Phylogenetic Analysis of Arabica and Robusta Coffee Using the matK and rbcL Genes

Main Article Content

Essy Harnelly
Risa Ramlan
Lenni Fitri
Haya Maghfira

Abstract

Coffee is one of the most traded commodities globally, with Indonesia as one of the major contributors to its production volume. The two most commonly cultivated species in Indonesia are Coffea arabica (arabica) and Coffea canephora (robusta). One notable location for cultivating Arabica and Robusta coffee is the Gayo Experimental Farm in Pondok Gajah, Bener Meriah, Aceh. It is well known that the area has suitable environmental and soil conditions for cultivating both coffee species. Therefore, this study aims to determine the evolutionary relationships between Arabica and Robusta coffee varieties grown at the farm using the matK and rbcL genes. Genomic DNA was extracted using a modified CTAB method and amplified the matK and rbcL genes. Subsequently, DNA sequencing was carried out using BLAST, followed by phylogenetic analysis with Maximum Parsimony. The results showed that the concentration of the extracted genomic DNA ranged from 33.95 to 149.65 ng/µL, and its purity at A260 and A280 was between 1.7 and 1.9. The amplified gene sequences for the matK and rbcL genes were 856–867 bp and 566–657 bp, respectively. In addition, the matK, rbcL, and matK+rbcL genes also showed a genetic distance of 0.001 between Arabica coffee species, Coffea arabica x Coffea canephora, and Coffea eugenioides. The results also indicated that Robusta coffee varieties had a genetic distance of 0.001-0.005 with Coffea canephora. This study's matK and rbcL genes demonstrated the relationship between Arabica and robusta coffee varieties. However, these two genes could not distinguish coffee at the varietal level.

Downloads

Download data is not yet available.

Article Details

Section

Articles

Author Biographies

Risa Ramlan, Biology Department, Faculty of Mathematics and Natural Sciences, Syiah Kuala University, Banda Aceh, Indonesia

Master Program at Biology Department, Faculty of Mathematics and Natural Sciences, Syiah Kuala University, Banda Aceh, Indonesia

Haya Maghfira, Biology Department, Faculty of Mathematics and Natural Sciences, Syiah Kuala University, Banda Aceh, Indonesia

Master Program at Biology Department, Faculty of Mathematics and Natural Sciences, Syiah Kuala University, Banda Aceh, Indonesia

How to Cite

Harnelly, E., Ramlan, R., Fitri, L., & Maghfira, H. (2025). Phylogenetic Analysis of Arabica and Robusta Coffee Using the matK and rbcL Genes. Tropical Journal of Natural Product Research (TJNPR), 9(6), 2605-2612. https://doi.org/10.26538/tjnpr/v9i6.36

References

1.Vegro CLR, de Almeida LF. Global coffee market: socioeconomic and cultural dynamics BT - Coffee consumption and industry strategies in Brazil. In 2020. p. 3–19.

2.Batista LR, de Souza SMC, e Batista CFS, Schwan RF. Coffee: Species and Production BT - Encyclopedia of Food and Health. In 2016. p. 244–251.

3.Nakagawa T, Doi M, Nishi K, Sugahara T, Nishimukai H, Asano M. A simple and versatile authenticity assay of coffee products by single nucleotide polymorphism genotyping. Biosci Biotechnol Biochem. 2019;83(10):1829–1836.

4.International Coffee Organization (ICO). The value of coffee: sustainability, inclusiveness, and resilience of the coffee global value chain. German Federal Ministry for Economic Cooperation and Development; 2020. Available from: https://www.icocoffee.org/wp-content/uploads/2022/11/CDR2020.pdf

5.Indonesia BPS. Indonesian Coffee Statistics 2022. Jakarta: BPS-Statistic Indonesia; 2023.

6.Province BPSA. Aceh Province in 2023. BPS-Statistic of Aceh Province; 2023.

7.Khalid. ToT Budidaya Kopi Arabika Gayo Secara Berkelanjutan. Badan Penelitian dan Pengembangan Pertanian Kementerian Pertanian; 2017.

8.Arvian Y. Coffee: Scents, Flavors, Stories. Jakarta: Tempo Publishing; 2018.

9.Abubakar Y, Hasni D, Widayat HP, Muzaifa M, Rinaldi D. Influence of cultivars and cultivation land slope on sensory quality of Gayo arabica coffee. J Teknol dan Manaj Agroindustri. 2023;2:156–168.

10.Benti T. Progress in Arabica Coffee Breeding in Ethiopia: Achievements, Challenges, and Prospects. Int J Sci Basic Appl Res. 2017;33(2):15–25. Available from: https://www.gssrr.org/index.php/JournalOfBasicAndApplied/article/view/7324

11.Putra LAG, Yonathan CJ, Niedhatrata NI, Firdaus MHR, Yoewono JR. A review of the development of polymerase chain reaction technique and its uses in a scientific field. J Sains dan Terap Kim. 2020;2:17–30.

