 (PDB ID: 6NUQ), and NF-κB (PDB ID: 1NFI). The results showed that eriodictin exhibited the most potent binding affinity with target proteins, including JAK3, iNOS, NF-κB, and STAT3, with binding affinity values of -9.5, -10.1, -7.8, and -7.3 kcal/mol, respectively. The RMSD analysis for a 20 ns molecular dynamics simulation of NF-κB, iNOS, JAK3, and STAT3 protein complexes showed that the NF-κB–eriodictine complex reached stability within the 6–8 Å range after 10 ns, followed by increased fluctuations. A similar trend was observed in the NF-κB complex with the inhibitor, used as a control. Meanwhile, the RMSD of the iNOS–eriodictine complex stabilized at approximately 3 Å for 15 ns. The JAK3–eriodictine, STAT3–eriodictine, and STAT3–inhibitor complexes maintained stability within the 2–3 Å range throughout the simulation. The stability observed in these complexes suggests that eriodictine has potential as an effective therapeutic agent targeting NF-κB, iNOS, JAK3, and STAT3 proteins. Further studies, including in vitro and in vivo assays, are needed to validate these findings and assess their clinical applications. This study highlights the potential of Curcuma longa and Phyllanthus niruri derivatives as natural compound-based alternatives for managing chronic inflammation in cancer.
Downloads
Article Details
Section

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
How to Cite
References
1. Hibino S, Kawazoe T, Kasahara H, Itoh S, Ishimoto T, Sakata-Yanagimoto M, Taniguchi K. Inflammation-induced tumorigenesis and metastasis. Int J Mol Sci. 2021; 22(11):5421.
2. Harvanová G, Duranková S, Bernasovská J. The role of cytokines and chemokines in the inflammatory response. Pol J Allergol. 2023; 10(3):210-219.
3. Zhao H, Wu L, Yan G, Chen Y, Zhou M, Wu Y, Li Y. Inflammation and tumor progression: Signaling pathways and targeted intervention. Signal Transduct Target Ther. 2021; 6(1):263.
4. Piotrowski I, Kulcenty K, Suchorska W. Interplay between inflammation and cancer. Rep Pract Oncol Radiother. 2020; 25(3):422-427.
5. Laha D, Grant R, Mishra P, Nilubol N. The role of tumor necrosis factor in manipulating the immunological response of tumor microenvironment. Front Immunol. 2021; 12:656908.
6. Haftcheshmeh SM, Abedi M, Mashayekhi K, Mousavi MJ, Navashenaq JG, Mohammadi A, Momtazi‐Borojeni AA. Berberine as a natural modulator of inflammatory signaling pathways in the immune system: Focus on NF-κB, JAK/STAT, and MAPK signaling pathways. Phytother Res. 2022; 36(3):1216-1230.
7. Al-Shehri SS. Reactive oxygen and nitrogen species and innate immune response. Biochimie. 2021; 181:52-64.
8. Sahebnasagh A, Saghafi F, Negintaji S, Hu T, Shabani-Borujeni M, Safdari M, Ghaleno HR, Miao L, Qi Y, Wang M, Liao P, Sureda A, Simal-Gándara J, Nabavi SM, Xiao J. Nitric oxide and immune responses in cancer: Searching for new therapeutic strategies. Curr Med Chem. 2022; 29(9):1561-1595.
9. Wang L, Hu Y, Song B, Xiong Y, Wang J, Chen D. Targeting JAK/STAT signaling pathways in treatment of inflammatory bowel disease. Inflamm Res. 2021; 70(7):753-764.
10. Dinakar YH, Kumar H, Mudavath SL, Jain R, Ajmeer R, Jain V. Role of STAT3 in the initiation, progression, proliferation and metastasis of breast cancer and strategies to deliver JAK and STAT3 inhibitors. Life Sci. 2022; 309:120996.
11. Khan A, Zhang Y, Ma N, Shi J, Hou Y. NF-κB role on tumor proliferation, migration, invasion and immune escape. Cancer Gene Ther . 2024; 31(11):1599-1610.
12. Mohan CD, Rangappa S, Preetham HD, Chandra Nayaka S, Gupta VK, Basappa S, Sethi G, Rangappa KS. Targeting STAT3 signaling pathway in cancer by agents derived from mother nature. Semin Cancer Biol. 2022; 80:157-182.
