Effect of Concentration and Heat Treatment on Anti-inflammatory and Total Antioxidant Capacity of Azadirachta indica, Persea americana, and Mangifera indica Leaves Polyherbal Extract

Main Article Content

Israel E. Ebhohimen
Onosolesena D. Idiakheua
Rufina O. Itamah
Emmanuella O. Orowo
Queen Ayeni-Idris

Abstract

The traditional methods of preparing polyherbal extracts can induce changes in the phytochemical composition and alter biological activities. This study investigated the effect of heat treatment and concentration on the antioxidant and anti-inflammatory properties of polyherbal extracts derived from Azadirachta indica, Mangifera indica, and Persea americana leaves. The extracts were categorized as heated or fresh and the effect of heat treatment (5, 10, 15, and 20 minutes at 100°C) and concentrations (100–1000 µg/ml) were evaluated in vitro by measuring the inhibition of albumin denaturation, proteinase inhibitory activity, total antioxidant capacity and inhibition of heat-induced haemolysis using standard spectrophotometric procedures. The activities of the extracts were affected by the duration of heat treatment and concentration. The capacity of the extracts to inhibit albumin denaturation and proteinase activity followed a similar trend for both fresh and heated extracts in terms of concentration and duration of heat treatment. Whereas the TAC of the fresh extract increased to 74.06 ± 2.79 mgAAE/g, the heated extract decreased significantly to 21.90 ± 0.70 mgAAE/g. Inhibition of heat-induced haemolysis also reduced significantly from 51.27 ± 2.74% to 39.69 ± 0.87% after 20 minutes. The total antioxidant capacity indicates an optimum range of heat treatment between 5 and 40 minutes at 100°C. These findings underscore the importance of processing conditions and concentration in the optimization of the therapeutic efficacy of this polyherbal formulation..

Downloads

Download data is not yet available.

Article Details

Section

Articles

How to Cite

Ebhohimen, I. E., Idiakheua, O. D., Itamah, R. O., Orowo, E. O., & Ayeni-Idris, Q. (2025). Effect of Concentration and Heat Treatment on Anti-inflammatory and Total Antioxidant Capacity of Azadirachta indica, Persea americana, and Mangifera indica Leaves Polyherbal Extract. Tropical Journal of Natural Product Research (TJNPR), 9(6), 2827-2833. https://doi.org/10.26538/tjnpr/v9i6.64

References

1. Iyawe HOT, Ebhohimen IE. Antioxidant role of vitamins in malaria and the implications of antioxidants as adjuvant in malaria therapy: A review. West African J. Life Sci. 2023;1:18–22.

2. Eba K, Habtewold T, Asefa L, Degefa T, Yewhalaw D, Duchateau L. Effect of - Ivermectin® on survivorship and fertility of Anopheles arabiensis in Ethiopia: an in vitro study. Malar. J. 2023;12:1–8. doi:10.1186/s12936-023-04440-6.

3. Nsanzabana C. Resistance to artemisinin combination therapies (ACTs): Do not forget the partner drug! Trop. Med. Infect. Dis. 2019;4:1-11. doi:10.3390/tropicalmed4010026.

4. Logiel A, Jørs E, Akugizibwe P, Ahnfeldt-Mollerup P. Prevalence and socio-economic factors affecting the use of traditional medicine among adults of Katikekile subcounty, Moroto district, Uganda. Afr. Health Sci. 2021;21:1410–1417.

5. Obidike IC, Amodu B, Emeje MO. Antimalarial properties of SAABMAL®: An ethnomedicinal polyherbal formulation for the treatment of uncomplicated malaria infection in the tropics. Indian J. Med. Res. 2015;142:221–227.

6. Pearson H, Fleming T, Chhoun P, Tuot S, Brody C, Yi S. Prevalence of and factors associated with utilization of herbal medicines among outpatients in primary health centers in Cambodia. BMC Complement. Altern. Med. 2018;18:1–9. doi:10.1186/s12906-018-2181-1.

7. Rao TR, Anand A. A detailed review on polyherbal chewable tablets. Brazilian J. Pharm. Sci. 2024;60:1–18. doi:10.1590/s2175-97902024e23573.