12.MJ M, Jingade P, AKC H. DNA Barcoding Analysis and Phylogenetic Relationship of Indian Wild Coffee Species. Turk J Botany. 2022;46:109–122.

13.Carbonell-Caballero J, Alonso R, Ibanez V, Terol J, Talon M, Dopazo J. A Phylogenetic Analysis of 34 Chloroplast Genomes Elucidates the Relationships Between Wild and Domestic Species within The Genus Citrus. Mol Biol Evol. 2015;32(8):2015–2035.

14.Cao EP, Constantino-Santos DM, Ramos LAP, Santos BS, Quilang JP, Mojica RM. Molecular and morphological differentiation among Coffea (Rubiaceae) varieties grown in Cavite Province, Philippines farms. Philipp Sci Lett. 2014;7(2):387–397. Available from: https://www.semanticscholar.org/paper/55505277

15.Panaligan AC, Baltazar MD, Alejandro GJD. Molecular authentication of commercially cultivated coffee (Coffea spp.) in the Philippines using DNA barcodes. Int J Agric Biol. 2021;25:227–230.

16.Khemira H, Mahdhi M, Afzal M, MDY O, Tounekti T, Al-Faifi Z, Alsolami W. Assessment of genetic diversity and phylogenetic relationship of local coffee populations in southwestern Saudi Arabia using DNA barcoding. PeerJ. 2023;11:1–22.

17.Dai W, Zhang Q. Photosynthesis and respiration in woody plants BT - Stress Physiology of Woody Plants. In the United States: CRC Press; 2019.

18.George K, Johnson K, Fred W. Phylogenetic analysis of Acacia nilotica and Coffea arabica using protein sequences from the chloroplast rbcL gene. Asian J Biochem Genet Mol Biol. 2023;15(1):1–9.

19.Ho VT, Tran TKP, Vu TTT, Widiarsih S. Comparison of matK and rbcL DNA barcodes for genetic classification of jewel orchid accessions in Vietnam. J Genet Eng Biotechnol. 2021;19:1–8.

20.Shara PN, Thomy Z, Anhar A, Harnelly E, Ramlan RR. Morphological characterization of some Coffea arabica L. varieties in Gayo Experimental Garden Bener Meriah. In: Journal of Physics: Conference Series. 2021. p. 12092.

21.Harnelly E, Heriansyah F, Iqbar I, Ramlan RR. Morphological relationship of coffee varieties (Coffea spp.) arabica and robusta in Pondok Gajah Experimental Garden Bener Meriah. In: Conference Series: Earth and Environmental Science. 2024. p. 12014.

22.Schenk JJ, Becklund LE, Carey SJ, Fabre PP. What is the “modified” CTAB protocol? Characterizing modifications to the CTAB DNA extraction protocol. Appl Plant Sci. 2022;1–11.

23.Nurhasanah, Sundari, Papuangan N. Amplification and Analysis of rbcL Gene (Ribulose-1,5-Bisphosphate Carboxylase) of Clove in Ternate Island. In: IOP Conf On Life Sciences and Technology. 2019. p. 1–7.

24.Fazekas AJ, Burgess KS, Kesanakurti PR, Graham SW, Newmaster SG, Husband BC, Percy DM, Hajibabaei M, Barrett SCH. Multiple multilocus DNA barcodes from the plastid genome discriminate plant species equally well. PLoS One. 2008;3(7):1–12.

25.Crossley BM, Bai J, Glaser A, Maes R, Porter E, Killian ML, Clement T, Toohey-Kurth K. Guidelines for Sanger sequencing and molecular assay monitoring. J Vet Diagnostic Investig. 2020;32(6):767–775.

26.Sanger F, Coulson AR. A rapid method for determining sequences in DNA by primed synthesis with DNA polymerase. J Mol Biol. 1975;94(3):441–448.

27.Peng X, Ren B, Li Y, Zhou X, Xie J, Zhou C, Zhang D, Zheng X, Zhou X. Techniques for Oral Microbiology BT - Atlas of Oral Microbiology: From Healthy Microflora to Disease. In 2020. p. 25–80.

28.Castro C, Hernandez A, Alvarado L, Flores D. DNA Barcodes in Fig Cultivars (Ficus carica L.) Using ITS Regions of Ribosomal DNA, the psbA-trnH Spacer, and the matK Coding Sequence. Am J Plant Sci. 2015;6:95–102.

29.Wirawan IGD, Harianja SY, Suada IK, Susrama IGK, Krisnandika AAK, Wirawan IGNAS, Mirahadi AAA, Sasadara MMV. Molecular Identification Using DNA Barcoding and Phytochemical Profiling in Four Basil (Ocimum spp.) from Different Locations in Bali. Trop J Nat Prod Res. 2025;9(1):104–111.

30.Christensen H, de Vries L. Databases and Protein Structures BT - Introduction to Bioinformatics in Microbiology, Learning Materials in Biosciences. In 2023. p. 29–58.