13. Stanilov N, Velikova T, Stanilova S. Navigating the cytokine Seas: Targeting cytokine signaling pathways in cancer therapy. Int J Mol Sci. 2024; 25(2):1009.
14. Al-Khayri JM, Sahana GR, Nagella P, Joseph BV, Alessa FM, Al-Mssallem MQ. Flavonoids as potential anti-inflammatory molecules: A review. Molecules. 2022; 27(9):2901.
15. Zalpoor H, Nabi-Afjadi M, Forghaniesfidvajani R, Tavakol C, Farahighasreaboonasr F, Pakizeh F, Dana VG, Seif F. Quercetin as a JAK–STAT inhibitor: A potential role in solid tumors and neurodegenerative diseases. Cell Mol Biol Lett. 2022; 27(1):60.
16. Afnan, Saleem A, Akhtar MF, Sharif A, Akhtar B, Siddique R, Ashraf GM, Alghamdi BS, Alharthy SA. Anticancer, cardio-protective and anti-inflammatory potential of natural-sources-derived phenolic acids. Molecules. 2022; 27(21):7286.
17. Puspitarini S, Widodo N, Widyarti S, Jatmiko YD, Rifa’i M. Polyherbal effect between Phyllanthus urinaria and Curcuma longa as an anticancer and antioxidant. Res J Pharm Technol. 2022:671-678.
18. Widyananda MH, Wicaksono ST, Rahmawati K, Puspitarini S, Ulfa SM, Jatmiko YD, Masruri M, Widodo N. A potential anticancer mechanism of finger root (Boesenbergia rotunda) extracts against a breast cancer cell line. Scientifica. 2022; 2022:1-17.
19. Nafisah W, Fatchiyah F, Widyananda MH, Christina YI, Rifa’i M, Widodo N, Djati MS. Potential of bioactive compound of Cyperus rotundus L. rhizome extract as inhibitor of PD-L1/PD-1 interaction: An in silico study. Agric Nat Resour. 2022; 56(4):751-760.
20. Ijoma IK, Okafor CE, Ajiwe VIE. Computational studies of 5-methoxypsolaren as potential deoxyhemoglobin S polymerization inhibitor. Trop J Nat Prod Res. 2024; 8(10):8835-8841.
21. Salsabila NSY, Burhan RaH, Dliyauddin M, Lestari ND, Munawarti A, Djati MS, Muhaimin Ri. Herbal combination of Tithonia diversifolia, Moringa oleifera, and Curcuma longa as antidiabetic agent against iNOS and COX-2 proteins: An in silico study. Trop J Nat Prod Res. 2025; 9(3):950-959.
22. Manasa P, Suhasin G. In silico molecular docking analysis of selected natural biomolecules on nitric oxide synthase. Trop J Nat Prod Res. 2023; 7(11):5256-5265.
23. Alafiatayo AA, Lai K-S, Syahida A, Mahmood M, Shaharuddin NA. Phytochemical evaluation, embryotoxicity, and teratogenic effects of Curcuma longa extract on zebrafish Danio rerio. Evid Based Complement Alternat Med. 2019; 2019:1-10.
24. Tamam MB, Aini NS, Murtadlo AAA, Turista DDR, Naw SW, Ullah ME. Antiviral and anticancer activity from Curcuma longa L. and Tamarindus indica bioactive compounds through in silico analysis. SAINSTEK Int J Appl Sci Adv Technol Inform. 2023; 2(1):12-17.
25. Han Q, Zhu J, Zhang P. Mechanisms of main components in Curcuma longa L. on hepatic fibrosis based on network pharmacology and molecular docking: A review. Medicine. 2023; 102(29):e34353.
26. Chumroenphat T, Somboonwatthanakul I, Saensouk S, Siriamornpun S. Changes in curcuminoids and chemical components of turmeric (Curcuma longa L.) under freeze-drying and low-temperature drying methods. Food Chem. 2021; 339:128121.
27. Hosseini-Zare MS, Sarhadi M, Zarei M, Thilagavathi R, Selvam C. Synergistic effects of curcumin and its analogs with other bioactive compounds: A comprehensive review. Eur J Med Chem. 2021; 210:113072.
28. Zhang HA, Kitts DD. Turmeric and its bioactive constituents trigger cell signaling mechanisms that protect against diabetes and cardiovascular diseases. Mol Cell Biochem. 2021; 476(10):3785-3814.
