The Effect of Purwoceng (Pimpella alpina Molk.) on Oxidative Stress and Immunity in Wistar Rats

Main Article Content

Hadi Hadi
Natalia D. Putriningtyas
Dewangga Yudhistira
Widya H. Cahyati
Latifah Rachmawati

Abstract

Exercise can significantly impact the body's redox status due to the generation of free radicals during physical activity. It also influences the regulatory mechanism of antioxidants. Purwoceng (Pimpella alpina Molk) is known for its high antioxidant properties and its ability to enhance the immune system. The phytochemical compound found in purwoceng provide protection against free radicals. This study investigated the effects of purwoceng on oxidative stress and immunity in Wistar rats subjected to high-intensity exercise. Thirty Wistar rats were randomly assigned to five groups (n = 6): a negative control (Group I), a positive control (Group II), and three treatment
groups receiving purwoceng powder at doses of 36 mg/200 g BW/day (Group III), 72 mg/200 g BW/day (Group IV), and 108 mg/200 g BW/day (Group V). The treatment was administered once daily after exercise for 28 days. Malondialdehyde (MDA) level was assessed using ELISA, while lymphocytes count was measured from retroorbital blood samples. Data were analyzed using paired sample t-tests and one-way analysis of variance (ANOVA). The results indicated significant differences in MDA levels and lymphocytes counts before and after the administration of purwoceng powder at all tested doses (p < 0.05). Post hoc Bonferroni tests revealed differences in MDA and lymphocytes levels between the control and treatment groups. From the findings of the present study, it can be concluded that purwoceng powder effectively reduces MDA levels and enhances lymphocytes counts in Wistar rats subjected to high-intensity exercise.

Downloads

Download data is not yet available.

Article Details

Section

Articles

Author Biography

Natalia D. Putriningtyas, Nutrition, Faculty of Medicine, Universitas Negeri Semarang, Indonesia

Doctoral Program in Medicine and Health Science, Faculty of Medicine, Public Health and Nursing Universitas Gadjah Mada, Indonesia

Tel: +62 856-4088-5101

How to Cite

Hadi, H., Putriningtyas, N. D., Yudhistira, D., Cahyati, W. H., & Rachmawati, L. (2025). The Effect of Purwoceng (Pimpella alpina Molk.) on Oxidative Stress and Immunity in Wistar Rats. Tropical Journal of Natural Product Research (TJNPR), 9(6), 2481-2486. https://doi.org/10.26538/tjnpr/v9i6.19

References

1. Pingitore A, Pereira Lima GP, Mastorci F, Quinones A, Lervasi C, Vassalle C. Exercise and Oxidative Stress: Potential Effects of Antioxidant Dietary Strategies in Sports. Nutrition. 2015; 31(6):916-922. doi:10.1016/j.nut.2015.02.005

2. Ramos D, Martins EG, Viana-Gomes D, Casimiro-Lopes G. Biomarkers of Oxidative Stress and Tissue Damage Released by Muscle. Appl Physiol Nutr Metab. 2013; 38(5):507-511. doi:10.1139/apnm-2012-0302

3. Silva AF, Aghdasi MH, Kharatzadeh M, Ahmadi VK, Oliveira R, Clemente FM, Badicu G, Murawska-Ciałowicz E. Effects of High-Intensity Resistance Training on Physical Fitness, Hormonal and Antioxidant Factors: A Randomized Controlled Study Conducted on Young Adult Male Soccer Players. Biology (Basel). 2022; 11(6):909. doi:10.3390/biology11060909

4. da Rocha GL, Crisp AH, de Oliveira MRM, da Silva CA, Silva JO, Duarte ACGO, Sene-Fiorese M, Verlengia R. Effect of High Intensity Interval and Continuous Swimming Training on Body Mass Adiposity Level and Serum Parameters in High-Fat Diet Fed Rats. Sci World J. 2016; 2016:2194120. doi:10.1155/2016/2194120

5. Nimse SB and Pal D. Free Radicals, Natural Antioxidants, and Their Reaction Mechanisms. RSC Adv. 2015; 5(27):27986-28006. doi:10.1039/c4ra13315c

6. Estruel-Amades S, Camps-Bossacoma M, Massot-Cladera M, Pérez-Cano FJ, Castell M. Alterations in the Innate Immune System Due to Exhausting Exercise in Intensively Trained Rats. Sci Rep. 2020; 10(1):1-12. doi:10.1038/s41598-020-57783-4

7. Navarro F, Bacurau AV, Pereira GB, Araújo RC, Almeida SS, Moraes MR, Uchida MC, Costa Rosa LF, Navalta J, Prestes J, Bacurau RF. Moderate Exercise Increases the Metabolism and Immune Function of Lymphocytes in Rats. Eur J Appl Physiol. 2013; 113(5):1343-1352.

doi:10.1007/s00421-012-2554-y

8. Webster ML, Zhu G, Li Y, Ni H. Fc-Independent Phagocytosis: Implications for Intravenous IgG Therapy in Immune Thrombocytopenia. Cardiovasc Hematol Disord Targets. 2008; 8(4):278-282.