31.Tamura K, Stecher G, Kumar S. MEGA11: Molecular Evolutionary Genetics Analysis version 11. Mol Biol Evol. 2021;38:3022–3027.

32.Nishimaki T, Sato K. An Extension of the Kimura Two-Parameter Model to the Natural Evolutionary Process. J Mol Evol. 2019;87:60–67.

33.Chen CY. DNA polymerases drive DNA sequencing-by-synthesis technologies, both past and present. Front Microbiol. 2014;5:1–11.

34.Bell TG, Kramvis A. Bioinformatics tools for small genomes, such as the Hepatitis B Virus. Viruses. 2015;7:781–797.

35.Atri B, Lichtarge O. Sequence alignment BT - Bioinformatics: Sequences, Structures, Phylogeny. In Singapore: Springer; 2018.

36.Nestor BJ, Bayer P, Fernandez CGT, Edwards D, Finnegan PM. Approaches to increase the validity of gene family identification using manual homology search tools. Genetica. 2023;151:325–338.

37.Pack PE. CliffNotes AP Biology 2021 Exam. United States: HMH Books; 2020.

38.Warseno T, Efendi M, Chasani AR, Daryono BS. Genetic variability and phylogenetic relationships of Begonia multangula based on atpB-rbcL non-coding spacer of cpDNA sequences. Biodiversitas. 2022;23(10):5491–5501.

39.Probojati RT, Listyorini D, Sulisetijono S, Wahyudi D. Phylogeny and estimated genetic divergence times of banana cultivar (Musa spp.) from Java Island by maturase K (matK) genes. Bull Nat Res Cent. 2021;45:33.

40.Gupta L, Rai K. Gene Technology, Immunology, and Computational Biology. Thakur Publication Private Limited; 2023.

41.Ismail HD. Bioinformatics: A Practical Guide to NCBI Databases and Sequence Alignments. United States: CRC Press; 2022.

42.Ojha KK, Mishra S, Singh VK. Computational molecular phylogeny: concepts and applications. In: Bioinformatics Methods and Application. 2022. p. 67–89.

43.Griffiths EJ, Brinkman FSL. Molecular evolution and phylogenetic analysis BT - Bioinformatics 4th Ed. In 2020. p. 251–277.

44.Valen FS, Bidayani E, Alfian RA, Prananda M, Notonegoro H, Susilo NB, Ardi WD, Swarlanda, Aziz MA, Puryoso, Widodo MS, Faqih AR, Hasan V. Unveiling the close relationship between Betta burdigala and Betta uberis through DNA barcoding based on COI Gene. In: ICOGEE-2023. 2023. p. 1–6.

45.Tallei TE, Rembet RE, Pelealu JJ, Kolondam BJ. Sequence variation and phylogenetic analysis of Sansevieria trifasciata (Asparagaceae). Biosci Res. 2016;13(1):1–7.

46.Merteyasa P, Wirawan IGP, Phabiola TA, Suada IK, Wijaya IN, Yuliadhi KA, Wirawan IGNAS, Sasadara MMV. Genotyping and Phytochemical Analysis of Three Species of Spider Lily (Hymenocallis spp.). Trop J Nat Prod Res. 2025;9:143–151.

47.Lashermes P, Combes MC, Robert J, Trouslot P, D’Hont A, Anthony F, Charrier A. Molecular characterization and origin of the Coffea arabica L genome. Mol Gen Genet. 1999;261(2):259–266.

48.Merot-L’anthoene V, Tournebize R, Darracq O, Rattina V, Lepelley M, Bellanger L, Tranchant-Dubreuil C, Coulée M, Pégard M, Metairon S, Fournier C, Stoffelen P, Janssens SB, Kambale JL, da Costa Neto JF, Revel C, de Kochko A, Descombes P, Crouzillat D, Poncet V . Development and evaluation of a genome-wide Coffee 8.5K SNP array and its application for high-density genetic mapping and for investigating the origin of Coffea arabica L. Plant Biotechnol J. 2019;17:1418–1430.

49.da Silva BSR, Sant’Ana GC, Chaves CL, Androcioli LG, Ferreira R V, Sera GH, Charmetant P, Leroy T, Pot D, Domingues DS, Pereira LFP. Population structure and genetic relationships between Ethiopian and Brazilian Coffea arabica genotypes revealed by SSR markers. Genetica. 2019;147:205–216.

50.Reece JB, Meyers N, Urry LA, Cain ML, Wasserman SA, Minorsky PV. Campbell Biology Australian and New Zealand Edition. Australia: Pearson Australia; 2015.

51.Gagnon E, Hilgenhof R, Orejuela A, McDonnel A, Sablok G, Aubriot X, Giacomin L, Gouvêa Y, Bragionis T, Stehmann JR, Bohs L, Dodsworth S, Martine C, Poczai P, Knapp S, Särkinen T. Phylogenomic discordance suggests polytomies along the backbone of the large genus Solanum. Am J Bot. 2021;109:580–601.