29. Raju C, Sankaranarayanan K. In-silico investigation of Phyllanthus niruri phytochemicals as hepatic fibrosis modulators. Biol Life Sci Forum. 2025; 38(1):7.
30. Reninta R, Nawfetrias W, Tanjung A, Utami RN, Handayani DP, Pinardi D. Effect of extraction method on the flavonoid content of potential medicinal plant phyllanthus niruri L. IOP Conf Ser Earth Environ Sci. 2022; 1114(1):012073.
31. Fatriansyah JF, Kurnianto SR, Surip SN, Pradana AF, Boanerges AG. Molecular docking and molecular dynamics of herbal plants Phylantus niruri Linn (green meniran) towards of SARS-COV-2 main protease. Evergreen. 2023; 10(2):731-741.
32. Adnyana IMDM, Utomo B, Fauziyah S, Eljatin DS, Setyawan MF, Sumah LHM, Karina CA. Activity and potential of Phyllantus niruri L. and Phyllantus urinaria L. as hepatitis B virus inhibitors: A narrative review of the sanra protocol. J Res Pharm. 2024; 28(1):335-350.
33. Lee NYS, Khoo WKS, Adnan MA, Mahalingam TP, Fernandez AR, Jeevaratnam K. The pharmacological potential of Phyllanthus niruri. J Pharm Pharmacol. 2016; 68(8):953-969.
34. Setiawan M, Agustini SM, Patmawati, Lestari ND. In silico approach for predicting the bioactive compound of Cyperus rotundus to inhibit NF-kB and inos signaling pathways. Braz J Biol. 2024; 84:e278323.
35. Abdel-Sattar OE, Allam RM, Al-Abd AM, Avula B, Katragunta K, Khan IA, El-Desoky AM, Mohamed SO, El-Halawany A, Abdel-Sattar E, Meselhy MR. Cytotoxic and chemomodulatory effects of Phyllanthus niruri in MCF-7 and MCF-7ADR breast cancer cells. Sci Rep. 2023; 13(1):2683.
36. Lee H-Y, Kim S-W, Lee G-H, Choi M-K, Chung H-W, Lee Y-C, Kim H-R, Kwon HJ, Chae H-J. Curcumin and Curcuma longa L. extract ameliorate lipid accumulation through the regulation of the endoplasmic reticulum redox and ER stress. Sci Rep. 2017; 7(1):6513.
37. Ponte LGS, Pavan ICB, Mancini MCS, Da Silva LGS, Morelli AP, Severino MB, Bezerra RMN, Simabuco FM. The hallmarks of flavonoids in cancer. Molecules. 2021; 26(7):2029.
38. Kannan G, Paul BM, Thangaraj P. Stimulation, regulation, and inflammaging interventions of natural compounds on nuclear factor kappa B (NF-kB) pathway: A comprehensive review. Inflammopharmacol. 2025; 33(1):145-162.
39. Sarapultsev A, Gusev E, Komelkova M, Utepova I, Luo S, Hu D. JAK-STAT signaling in inflammation and stress-related diseases: Implications for therapeutic interventions. Mol Biomed. 2023; 4(1):40.
40. Vu GH, Nguyen HD. Molecular mechanisms of sulforaphane in Alzheimer’s disease: Insights from an in-silico study. Silico Pharmacol. 2024; 12(2):96.
41. Alamro H, Thafar MA, Albaradei S, Gojobori T, Essack M, Gao X. Exploiting machine learning models to identify novel Alzheimer’s disease biomarkers and potential targets. Sci Rep. 2023; 13(1):4979.
42. Guo Q, Jin Y, Chen X, Ye X, Shen X, Lin M, Zeng C, Zhou T, Zhang J. Nf-κB in biology and targeted therapy: New insights and translational implications. Signal Transduct Target Ther. 2024; 9(1):53.
43. Meng L, Ding L, Yu Y, Li W, Huang T. JAK3 and TYK2 serve as prognostic biomarkers and are associated with immune infiltration in stomach adenocarcinoma. BioMed Res Int. 2020; 2020:1-15.
44. Robinson MA, Baumgardner JE, Otto CM. Oxygen-dependent regulation of nitric oxide production by inducible nitric oxide synthase. Free Radic Biol Med. 2011; 51(11):1952-1965.
