Differentially Express Gene Analysis and In silico Evaluation of Laminaria japonica Compounds as Potential Therapeutic Agents for Chronic Obstructive Pulmonary Disease
Main Article Content
Abstract
Current treatments for Chronic Obstructive Pulmonary Disease (COPD) focus on alleviating symptoms, slowing disease progression, and enhancing patients' quality of life. However, existing COPD medications are associated with significant side effects, particularly during long-term use. Natural compounds are increasingly explored as alternative therapies for COPD due to their potential for reduced adverse effects. Laminaria japonica, a brown seaweed species, has attracted attention for its bioactive compounds and health-promoting properties. This study aims to identify key target proteins in COPD and evaluate bioactive compounds from Laminaria japonica as alternative therapeutic agents through differentially expressed gene (DEG) analysis and molecular docking. Critical COPD-associated genes were identified by analyzing DEGs to map gene-pathway relationships and assessing Laminaria japonica compounds computationally. The F2 (coagulation factor II) and BDKRB1 (bradykinin receptor B1) genes exhibited significant upregulation (log2 fold change >1), highlighting them as potential therapeutic targets. Pathway enrichment analysis revealed that complement and coagulation cascades, platelet activation, and inflammatory pathways play central roles in COPD pathogenesis. Among 47 compounds screened for interactions with F2 (PDB ID: 1A2C) and BDKRB1 (PDB ID: 7EIB), docosatrienoic acid demonstrated the strongest binding affinity (MolDock score: -15598; Rerank score: -11868 for F2; MolDock score: -14639; Rerank score: -11296 for BDKRB1). These findings suggest that docosatrienoic acid, a compound derived from Laminaria japonica, holds promise as an inhibitor of F2 and BDKRB1, offering potential therapeutic benefits for COPD.
Downloads
Article Details
Section

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
How to Cite
References
1. Venkatesan P. GOLD COPD report: 2025 update. Lancet Respir Med. 2025; 13(1):e7–e8. Doi:10.1016/S2213-2600(24)00413-2
2. Ministry of Health of the Republic of Indonesia. Basic Health Research 2018. Jakarta: Health Research and Development Agency; 2019.
3. Samirah S, Aryani T, Puspitasari AD, Ibrahim MA, Lutfiyah BI, Rasyid AN. Therapy pattern of bronchodilators in chronic obstructive pulmonary disease (COPD) patients with acute exacerbations. Pharm Educ. 2023; 23(4):224–227. Doi:10.46542/pe.2023.234.224227
4. Lorensia A, Sukarno DA, Mahmudah RL. Red Ginger (Zingiber officinale var. rubrum) Infusion in Improve COPD Symptoms. IJPST. 2022; 9(2):75–84. Doi:10.24198/ijpst.v9i2.36460
5. Rehman NU, Ansari MN, Haile T, Karim A, Abujheisha KY, Ahamad SR, Imam F. Possible Tracheal Relaxant and Antimicrobial Effects of the Essential Oil of Ethiopian Thyme Species (Thymus serrulatus Hochst. ex Benth.): A Multiple Mechanistic Approach. Front Pharmacol. 2021; 12:615228. Doi:10.3389/fphar.2021.615228
6. Sierocinski E, Holzinger F, Chenot JF. Ivy leaf (Hedera helix) for acute upper respiratory tract infections: an updated systematic review. Eur J Clin Pharmacol. 2021; 77(8):1113–1122. Doi:10.1007/s00228-021-03090-4