9. Fisher G, Schwartz DD, Quindry J, Barberio MD, Foster EB, Jones KW, Pascoe DD. Lymphocyte Enzymatic Antioxidant Responses to Oxidative Stress Following High-Intensity Interval Exercise. J Appl Physiol (1985). 2011; 110(3):730-737. doi:10.1152/japplphysiol.00575.2010

10. Ferrer MD, Tauler P, Sureda A, Tur JA, Pons A. Antioxidant Regulatory Mechanisms in Neutrophils and Lymphocytes After Intense Exercise. J Sports Sci. 2009; 27(1):49-58. doi:10.1080/02640410802409683

11. Azizbeigi K, Azarbayjani MA, Atashak S, Stannard SR. Effect of Moderate and High Resistance Training Intensity on Indices of Inflammatory and Oxidative Stress. Res Sports Med. 2015; 23(1):73-87. doi:10.1080/15438627.2014.975807

12. Gaesser GA and Angadi SS. High-Intensity Interval Training for Health and Fitness: Can Less Be More? J Appl Physiol (1985). 2011; 111(7):1540-1541. doi:10.1152/japplphysiol.00921.2011

13. Chang WC, Wang C, Liu W, Tsai C, Wu Y, Hsu M. Chinese Herbal Medicine Significantly Impacts the Haematological Variables of the Athlete Biological Passport. Int J Environ Res Public Health. 2021; 18(18):9533. doi:10.3390/ijerph18189533

14. Wahyuningrum R, Utami PI, Dhiani BA, Kumalasari M, Kusumawardani RS. Screening of Potential Free Radicals Scavenger and Antibacterial Activities of Purwoceng (Pimpinella alpina Molk). Trop Life Sci Res. 2016; 27(3):161-166. doi:10.21315/tlsr2016.27.3.22

15. Pontes VCB, Rodrigues DP, Caetano A, Gamberini MT. Preclinical Investigation of the Cardiovascular Actions Induced by Aqueous Extract of Pimpinella anisum L. Seeds in Rats. J Ethnopharmacol. 2019; 237:74-80. doi:10.1016/j.jep.2019.03.050

16. Munir S, Liu ZW, Tariq T, Rabail R, Kowalczewski PŁ, Lewandowicz J, Blecharczyk A, Abid M, Inam-Ur-Raheem M, Aadil RM. Delving into the Therapeutic Potential of Carica papaya Leaf Against Thrombocytopenia. Molecules. 2022; 27(9):2760. doi:10.3390/molecules27092760

17. Wu J, Cao Z, Hassan SSU, Zhang H Lu J, Qian W, Xu L, Huang G, Cong W, Wang Z, Deng X, Wang D, Guan S. Phytochemical Composition and Toxicity of an Antioxidant Extract from Pimpinella brachycarpa (Kom.) Nakai. Environ Toxicol Pharmacol. 2012; 34(2):409-415.

doi:10.1016/j.etap.2012.05.015

18. Das S, Singh VK, Dwivedy AK, Chaudhari AK, Deepika D, Dubey NK. Nanostructured Pimpinella anisum Essential Oil as Novel Green Food Preservative Against Fungal Infestation, Aflatoxin B1 Contamination and Deterioration of Nutritional Qualities. Food Chem. 2021; 344:128574.

doi:10.1016/j.foodchem.2020.128574

19. Wu J, Cao Z, Hassan SSU, Zhang H, Ishaq M, Yu X, Yan S, Xiao X, Jin HZ. Emerging Biopharmaceuticals from Pimpinella Genus. Molecules. 2023; 28(4):1571. doi:10.3390/molecules28041571

20. Lee JB, Yamagishi C, Hayashi K, Hayashi T. Antiviral and Immunostimulating Effects of Lignin-Carbohydrate-Protein Complexes from Pimpinella anisum. Biosci Biotechnol Biochem. 2011; 75(3):459-465. doi:10.1271/bbb.100645

