Antioxidant, Cysteine Protease and Beta Hematin Inhibitory Activities of Methanol Stem bark Extract and Fractions of Uapaca togoensis (Pax)
Main Article Content
Abstract
Malaria ranks among the most severe diseases affecting tropical and subtropical countries worldwide. The increasing prevalence of drug-resistant Plasmodium strains has led to a reduction in the efficacy of currently used antimalarial drugs. The development of innovative drugs targeting biochemical mechanisms is urgently needed to address the disease. The methanol extract and fractions of Uapaca togoensis have been previously confirmed to exhibit antimalarial activity. Nonetheless, there is a paucity of information regarding the mechanism of antimalarial action. In this study, the crude methanol stem bark extract (MUT), ethyl acetate (EUT), n-butanol (BUT), and residual aqueous (RUT) fractions of Uapaca togoensis was screened for antioxidant, cysteine protease, and beta hematin inhibitory activities. Phytochemical screening was conducted using the standard protocol. The 2,2-di-phenyl-1-picrylhydrazyl (DPPH) radical scavenging assay was used to examine antioxidant activity. Cysteine protease and beta hematin inhibitory activities were evaluated by papain and hematin polymerization inhibition assays respectively. Following the measurement of percentage inhibition, IC₅₀ values were calculated for the various samples. In the DPPH assay, ascorbic acid (standard) showed the lowest IC₅₀ at 0.023 mg/mL, followed by MUT (0.032 mg/mL), BUT (0.031 mg/mL), RUT (0.040 mg/mL), and EUT (0.054 mg/mL). Among the fractions tested, the n-butanol fraction (BUT) showed significant antimalarial activity, recording IC₅₀ values of 0.43 ± 0.19 mg/mL for cysteine protease inhibition and 1.67 ± 0.12 mg/mL in the β-hematin assay. The results indicate that Uapaca togoensis may serve as a viable source for developing novel antimalarial pharmaceuticals.
Downloads
Article Details
Section

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
How to Cite
References
1. World Health Organization (WHO, 2023). World Malaria Report 2023. Geneva: World Health Organization; 2023. Licence: CC BY-NC-SA 3.0 IGO.
2. Zekar L, Sharman T. Plasmodium falciparum Malaria. [Updated 2023 Aug 8]. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2024 Jan-. Available from: [https://www.ncbi.nlm.nih.gov/books/NBK555962/](https://www.ncbi.nlm.nih.gov/books/NBK555962/).
3. Olanlokun JO, Adetutu JA, Olorunsogo OO. In vitro inhibition of beta-hematin formation and in vivo effects of Diospyros mespiliformis and Mondia whitei methanol extracts on chloroquine-susceptible Plasmodium berghei-induced malaria in mice. Interv Med Appl Sci. 2021; 11(4):197-206. doi: 10.1556/1646.2020.00001.
4. Balmer AJ, White NFD, Ünlü ES, Lee C, Pearson RD, Almagro-Garcia J, Ariani CV. Understanding the Global Spread of Artemisinin Resistance: Insights from over 100K Plasmodium falciparum Samples. bioRxiv. 2024; 2024.08.23.609367. doi: [https://doi.org/10.1101/2024.08.23.609367](https://doi.org/10.1101/2024.08.23.609367).
5. Dimbu PR, Horth R, Cândido ALM, Ferreira CM, Caquece F, Garcia LEA, André K, Pembele G, Jandondo D, Bondo BJ, Nieto AB, Labuda S, Ponce de LG, Kelley J, Patel D, Svigel SS, Talundzic E, Lucchi N, Morais JFM, Fortes F, Martins JF, Pluciński MM. Continued low efficacy of artemether-lumefantrine in Angola in 2019. Antimicrob Agents Chemother. 2021; 65(2): e01949-20. doi: 10.1128/AAC.01949-20.
6. Moriarty LF, Nkoli PM, Likwela JL, Mulopo PM, Sompwe EM, Rika JM, Mavoko HM, Svigel SS, Jones S, Ntamabyaliro NY, Kaputu AK. Therapeutic efficacy of artemisinin-based combination therapies in Democratic Republic of the Congo and investigation of molecular markers of antimalarial resistance. Am J Trop Med Hyg. 2021;105(4):1067-1075. doi: 10.4269/ajtmh.21-0214.
7. Ishengoma DS, Mandara CI, Bakari C, Fola AA, Madebe RA, Seth MD, Francis F, Buguzi C, Moshi R, Garimo I, Lazaro S. Evidence of artemisinin partial resistance in Northwestern Tanzania: clinical and drug resistance markers study. medRxiv. 2024; 1:2024.01.31.24301954. doi: 10.1101/2024.01.31.24301954.