45. Thomas PD. The gene ontology and the meaning of biological function. In: Dessimoz C, Škunca N (Eds.). The gene ontology handbook. New York, NY: Springer New York; 2017. 15-24 p.
46. Ma X. Regulation of cytokine gene expression in immunity and diseases. Dordrecht: Springer Netherlands; 2016.
47. Ageeva T, Rizvanov A, Mukhamedshina Y. NF-κB and JAK/STAT signaling pathways as crucial regulators of neuroinflammation and astrocyte modulation in spinal cord injury. Cells. 2024; 13(7):581.
48. Grivennikov SI, Karin M. Dangerous liaisons: STAT3 and NF-κB collaboration and crosstalk in cancer. Cytokine Growth Factor Rev. 2010; 21(1):11-19.
49. Krajka-Kuźniak V, Belka M, Papierska K. Targeting STAT3 and NF-κB signaling pathways in cancer prevention and treatment: The role of chalcones. Cancers. 2024; 16(6):1092.
50. Rah B, Rather RA, Bhat GR, Baba AB, Mushtaq I, Farooq M, Yousuf T, Dar SB, Parveen S, Hassan R, Mohammad F,
Qassim I, Bhat A, Ali S, Zargar MH, Afroze D. Jak/stat signaling: Molecular targets, therapeutic opportunities, and limitations of targeted inhibitions in solid malignancies. Front Pharmacol. 2022; 13:821344.
51. Madu CO, Wang S, Madu CO, Lu Y. Angiogenesis in breast cancer progression, diagnosis, and treatment. J Cancer. 2020; 11(15):4474-4494.
52. Farhan M, Wang H, Gaur U, Little PJ, Xu J, Zheng W. FOXO signaling pathways as therapeutic targets in cancer. Int J Biol Sci. 2017; 13(7):815-827.
53. Hu X, Li J, Fu M, Zhao X, Wang W. The JAK/STAT signaling pathway: From bench to clinic. Signal Transduct Target Ther. 2021; 6(1):402.
54. Al Mughram MH, Catalano C, Herrington NB, Safo MK, Kellogg GE. 3D interaction homology: The hydrophobic residues alanine, isoleucine, leucine, proline and valine play different structural roles in soluble and membrane proteins. Front Mol Biosci. 2023; 10:1116868.
55. Ferenczy GG, Kellermayer M. Contribution of hydrophobic interactions to protein mechanical stability. Comput Struct Biotechnol J. 2022; 20:1946-1956.
56. Rampogu S, Lee G, Park JS, Lee KW, Kim MO. Molecular docking and molecular dynamics simulations discover curcumin analogue as a plausible dual inhibitor for SARS-CoV-2. Int J Mol Sci. 2022; 23(3):1771.
57. Sobolev OV, Afonine PV, Moriarty NW, Hekkelman ML, Joosten RP, Perrakis A, Adams PD. A global Ramachandran score identifies protein structures with unlikely stereochemistry. Structure. 2020; 28(11):1249-1258.e1242.
58. Abdullah A, Putri NTM, Rosyadah N, Putri R, Putri SAK, Widyananda MH, Kurniawan N, Fatchiyah F. The study of flavonoid in Apium graveolens L. as a kirsten rat sarcoma protein inhibitor in colorectal cancer based on in silico study. Biotropika J Trop Biol. 2023; 11(2):115-125.
59. Torrens-Fontanals M, Stepniewski TM, Aranda-García D, Morales-Pastor A, Medel-Lacruz B, Selent J. How do molecular dynamics data complement static structural data of GPCRs. Int J Mol Sci. 2020; 21(16):5933.
60. Londhe AM, Gadhe CG, Lim SM, Pae AN. Investigation of molecular details of Keap1-Nrf2 inhibitors using molecular dynamics and umbrella sampling techniques. Molecules. 2019; 24(22):4085.
61. Meylani V, Putra RR, Miftahussurur M, Sukardiman S, Hermanto FE, Abdullah A. Molecular docking analysis of Cinnamomum zeylanicum phytochemicals against secreted aspartyl proteinase 4–6 of Candida albicans as anti-candidiasis oral. Results Chem. 2023; 5:100721.
62. Fatriansyah JF, Rizqillah RK, Yandi MY, Fadilah, Sahlan M. Molecular docking and dynamics studies on propolis sulabiroin-A as a potential inhibitor of SARS-CoV-2. J King Saud Univ Sci. 2022; 34(1):101707.