8. Tarkang PA, Okalebo FA, Ayong LS, Agbor GA, Guantai AN. Anti-malarial activity of a polyherbal product (Nefang) during early and established Plasmodium infection in rodent models. Malar. J. 2014;13:1–11.

9. Ibrahim SO, Lukman HY, Ebhohimen IE, Babamale HF, Abdulkadir FR, Zubair MF, Atolani O. Chemoinformatic-aided antidiabetic analysis of the therapeutic potential of phytoconstituents in Eremomastax speciosa extracts. Borneo J. Pharm. 2024;7:172–186. doi:10.33084/bjop.v7i2.6820.

10. Ebhohimen IE, Agbamuche R, Eromosele EO, Idiakheua OD. Assessment of the Antiplasmodial and haematoprotective potential of a polyherbal extract of Azadirachta indica, Mangifera indica, and Persea americana leaves in mice infected with Plasmodium berghei. Trop. J. Nat. Prod. Res. 2024;8:9115–9120. doi:10.26538/tjnpr/v8i11.21.

11. Gomes ARQ, Cunha N, Varela ELP, Brígido HPC, Dolabela MF, de Carvalho E, Precário S. Oxidative stress in malaria: Potential benefits of antioxidant therapy. Int. J. Mol. Sci. 2022;23:1–26. doi:10.3390/ijms23115949.

12. Vasquez M, Zuniga M, Rodriguez A. Oxidative stress and pathogenesis in malaria. Front. Cell. Infect. Microbiol. 2021;11:1–8.

13. Babalola AS, Jonathan J, Michael BE. Oxidative stress and anti-oxidants in asymptomatic malaria-positive patients: a hospital-based cross-sectional Nigerian study. Egypt. J. Intern. Med. 2020;32:1-8. doi:10.1186/s43162-020-00024-x.

14. Islas JF, Acosta E, G-Buentello Z, Delgado-Gallegos JL, Moreno-Treviño MG, Escalante B, Moreno-Cuevas JE. An overview of neem (Azadirachta indica) and its potential impact on health. J. Funct. Foods. 2020;74:1-13. doi:10.1016/j.jff.2020.104171.

15. Alzohairy MA. Therapeutic role of Azadirachta indica (neem) and their active constituents in diseases prevention and treatment. Evid. Based Complement. Altern. Med. 2016;2016:1–11. doi:10.1155/2016/7382506.

16. Patweka M, Patweka F, Mezni A, Sanaullah S, Fatema SR, Almas U, Ahmad I, Tirth V, Mallick J. Assessment of antioxidative and alpha‐amylase potential of polyherbal extract. Evid. Based Complement. Altern. Med. 2022;2022:1–10. doi:10.1155/2022/715326.

17. White NJ. Anaemia and malaria. Malar. J. 2018;17:1–17. doi:10.1186/s12936-018-2509-9.

18. Cooke BM, Mohandas N, Coppel RL. Malaria and the red blood cell membrane. Semin. Hematol. 2004;41:173–188.

19. Gunathilake KDPP, Ranaweera KKDS, Rupasinghe HPV. In vitro anti-inflammatory properties of selected green leafy vegetables. Biomedicines. 2018;6:1–10. doi:10.3390/biomedicines6040107.

20. Ebhohimen IE, Awojide S, Ebhohimen K, Edemhanria L. In silico investigation of biochemical and pharmacological activity of the oxidation products of ascorbic acid. Niger. J. Pure Appl. Sci. 2017;30:3116–3121.

21. Edemhanria L, Ebhohimen I, Amama A, Olubokun B, Okoh E. Effect of drying method on the in vitro antioxidant capacity of ethanol extracts of Ocimum basilicum L. leaves. Int. J. Innov. Eng. Sci. 2017;6(8):23–28. doi:10.9790/1813-0608022328.

22. Gunathilake KDPP, Ranaweera KKDS, Rupasinghe HPV. Influence of boiling, steaming and frying of selected leafy vegetables on the in vitro anti-inflammation associated biological activities. Plants. 2018;7:1–10. doi:10.3390/plants7010022.