7. Chen Y, Lin L, Wu L, Xu Y, Shergis JL, Zhang AL, Wen Z, Worsnop C, Da Costa C, Thien F, Xue CC. Effect of Panax Ginseng (G115) Capsules versus Placebo on Acute Exacerbations in Patients with Moderate to Very Severe COPD: A Randomized Controlled Trial. Int J Chron Obstruct Pulmon Dis. 2020; 15:671-680. Doi:10.2147/COPD.S236425
8. Das S, Adiody S, Varghese J, Vanditha M, Maria E, John M. Exploring the novel duo of Reticulocalbin and Sideroflexin as future biomarker candidates for Exacerbated Chronic Obstructive Pulmonary Disease. Clin Proteomics. 2024; 21(1):10. Doi:10.1186/s12014-024-09459-8
9. Yin D, Sun X, Li N, Guo Y, Tian Y, Wang L. Structural properties and antioxidant activity of polysaccharides extracted from Laminaria japonica using various methods. Process Biochem. 2021; 111:201–209. Doi:10.1016/j.procbio.2021.10.019
10. Luan F, Zou J, Rao Z, Ji Y, Lei Z, Peng L, Yang Y, He X, Zeng N. Polysaccharides from Laminaria japonica : an insight into the current research on structural features and biological properties. Food Funct. 2021; 12(10):4254–4283. Doi:10.1039/D1FO00311A
11. Cho MH, Hobbs BD, Silverman EK. Genetics of chronic obstructive pulmonary disease: understanding the pathobiology and heterogeneity of a complex disorder. Lancet Respir Med. 2022; 10(5):485–496. Doi:10.1016/S2213-2600(21)00510-5
12. The 1000 Genomes Project Consortium, Corresponding authors, Auton A, Abecasis GR, Steering committee, Altshuler DM, Durbin RM, Abecasis GR, Bentley DR, Chakravarti A, Clark AG, Donnelly P, Eichler EE, Flicek P, Gabriel SB et al. A global reference for human genetic variation. Nature. 2015; 526(7571):68–74. Doi:10.1038/nature15393
13. Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, Amin N, Schwikowski B, Ideker T. Cytoscape: A Software Environment for Integrated Models of Biomolecular Interaction Networks. Genome Res. 2003; 13(11):2498–2504. Doi:10.1101/gr.1239303
14. Bitencourt-Ferreira G, De Azevedo WF. Molegro Virtual Docker for Docking. In: De Azevedo WF (Eds.). Docking Screens for Drug Discovery. New York, NY: Springer New York; 2019. p. 149–167.
15. Yue Q, Wang Z, Yu F, Tang X, Su L, Zhang S, Sun X, Li K, Zhao C, Zhao L. Changes in metabolite profiles and antioxidant and hypoglycemic activities of Laminaria japonica after fermentation. LWT. 2022; 158:113122. Doi:10.1016/j.lwt.2022.113122
16. Zhuang Y, Hobbs BD, Hersh CP, Kechris K. Identifying miRNA-mRNA Networks Associated With COPD Phenotypes. Front Genet. 2021; 12:748356. Doi:10.3389/fgene.2021.748356
17. Ezzie ME, Crawford M, Cho JH, Orellana R, Zhang S, Gelinas R, Batte K, Yu L, Nuovo G, Galas D, Diaz P, Wang K, Nana-Sinkam SP. Gene expression networks in COPD: microRNA and mRNA regulation. Thorax. 2012; 67(2):122–131. Doi:10.1136/thoraxjnl-2011-200089
18. Tentua V. Level of interleukin-6 in stable COPD patients using the exhaled breath condensate. Biomedika. 2023; 15(1):51–66. Doi:10.23917/biomedika.v15i1.1750
19. Wan X, Chen L, Zhu Z, Luo P, Hang D, Su J, Tao R, Zhou J, Fan X. Association of Serum Calcium with the Risk of Chronic Obstructive Pulmonary Disease: A Prospective Study from UK Biobank. Nutrients. 2023; 15(15):3439. Doi:10.3390/nu15153439