8. Nguyen TD, Gao B, Amaratunga C, Dhorda M, Tran TN-A, White NJ, Dondorp AM, Boni MF, Aguas R. Preventing antimalarial drug resistance with triple artemisinin-based combination therapies. Nat Commun. 2023; 14:4568. doi: [https://doi.org/10.1038/s41467-023-39914-3](https://doi.org/10.1038/s41467-023-39914-3).
9. Kokori E, Olatunji G, Akinboade A, Akinoso A, Egbunu E, Aremu SA, Okafor CE, Oluwole O, Aderinto N. Triple artemisinin-based combination therapy (TACT): advancing malaria control and eradication efforts. Malar J. 2024; 23:25. doi: [https://doi.org/10.1186/s12936-024-04844-y](https://doi.org/10.1186/s12936-024-04844-y).
10. van der Pluijm RW, Amaratunga C, Dhorda M, Dondorp AM. Triple Artemisinin-Based Combination Therapies for Malaria – A New Paradigm? Trends Parasitol. 2021; 37(1):15-24. doi: [https://doi.org/10.1016/j.pt.2020.09.011](https://doi.org/10.1016/j.pt.2020.09.011).
11. Misganaw D, Amare GG, Mengistu G. Chemo suppressive and curative potential of Hypoestes forskalei against Plasmodium berghei: evidence for in vivo antimalarial activity. J Exp Pharmacol. 2020; 12:313. doi:10.2147/JEP.S262026.
12. Kotepui KU, Mahittikorn A, Mala W, Lasom S, Masangkay FR, Majima HJ, Kotepui M. Total antioxidant status levels in malaria: a systematic review and meta-analysis. Malar J. 2024; 23:198. doi: [https://doi.org/10.1186/s12936-024-05003-z](https://doi.org/10.1186/s12936-024-05003-z).
13. Vasquez M, Zuniga M, Rodriguez A. Oxidative stress and pathogenesis in malaria. Front Cell Infect Microbiol. 2021; 11:768182. doi: 10.3389/fcimb.2021.768182.
14. Percário S, Moreira DR, Gomes BA, Ferreira ME, Gonçalves ACM, Laurindo PS, Vilhena TC, Dolabela MF, Green MD. Oxidative stress in malaria. Int J Mol Sci. 2012; 13(12):16346-16372.
15. Gomes ARQ, Cunha N, Varela ELP, Brígido HPC, Vale VV, Dolabela MF, De Carvalho EP, Percário S. Oxidative stress in malaria: Potential benefits of antioxidant therapy. Int J Mol Sci. 2022; 23(11):5949. doi: 10.3390/ijms23115949.
16. Singh A, Rosenthal PJ. Selection of cysteine protease inhibitor-resistant malaria parasites is accompanied by amplification of falcipain genes and alteration in inhibitor transport. J Biol Chem. 2004; 279(34):35236-35241. doi: 10.1074/jbc.M404235200.
17. Rosenthal PJ. Falcipains and other cysteine proteases of malaria parasites. Adv Exp Med Biol. 2011;712:30–48. doi:10.1007/978-1-4419-8414-2_3.
18. Mishra M, Singh V, Singh S. Structural Insights into Key Plasmodium Proteases as Therapeutic Drug Targets. Front Microbiol. 2019;10:394. doi:10.3389/fmicb.2019.00394.
19. Rosenthal PJ. Cysteine proteases of malaria parasites. Int J Parasitol. 2004;34:1489–1499. doi:10.1016/j.ijpara.2004.10.003.
20. Uddin A, Gupta S, Mohammad T, et al. Target-based virtual screening of natural compounds identifies a potent antimalarial with selective falcipain-2 inhibitory activity. Front Pharmacol. 2022;31:850176. doi:10.3389/fphar.2022.850176.
21. Olafson KN, Ketchum MA, Rimer JD, Vekilov PG. Mechanisms of hematin crystallization and inhibition by the antimalarial drug chloroquine. Proc Natl Acad Sci U S A. 2015;112(16):4946–4951.
22. Basilico N, Pagani E, Monti D, et al. A microtitre-based method for measuring the haem polymerization inhibitory activity (HPIA) of antimalarial drugs. J Antimicrob Chemother. 1998;42(1):55–60. doi:10.1093/jac/42.1.55.
23. Baelmans R, Deharo E, Muñoz V, et al. Experimental conditions for testing the inhibitory activity of chloroquine on the formation of β-hematin. Exp Parasitol. 2000;96(4):243–248. doi:10.1006/expr.2000.4558.