23. Prieto P, Pineda M, Aguilar M. Spectrophotometric quantitation of antioxidant capacity through the formation of a phosphomolybdenum complex: Specific application to the determination of vitamin E. Anal. Biochem. 1999;269:337–341.

24. Shinde UA, Phadke AS, Nair AM, Mungantiwar AA, Dikshit VJ, Saraf MN. Membrane stabilizing activity: A possible mechanism of action for the anti-inflammatory activity of Cedrus deodara wood oil. Fitoterapia. 1999;70:251–257.

25. World Health Organization. WHO Guidelines on Drawing Blood: Best Practices in Phlebotomy. Geneva: WHO; 2010. Chapter 3, Blood-sampling systems. Available from: [https://www.ncbi.nlm.nih.gov/books/NBK138666/](https://www.ncbi.nlm.nih.gov/books/NBK138666/)

26. Ebhohimen IE, Edemhanrhia L, Ekozin A, Okolie PN. Effect of heat treatment on the antioxidant capacity of aqueous and ethanol extracts of Aframomum angustifolium seed. Trop. J. Nat. Prod. Res. 2017;1:125–128.

27. Tavares WPS, Silveira B. Food Processing: A review on Maillard reaction food processing. Int. J. Innov. Eng. Sci. Res. 2022;6:1–10.

28. Ameena M, Meignana AI, Ramalingam K, Rajeshkumar S. Evaluation of the anti-inflammatory, antimicrobial, antioxidant, and cytotoxic effects of chitosan thiocolchicoside-lauric acid nanogel. Cureus. 2023;15:1–10. doi:10.7759/cureus.46003.

29. Hasan M, Islam E, Hossain S, Akter M, Rahman AA, Kazi M, Khan S, Parvin S. Unveiling the therapeutic potential: Evaluation of anti-inflammatory and antineoplastic activity of Magnolia champaca Linn’s stem bark isolate through molecular docking insights. Heliyon. 2024;10:1–17. doi:10.1016/j.heliyon.2023.e22972.

30. Dharmadeva S, Galgamuwa LS, Prasadinie C, Kumarasinghe N. In vitro anti‑inflammatory activity of Ficus racemosa L. bark using albumin denaturation method. Ayu. 2018;39:239–242. doi:10.1254/fpj.92.215.

31. Enechi OC, Okeke ES, Nwankwo NE, Nweze JE, Obilor CP, Okoye CI, Awoh OE. Membrane stabilization, albumin denaturation, protease inhibition, and antioxidant activity as possible mechanisms for the anti-inflammatory effects of flavonoid-rich extract of Peltophorum pterocarpum (DC.) K.Heyne (FREPP) stem bark. Trop. J. Nat. Prod. Res. 2020;4:812–816. doi:10.26538/tjnpr/v4i10.25.

32. Toydemir G, Gultekin S, Busra H, Robert D, Beekwilder J, Boyacioglu D, Capanoglu E. Effect of food processing on antioxidants, their bioavailability and potential relevance to human health. Food Chem.: X. 2022;14:1–15. doi:10.1016/j.fochx.2022.100334.

33. Singha R, Kanthal LK, Pattanayak S, Maiti M, Bhuniya T, Maity P. In-vitro anti-inflammatory activity of Mimosa pudica against inhibition of protein denaturation and heat induced haemolysis methods. Int. J. Pharm. Sci. Rev. Res. 2023;82:48–51. doi:10.47583/ijpsrr.2023.v82i01.008.

34. Moualek I, Aiche GI, Guechaoui NM, Lahcene S, Houali K. Antioxidant and anti-inflammatory activities of Arbutus unedo aqueous extract. Asian Pac. J. Trop. Biomed. 2016;6:937–944. doi:10.1016/j.apjtb.2016.09.002.

35. Ramos A, Arboleda L, Ramos S, Mejia E. Effect of heat treatment on the antioxidant capacity of fruits and vegetables - A Review Study. Ecuadorian J. S.T.E.A.M. 2024;3:87–102. doi:10.18502/espoch.v3i4.17167.

36. Xu G, Ye X, Chen J, Liu D. Effect of heat treatment on the phenolic compounds and antioxidant capacity of citrus peel extract. J. Agric. Food Chem. 2007;55:330–335. doi:10.1021/jf062517l.