Assessment of Nicotine Levels, Viscosity, and Density Properties of Nicotine Solution After Exposure to Moringa oleifera Ethanol Extract
Main Article Content
Abstract
Moringa oleifera, commonly referred to as the "drumstick tree" or "miracle tree," is renowned for its rich nutritional content and therapeutic properties. Nevertheless, its effects on nicotine metabolism and toxicity have not been extensively studied. This study investigated the interaction between Moringa oleifera extract and nicotine by assessing changes in nicotine concentration, density, viscosity, and chemical structure through laboratory techniques including Gas Chromatography-Mass Spectrometry (GC-MS), Fourier Transform Infrared Spectroscopy (FTIR), and Ultraviolet Visible (UV-Vis) spectroscopy. The results demonstrated that Moringa oleifera extract significantly decreased nicotine concentrations. The most significant effect was observed at a 2% extract concentration after 24 hours, resulting in a 34.77% reduction (p = 0.010). Furthermore, both the density and viscosity of the nicotine solution decreased upon exposure to the extract. The greatest changes were recorded at the 2% concentration after 24 hours, with density decreasing by 1.28% and viscosity by 1.68% (p = 0.01 and p = 0.021, respectively). These physical changes indicate that bioactive compounds in Moringa oleifera, including polyphenols, flavonoids, chlorogenic acid, and isothiocyanates, play a role in reducing nicotine levels. The underlying mechanisms may involve molecular binding, oxidation, and detoxification processes that transform nicotine into inactive metabolites such as cotinine, thereby promoting its elimination from the body. Moreover, the antioxidant properties of these compounds may safeguard tissues against oxidative damage caused by nicotine. These findings highlight the potential of Moringa oleifera as a natural agent for nicotine detoxification and underscore the need for further research into its therapeutic applications.
Downloads
Article Details
Section

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
How to Cite
References
1. Whitehead AK, Erwin AP, Yue X. Nicotine and vascular dysfunction. Acta Physiol. 2021; 231(4):e13631. Doi: 10.1111/apha.13631
2. Benowitz NL, Burbank AD. Cardiovascular toxicity of nicotine: Implications for electronic cigarette use. Trends Cardiovasc Med. 2016; 26(6):515–523. Doi: 10.1016/j.tcm.2016.03.001
3. Dorotheo EU, Arora M, Banerjee A, Bianco E, Cheah NP, Dalmau R, Eissenberg T, Hasegawa K, Naidoo P, Nazir NT, Newby K, Obeidat N, Skopalsky A, Stępińska J, Willett J. Nicotine and Cardiovascular Health: When Poison is Addictive - a WHF Policy Brief. Glob Heart. 2024; 19(1):14. Doi: 10.5334/gh.1292
4. Bajić DM, Jovanović J, Živković EM, Visak ZP, Šerbanović SP, Kijevčanin MLj. Experimental measurement and modelling of viscosity of the binary systems pyridine or nicotine with polyethylene glycols at T= (288.15–333.15) K. New UNIFAC–VISCO and ASOG–VISCO interaction parameters. Fluid Phase Equilib. 2013; 338:282–293. Doi: 10.1016/j.fluid.2012.11.021
5. Mahaveerchand H, Abdul Salam AA. Environmental, industrial, and health benefits of Moringa oleifera. Phytochem Rev. 2024; 23(5):1497–1556. Doi: 10.1007/s11101-024-09927-x
6. Bankole HA, Kanmodi RI, Kazeem MI, Wusu AD, Fatai AA, Oddiri RT, Boakye A, Oyedele AQK. Interactive Properties of Alkaloids from Datura stramonium, Moringa oleifera, and Carica papaya with Human Receptor Proteins of Psychoactive Compounds from Cannabis sativa and Nicotiana tabacum. Trop J Nat Prod Res. 2024; 8(7): 7880-7890. Doi: 10.26538/tjnpr/v8i7.35
7. Vergara-Jimenez M, Almatrafi MM, Fernandez ML. Bioactive Components in Moringa oleifera Leaves Protect against Chronic Disease. Antioxidants. 2017; 16(4):91. Doi; 10.3390/antiox6040091
8. Kumar M, Selvasekaran P, Kapoor S, Barbhai MD, Lorenzo JM, Saurabh V, Potkule J, Changan S, Elkelish A, Selim S, Sayed AAS, Radha, Singh S, Senapathy M, Pandiselvam R, Dey A, Dhumal S, Natta S, Amarowicz R, Kennedy JF. Moringa oleifera Lam. seed proteins: Extraction, preparation of protein hydrolysates, bioactivities, functional food properties, and industrial application. Food Hydrocoll. 2022; 131:1077-1091. Doi:
10.1016/j.foodhyd.2022.107791