24. Herraiz T, Guillén H, González-Peña D, Arán VJ. Antimalarial quinoline drugs inhibit β-hematin and increase free hemin catalyzing peroxidative reactions and inhibition of cysteine proteases. Sci Rep. 2019;9(1):15398. doi:10.1038/s41598-019-51604-z.
25. Kuete V, Sandjo LP, Seukep JA, et al. Cytotoxic compounds from the fruits of Uapaca togoensis towards multifactorial drug-resistant cancer cells. Planta Med. 2015;81(1):32–38. doi:10.1055/s-0034-1383362.
26. Azokou A, Koné MW, Koudo BG, Tra Bi HF. Larvicidal potential of some plants from West Africa against Culex quinquefasciatus and Anopheles gambiae. J Vector Borne Dis. 2013;50(2):103–110.
27. Seukep JA, Sandjo LP, Ngadjui BT, Kuete V. Antibacterial activities of the methanol extracts and compounds from Uapaca togoensis against gram-negative multidrug-resistant phenotypes. S Afr J Bot. 2016;103(1):1–5. doi:10.1016/j.sajb.2015.08.014.
28. Omachi AA, Ndukwe GI, Sallau MS, Ayo RG. Phytochemical screening and antimicrobial studies of Uapaca togoensis stem bark extracts. Int J Eng Sci. 2015;4(5):24–28.
29. Olorukooba AB, Maiha BB, Chindo BA, et al. Preliminary studies on the analgesic and anti-inflammatory activities of the methanol stem bark extract of Uapaca togoensis in rodents. Niger J Pharm Sci. 2015;14(1):24–32.
30. Olorukooba AB, Maiha BB, Chindo BA, et al. Antiplasmodial studies on the ethyl acetate fraction of the stem bark extract of Uapaca togoensis in mice. Bayero J Pure Appl Sci. 2016;9(1):191–196.
31. Adzu B, Haruna AK, Salawu OA, et al. In vivo antiplasmodial activity of ZS-2A: A fraction from chloroform extract of Ziziphus spina-christi root bark against P. berghei in mice. Int J Biol Chem Sci. 2007;1(3):281–286.
32. Dubale S, Kebebe D, Zeynudin A, et al. Phytochemical screening and antimicrobial activity evaluation of selected medicinal plants in Ethiopia. J Exp Pharmacol. 2023;8(15):51–62. doi:10.2147/JEP.S379805.
33. Hussen EM, Endalew SA. In vitro antioxidant and free-radical scavenging activities of polar leaf extracts of Vernonia amygdalina. BMC Complement Med Ther. 2023;23:146. doi:10.1186/s12906-023-03923-y.
34. Zuckerman A, Spira D, Hamburger J. A procedure for the harvesting of mammalian plasmodia. Bull World Health Organ. 1967;37(3):431–436.
35. Dominguez F, Cejudo FJ. Characterization of the endoproteases appearing during wheat grain development. Plant Physiol. 1996;112(3):1211–1217.
36. Rasoanaivo P, Ramanitrahasimbola D, Rafatro H, et al. Screening extracts of Madagascan plants in search of antiplasmodial compounds. Phytother Res. 2004;18(9):742–747. doi:10.1002/ptr.1533.
37. Schwikkard S, van Heerden FR. Antimalarial activity of plant metabolites. Nat Prod Rep. 2002;19(6):675–692.
38. Saxena S, Pant N, Jain DC, Bhakuni RS. Antimalarial agents from plant sources. Curr Sci. 2003;85(9):1314–1329.
39. Corrêa Soares JB, Menezes D, Vannier-Santos MA, Ferreira-Pereira A, Almeida GT, Venancio TM, Verjovski-Almeida S, Zishiri VK, Kuter D, Hunter R, Egan TJ, Oliveira MF. Interference with hemozoin formation represents an important mechanism of schistosomicidal action of antimalarial quinoline methanols. PLoS Negl Trop Dis. 2009; 3(7): e477. doi: 10.1371/journal.pntd.0000477.
40. Saxena M, Saxena J, Nema R, Singh D, Gupta A. Phytochemistry of medicinal plants. J Pharmacogn Phytochem. 2013; 1(6):168–182.
41. Ntie-Kang F, Onguéné PA, Lifongo LL, Ndom JC, Sippl W, Mbaze LMA. The potential of anti-malarial compounds derived from African medicinal plants, part II: a pharmacological evaluation of non-alkaloids and non-terpenoids. Malar J. 2014; 13:81. doi: 10.1186/1475-2875-13-81.
42. Plirat W, Chaniad P, Phuwajaroanpong A, Septama AW, Punsawad C. Phytochemical, antimalarial, and acute oral toxicity properties of selected crude extracts of Prabchompoothaweep remedy in Plasmodium berghei-infected mice. Trop Med Infect Dis. 2022; 7(12):395. doi: 10.3390/tropicalmed7120395.