21. Rahayu S, Putriningtyas ND, Rahayu T, Azam M. The Beetroot (Beta vulgaris) Powder Improves Blood Pressure and Glucose Level Wistar Rats After High Intensity Exercise. Food Res. 2022; 6(2):152-158. doi:10.26656/fr.2017.6(2).184

22. Dewi L, Lestari LA, Astiningrum AN, Fadhilah V, Amala N. The Alleviation Effect of Combination of Tempeh and Red Ginger Flour Towards Insulin Sensitivity in High-Fat Diet Rats. J Food Nutr Res. 2020; 8(1):21-25. doi:10.12691/jfnr-8-1-3

23. Rahayu S, Putriningtyas ND, Rahayu T, Azam M. The Potential of Red Beetroot Powder as an Athlete Supplementation According to Its Organoleptic Properties. Proc Int Sem Health Educ. 2020; 2020:7-12. doi:10.4108/eai.22-7-2020.2300311

24. Fernandes HS. Carbohydrate Consumption and Periodization Strategies Applied to Elite Soccer Players. Curr Nutr Rep. 2020; 9(4):414-419. doi:10.1007/s13668-020-00338-w

25. Candow DG, Vogt E, Johannsmeyer S, Forbes SC, Farthing JP. Strategic Creatine Supplementation and Resistance Training in Healthy Older Adults. Appl Physiol Nutr Metab. 2015; 40(7):689-694. doi:10.1139/apnm-2014-0498

26. Slater GJ, Sygo J, Jorgensen M. Sprinting . . . Dietary Approaches to Optimize Training Adaptation and Performance. Int J Sport Nutr Exerc Metab. 2019; 29(1):85-94. doi:10.1123/ijsnem.2018-0273

27. Jones AM. Dietary Nitrate Supplementation and Exercise Performance. Sports Med. 2014; 44(1):S35-S45. doi:10.1007/s40279-014-0149-y

28. Schöler CM, Marques CV, da Silva GS, Heck TG, Junior LPO, de Bittencourt Jr PIH. Modulation of Rat Monocyte/Macrophage Innate Functions by Increasing Intensities of Swimming Exercise Is Associated with Heat Shock Protein Status. Mol Cell Biochem. 2016 ;421(1-2):111-125. doi:10.1007/s11010-016-2791-1

29. Bonilla DL, Ly LH, Fan YY, Chapkin RS, McMurray DN. Incorporation of a Dietary Omega 3 Fatty Acid Impairs Murine Macrophage Responses to Mycobacterium tuberculosis. PLoS One. 2010; 5(5):e10878. doi:10.1371/journal.pone.0010878

30. Tillmans F, Sharghi R, Noy T, Kähler W, Klapa S, Sartisohn S, Sebens S, Koch A. Effect of Hyperoxia on the Immune Status of Oxygen Divers and Endurance Athletes. Free Radic Res. 2019; 53(5):522-534. doi:10.1080/10715762.2019.1612890

31. Schröder H, Navarro E, Tramullas A, Mora J, Galiano D. Nutrition Antioxidant Status and Oxidative Stress in Professional Basketball Players: Effects of a Three Compound Antioxidative Supplement. Int J Sports Med. 2010; 31(2):146-150.

32. Murota K, Nakamura Y, Uehara M. Flavonoid Metabolism: The Interaction of Metabolites and Gut Microbiota. Biosci Biotechnol Biochem. 2018; 82(4):600-610. doi:10.1080/09168451.2018.1444467

33. Bessa AL, Oliveira VN, Agostini GG, Oliveira RJ, Oliveira AC, White GE, Wells GD, Teixeira DN, Espindola FS. Exercise Intensity and Recovery: Biomarkers of Injury, Inflammation, and Oxidative Stress. J Strength Cond Res. 2016; 30(2):311-319.

34. Morales-Suárez-Varela M, Peraita-Costa I, Llopis-Morales A, Llopis-González A. Athletic Burnout and Its Association with Diet in Children and Adolescents. Life (Basel). 2023; 13(6):1381. doi:10.3390/life13061381

35. Taherkhani S, Valaei K, Arazi H, Suzuki K. An Overview of Physical Exercise and Antioxidant Supplementation Influences on Skeletal Muscle Oxidative Stress. Antioxidants (Basel). 2021; 10(10):1528. doi:10.3390/antiox10101528

36. Antonioni A, Fantini C, Dimauro I, Caporossi D. Redox Homeostasis in Sport: Do Athletes Really Need Antioxidant Support? Res Sports Med. 2019; 27(1):1-19. doi:10.1080/15438627.2018.1563899