20. Sagar S, Kapoor H, Chaudhary N, Roy SS. Cellular and mitochondrial calcium communication in obstructive lung disorders. Mitochondrion. 2021; 58:184–199. Doi:10.1016/j.mito.2021.03.005
21. Barnes PJ. Inflammatory mechanisms in patients with chronic obstructive pulmonary disease. J Allergy Clin Immunol. 2016; 138(1):16–27. Doi:10.1016/j.jaci.2016.05.011
22. Wu J, Zhao X, Xiao C, Xiong G, Ye X, Li L, Fang Y, Chen H, Yang W, Du X. The role of lung macrophages in chronic obstructive pulmonary disease. Respir Med. 2022; 205:107035. Doi:10.1016/j.rmed.2022.107035
23. Hirota S, Helli P, Janssen LJ. Ionic mechanisms and Ca2+ handling in airway smooth muscle. Eur Respir J. 2007; 30(1):114–133. Doi:10.1183/09031936.00147706
24. Kokelj S, Östling J, Fromell K, Vanfleteren LEGW, Olsson HK,Nilsson Ekdahl K, Nilsson B, Olin AC. Activation of the Complement and Coagulation Systems in the Small Airways in Asthma. Respiration. 2023; 102(8):621–631. Doi:10.1159/000531374
25. Enríquez-Rodríguez CJ, Casadevall C, Faner R, Castro-Costa A, Pascual-Guàrdia S, Seijó L, López-Campos JL, Peces-Barba G, Monsó E, Barreiro E, Cosío BG, Agustí A, Gea J, on behalf of the BIOMEPOC group. COPD: systemic proteomic profiles in frequent and infrequent exacerbators. ERJ Open Res. 2024; 10(2):00004–02024. Doi:10.1183/23120541.00004-2024
26. Hlapčić I, Belamarić D, Bosnar M, Kifer D, Vukić Dugac A, Rumora L. Combination of Systemic Inflammatory Biomarkers in Assessment of Chronic Obstructive Pulmonary Disease: Diagnostic Performance and Identification of Networks and Clusters. Diagnostics. 2020; 10(12):1029. Doi:10.3390/diagnostics10121029
27. Mallah H, Ball S, Sekhon J, Parmar K, Nugent K. Platelets in chronic obstructive pulmonary disease: An update on pathophysiology and implications for antiplatelet therapy. Respir Med. 2020; 171:106098. Doi:10.1016/j.rmed.2020.106098
28. Ijoma IK, Okafor CE, Ajiwe VIE. Computational Studies of 5-methoxypsolaren as Potential Deoxyhemoglobin S Polymerization Inhibitor. Trop J Nat Prod Res. 2024; 8(10):8835–8841. Doi:10.26538/tjnpr/v8i10.28
29. Tashkin DP. Formoterol for the Treatment of Chronic Obstructive Pulmonary Disease. Int J Chron Obstruct Pulmon Dis. 2020; 15:3105–3122. Doi:10.2147/COPD.S273497
30. Steiropoulos P, Tzouvelekis A, Bouros D. Formoterol in the management of chronic obstructive pulmonary disease. Int J Chron Obstruct Pulmon Dis. 2008; 3(2):205–215. Doi:10.2147/copd.s1059
31. Golanski J, Szymanska P, Rozalski M. Effects of Omega-3 Polyunsaturated Fatty Acids and Their Metabolites on Haemostasis—Current Perspectives in Cardiovascular Disease. Int J Mol Sci. 2021; 22(5):2394. Doi:10.3390/ijms22052394
32. Meesapyodsuk D, Sun K, Zhou R, Thoms K, Qiu X. Stepwise metabolic engineering of docosatrienoic acid – an ω3 very long‐chain polyunsaturated fatty acid with potential health benefits in Brassica carinata. Plant Biotechnol J. 2023; 21(1):8–10. Doi:10.1111/pbi.13937
33. Rogero M, Calder P. Obesity, Inflammation, Toll-Like Receptor 4 and Fatty Acids. Nutrients. 2018; 10(4):432. Doi:10.3390/nu10040432
34. Rex DAB, Deepak K, Vaid N, Dagamajalu S, Kandasamy RK, Flo TH, Keshava Prasad TS. A modular map of Bradykinin-mediated inflammatory signaling network. J Cell Commun Signal. 2022; 16(2):301–310. Doi:10.1007/s12079-021-00652-0