43. Laryea MK, Sheringham Borquaye L. Antimalarial, antioxidant, and toxicological evaluation of extracts of Celtis africana, Grosseria vignei, Physalis micrantha, and Stachytarpheta angustifolia. Biochem Res Int. 2021; 2021:9971857. doi: 10.1155/2021/9971857.
44. Klinkhamhom A, Glaharn S, Srisook C, Ampawong S, Krudsood S, Ward SA, Viriyavejakul P. M1 macrophage features in severe Plasmodium falciparum malaria patients with pulmonary oedema. Malar J. 2020; 19:182. doi: 10.1186/s12936-020-03254-0.
45. El Bashir IB, Kordofani MY, Yagi S, Al-Atar AA, Qahtan AA, Abdel-Salam EM. Antimalarial, cytotoxic and antioxidant activities of 14 medicinal plants from Sudan. Nat Resour Human Health. 2022; 2(4):472–478. doi: 10.53365/nrfhh/146223.
46. Arrey TP, Nwachiban Atchan AP, Kuiate JR, Okalebo FA, Guantai AN, Agbor GA. Antioxidant potential of a polyherbal antimalarial as an indicator of its therapeutic value. Adv Pharmacol Sci. 2013:678458. doi: 10.1155/2013/678458.
47. Enenebeaku CK, Ogukwe CE, Nweke CO, Anyado-Nwadike SO, Obi M, Duru IA, Enenebeaku UE, Ogidi OI. Antiplasmodial and in vitro antioxidant potentials of crude aqueous and methanol extracts of Chasmanthera dependens (Hochst). Bull Natl Res Cent. 2022; 46:33. doi: 10.1186/s42269-022-00721-3.
48. Pandey K. Macromolecular inhibitors of malarial cysteine proteases — an invited review. J Biomed Sci Eng. 2013; 6:885–895. doi: 10.4236/jbise.2013.69108.
49. Greenbaum DC, Baruch A, Grainger M, Bozdech Z, Medzihradszky KF, Engel J, DeRisi J, Holder AA, Bogyo M. A role for the protease falcipain 1 in host cell invasion by the human malaria parasite. Science. 2002; 298(5600):2002–2006. doi: 10.1126/science.1077426.
50. Pandey KC, Singh N, Arastu-Kapur S, Bogyo M, Rosenthal PJ. Falstatin, a cysteine protease inhibitor of Plasmodium falciparum, facilitates erythrocyte invasion. PLoS Pathog. 2006; 2(11):e117. doi: 10.1371/journal.ppat.0020117.
51. Rennenberg A, Lehmann C, Heitmann A, Witt T, Hansen G, Nagarajan K, Deschermeier C, Turk V, Hilgenfeld R, Heussler VT. Exoerythrocytic Plasmodium parasites secrete a cysteine protease inhibitor involved in sporozoite invasion and capable of blocking cell death of host hepatocytes. PLoS Pathog. 2010; 6(3):e1000825. doi: 10.1371/journal.ppat.1000825.
52. Nqoro X, Tobeka N, Aderibigbe BA. Quinoline-based hybrid compounds with antimalarial activity. Molecules. 2017; 22(12):2268. doi: 10.3390/molecules22122268.
53. Kapishnikov S, Hempelmann E, Elbaum M, Als-Nielsen J, Leiserowitz L. Malaria pigment crystals: the Achilles' heel of the malaria parasite. Chem Med Chem. 2021; 16(6):895–900. doi: 10.1002/cmdc.202000895.
54. Ekasari W, Fatmawati D, Khoiriah SM, Baqiuddin WA, Nisa HQ, Maharupini AAS, Wahyuni TS, Oktarina RD, Suhartono E, Sahu RK. Antimalarial activity of extract and fractions of Sauropus androgynus (L.) Merr. Scientifica. 2022; 2022:3552491. doi: 10.1155/2022/3552491.
55. Afshar FH, Delazar A, Janneh O, Nazemiyeh H, Pasdaran A, Nahar L, Sarker SD. Evaluation of antimalarial, free-radical-scavenging, and insecticidal activities of Artemisia scoparia and Artemisia spicigera (Asteraceae). Braz J Pharmacogn. 2011; 21(6):986–990. doi: 10.1590/S0102-695X2011005000144.
56. Ojobaro MG, Nkumah AO, Alabi SY, Abu T, Molik ZA, Ogbole OO. β-Hematin and nitric oxide inhibitory activities of ten Nigerian medicinal plants. Trop J Nat Prod Res. 2024; 8(11):9097–9103.