37. da Silva DVT, Baião D dos S, Ferreira VF, Paschoalin VMF. Betanin as a Multipath Oxidative Stress and Inflammation Modulator: A Beetroot Pigment with Protective Effects on Cardiovascular Disease Pathogenesis. Crit Rev Food Sci Nutr. 2021; 61(1):1-15. doi:10.1080/10408398.2020.1822277

38. Turner JE, Bosch JA, Drayson MT, Aldred S. Assessment of Oxidative Stress in Lymphocytes with Exercise. J Appl Physiol (1985). 2011; 111(1):206-211. doi:10.1152/japplphysiol.00051.2011

39. Connor TJ, Kelly JP, Leonard BE. Forced Swim Test-Induced Endocrine and Immune Changes in the Rat: Effect of Subacute Desipramine Treatment. Pharmacol Biochem Behav. 1998; 59(1):171-177.

40. Borges TC, Gomes TL, Pichard C, Laviano A, Pimentel GD. High Neutrophil to Lymphocytes Ratio Is Associated with Sarcopenia Risk in Hospitalized Cancer Patients. Clin Nutr. 2021; 40(1):202-206. doi:10.1016/j.clnu.2020.05.005

41. Bessa AL, Oliveira VN, Agostini GG, Oliveira RJ, Oliveira AC, White GE, Wells GD, Teixeira DN, Espindola FS. Exercise Intensity and Recovery: Biomarkers of Injury, Inflammation, and Oxidative Stress. J Strength Cond Res. 2016; 30(2):311-319.

42. Ascensão A, Rebelo A, Oliveira E, Marques F, Pereira L, Magalhães J. Biochemical Impact of a Soccer Match — Analysis of Oxidative Stress and Muscle Damage Markers Throughout Recovery. Clin Biochem. 2008; 41(13):841-851. doi:10.1016/j.clinbiochem.2008.04.008

43. Simpson RJ, Kunz H, Agha N, Graff R. Exercise and the Regulation of Immune Functions. In: Binder M, Hirokawa T, Ohno S, Inui T, Ishiura S, eds. Progress in Molecular Biology and Translational Science. Vol 135. Elsevier Inc.; 2015:355-380p.

44. Peake JM, Neubauer O, Walsh NP, Simpson RJ. Recovery of the Immune System After Exercise. J Appl Physiol (1985). 2017;122(5):1077-1087.

doi:10.1152/japplphysiol.00622.2016

45. Aguiar SS, Sousa CV, Deus LA, Rosa TS, Sales MM, Neves RVP, Barbosa LP, Santos PA, Campbell CS, Simões HG. Oxidative Stress, Inflammatory Cytokines and Body Composition of Master Athletes: The Interplay. Exp Gerontol. 2020; 130:110806. doi:10.1016/j.exger.2019.110806

46. Iddir M, Brito A, Dingeo G, Del Campo SSF, Samouda H, La Frano MR, Bohn T. Strengthening the Immune System and Reducing Inflammation and Oxidative Stress Through Diet and Nutrition: Considerations During the COVID-19 Crisis. Nutrients. 2020; 12(6):1562.

doi:10.3390/nu12061562

47. Jafari A, Faizi MAH, Askarian F, Pourrazi H. Effect of Regular Aerobic Exercise with Ozone Exposure on Peripheral Leukocyte Populations in Wistar Male Rats. J Res Med Sci. 2017; 22:277-283.

48. Khademi Y, Hosseini S, Fatemeh D, Azar H. Effect of High Intensity Interval Training with Flaxseed on Interleukin-1 Beta and Lipocalin-2 Gene Expressions in the Heart Tissue of Rats. J Arch Mil Med. 2019; 27(3):e98527.

49. Zhou Y, Baker JS, Chen X, Wang Y, Chen H, Davison GW, Yan X. High-Dose Astaxanthin Supplementation Suppresses Antioxidant Enzyme Activity During Moderate-Intensity Swimming Training in Mice. Nutrients. 2019; 11(6):1244. doi:10.3390/nu11061244

50. Santoso S, Jaeri S, Maharani N, Setyawati AN. The Effect of Red Dragon Fruit (Hylocereus polyrhizus) Peel Ethanol Extract on Oxidative Stress in Sprague Dawley Rats (Rattus norvegicus). Trop J Nat Prod Res. 2022; 6(6):872-874. doi:10.26538/tjnpr/v6i6.7

51. Al-Taiee TD, Farah HS, Ahmed KA. The Impact of Short-Term Exercise and Coffee Consumption on Some Biochemical Parameters. Trop J Nat Prod Res. 2022; 6(2):188-193. doi:10.26538/tjnpr/v6i2.4