9. Fekhar M, Daghbouche Y, Bouzidi N, El Hattab M. ATR-FTIR spectroscopy combined with chemometrics for quantification of total nicotine in Algerian smokeless tobacco products. Microchemi J. 2023; 193:109-127. Doi: 10.1016/j.microc.2023.109127
10. Hukkanen J, Jacob P, Benowitz NL. Metabolism and Disposition Kinetics of Nicotine. Pharmacol Rev. 2005; 57(1):79–115. Doi: 10.1124/pr.57.1.3
11. Akhtar Z, Barhdadi S, De Braekeleer K, Delporte C, Adams E, Deconinck E. Spectroscopy and Chemometrics for Conformity Analysis of e-Liquids: Illegal Additive Detection and Nicotine Characterization. Chemosensors. 2024; 12(1):9. Doi: 10.3390/chemosensors-12010009
12. Gopalakrishnan L, Doriya K, Kumar DS. Moringa oleifera: A review on nutritive importance and its medicinal application. Food Sci Hum Wellness. 2016; 5(2):49–56. Doi: 10.1016/j.fshw.2016.04.001
13. Chumark P, Khunawat P, Sanvarinda Y, Phornchirasilp S, Morales NP, Phivthong-ngam L, Ratanachamnong P, Srisawat S, Pongrapeeporn KS. The in vitro and ex vivo antioxidant properties, hypolipidaemic and antiatherosclerotic activities of water extract of Moringa oleifera Lam. leaves. J Ethnopharmacol. 2008; 116(3):439–446. Doi: 10.1016/j.jep.2007.12.010
14. Fahey J. Moringa oleifera: A Review of the Medical Evidence for Its Nutritional, Therapeutic, and Prophylactic Properties. Trees Life J. 2005; 1(5):1–15. Doi: 10.1201/9781420039078.ch12
15. Chiș A, Noubissi PA, Pop OL, Mureșan CI, Fokam Tagne MA, Kamgang R, Fodor A, Sitar-Tăut A, Cozma A, Orășan OH, Hegheș SC, Vulturar R, Suharoscho R. Bioactive Compounds in Moringa oleifera: Mechanisms of Action, Focus on Their Anti-Inflammatory Properties. Plants. 2023; 13(1):20. Doi: 10.3390/plants13010020
16. Kusmiyati, Keman S, Amin M, Suwarno, Nugroho HSW. The Role of Moringa oleifera Leaves Against Oxidative Stress and Chronic Inflammation: A Review. Ind Jour of Publ Health Rese & Develop. 2018; 9(6):257. Doi: 10.5958/0976-5506.2018.00560.0
17. Izzuddin A, Ridwan M, Iskandar CD, Purnawarman A, Husna F, Nurkhalis N, Yafi DA, Fajri F, Fitriani F. Anti-Atherosclerotic Effect of Nigella sativa L. in High-Fat diet Fed Wistar Rats. Trop J Nat Prod Res. 2024; 8(12): 9632-9636. Doi:10.26538/tjnpr/v8i1 2.41
18. Ridwan M, Nurkhalis N, Husna F, Ali Yafi D, Izzuddin A. Therapeutic potential of Nigella sativa extract against inflammatory markers interleukin-1ß (IL-1ß) and tumor necrosis factor-α (TNF-α) in rat models with high fat diet. F1000Res. 2025; 14:172. Doi: 10.12688/f1000research.159199.1
19. Haryanti N, Heriansyah T, Yusuf H, Mudatsir M, Zulkarnaen Z. Dose and Duration of N-acetylcysteine on Superoxide Dismutase, MCP-1, and Foam Cell in Atherosclerosis Rat Model Research. Trop J Nat Prod Res. 2025; 9(3): 1232-1236. Doi: 10.26538/tjnpr/v9i3.45
20. Gbadamosi IT, Omotoso GO, Olajide OJ, Dada-Habeeb SO, Arogundade TT, Lambe E, Obasi KK. Moringa protects against nicotine-induced morphological and oxidative damage in the frontal cortex of Wistar rats. Anatomy. 2016; 10(3):170–176. Doi: 10.2399/ana.16.020
21. Omotoso GO, Adunmo GO, Ojulari LS, Olawuyi TS, Lewu FS, Jaji-Sulaimon R, Gbadamosi IT, Onoja OP. Moringa oleifera attenuates biochemical and histological changes associated with the pancreas in nicotine-treated rats. Res J Health Sci. 2018; 6(4):172. Doi: 10.4314/rejhs.v6i4.3
22. Omotoso GO, Gbadamosi IT, Olajide OJ, Dada-Habeeb SO, Arogundade TT, Yawson EO. Moringa oleifera phytochemicals protect the brain against experimental nicotine-induced neurobehavioral disturbances and cerebellar degeneration. Pathophysiology. 2018; 25(1):57–62. Doi:
10.1016/j.pathophys.2017.12.003
23. Luetragoon T, Sranujit RP, Noysang C, Thongsri Y, Potup P, Somboonjun J, Maichandi N, Suphorm N, Sangouam S, Usuwanthim K. Evaluation of Anti-Inflammatory Effect of Moringa oleifera Lam. and Cyanthillium cinereum (Less) H. Rob. Lozenges in Volunteer Smokers. Plants. 2021; 10(7):1336. Doi: 10.3390/plants10071336
24. Hodges RE, Minich DM. Modulation of Metabolic Detoxification Pathways Using Foods and Food-Derived Components: A Scientific Review with Clinical Application. J Nutr Metab. 2015; 2015:760689. Doi: 10.1155/2015/760689
25. Rudrapal M, Maji S, Prajapati SK, Kesharwani P, Deb PK, Khan J, Ismail RM, Kankate RS, Sahoo RJ, Khairnar SJ, Bendale AR. Protective Effects of Diets Rich in Polyphenols in Cigarette Smoke (CS)-Induced Oxidative Damages and Associated Health Implications. Antioxidants. 2022; 11(7):1217. Doi: 10.3390/antiox11071217