HPLC-DAD and HPLC-MS/MS Analyses of Phenolic Compounds, Antioxidant and Antibacterial Activities of the Methanol Extract of Atractylis caespitosa Desf

Main Article Content

Tarik Turqui
Ghania Benaiche
Hadi Debih
Imen Benkouider
Khellaf Rebbas

Abstract

The Asteraceae family are known for their diverse pharmacological activities, such as hepatoprotective, antioxidant, antibacterial, and anti-inflammatory effects. This study aimed to investigate the phenolic compounds composition, antioxidant, and antibacterial activities of the aqueous-methanol extract of the aerial parts of Atractylis caespitosa Desf., a plant species from the Asteraceae family. This species is used in conventional medicine to treat various ailments across different regions of Algeria. The phenolic compounds were analyzed using a newly developed High-Performance Liquid Chromatography coupled with Diode Array Detection (HPLC-DAD) and High-Performance Liquid Chromatography-Tandem Mass Spectrometry (HPLC-MS/MS) techniques. The antioxidant activity was assessed using the 2,2-diphenyl-1- picryl hydrazyl (DPPH) radical scavenging and the Ferric Reducing Antioxidant Power (FRAP) assays. Antibacterial activity was evaluated against notable pathogenic bacterial strains using the disk diffusion method. Through area normalization, 13 phenolic compounds were identified from the HPLC-DAD analysis of Atractylis caespitosa aerial parts with rosmarinic acid being the predominant compound at a concentration of 36.662 ppm. Additionally, 5 phenolic compounds were detected through the HPLC-MS/MS analysis, with gentisic acid being the most abundant at a concentration of 8.492 µg/g. The extract exhibited significant antioxidant activity with IC50 of 366.65 ± 1.25 µg/mL in the DPPH assay. The extract showed notable antibacterial activity, particularly against Pseudomonas aeruginosa and Escherichia coli, with the extract showing the lowest Minimum Inhibitory Concentration (MIC) of 2.5 mg/mL against both bacterial strains. The present findings pave the way for further exploration of Atractylis caespitosa.

Downloads

Download data is not yet available.

Article Details

Section

Articles

How to Cite

Turqui, T., Benaiche, G., Debih, H., Benkouider, I., & Rebbas, K. (2025). HPLC-DAD and HPLC-MS/MS Analyses of Phenolic Compounds, Antioxidant and Antibacterial Activities of the Methanol Extract of Atractylis caespitosa Desf. Tropical Journal of Natural Product Research (TJNPR), 9(6), 2771-2778. https://doi.org/10.26538/tjnpr/v9i6.56

References

1. Eruygur, N., Koçyiğit, U. M., Taslimi, P., Ataş, M., Tekin, M., & Gülçin, İ. (2019). Screening the in vitro antioxidant, antimicrobial, anticholinesterase, antidiabetic activities of endemic Achillea cucullata (Asteraceae) ethanol extract. *South African Journal of Botany, 120*, 141–145. [https://doi.org/10.1016/j.sajb.2018.09.026](https://doi.org/10.1016/j.sajb.2018.09.026)

2. Tourchi, M., Ahmet, A., & Mehrdad, I. (2016). Biological effects of arctiin from some medicinal plants of Asteraceae family. *American Journal of Biological and Life Sciences, 4*(5), 41–47. [http://www.openscienceonline.com/journal/ajbls](http://www.openscienceonline.com/journal/ajbls)

3. Chouikh, A., Chenguel, A., & Ben Ali, A. (2025). Understanding the role of free radicals, oxidative stress, and antioxidants: A comprehensive review. *Letters in Applied NanoBioScience, 14*(2), 66. [https://doi.org/10.33263/LIANBS142.066](https://doi.org/10.33263/LIANBS142.066)

4. Miara, M. D., Bendif, H., Ait Hammou, M., & Teixidor-Toneu, I. (2018). Ethnobotanical survey of medicinal plants used by nomadic peoples in the Algerian steppe. *Journal of Ethnopharmacology, 219*, 248–256. [https://doi.org/10.1016/j.jep.2018.03.011](https://doi.org/10.1016/j.jep.2018.03.011)

5. Achika, J., Arthur, D., Gerald, I., & Adedayo, A. (2014). A review on the phytoconstituents and related medicinal properties of plants in the Asteraceae family. *IOSR Journal of Applied Chemistry, 7*, 1–8.

6. Green, M. L. (1929). *Propagation of British Botany*, 179.

7. Petit, D. P. (1987). Cladistic analysis of the genus Atractylis L. (Compositae, Cardueae). *Bulletin de la Société Botanique de France, 134*(2), 165–184.

8. Battandier, J. A., & Trabut, L. (1889). *Flore de l'Algérie*. Paris.

9. Petit, D. P. (1988). Nomenclatural note on the subdivisions of the genus Atractylis L. *Bulletin de la Société Botanique de France, 135*(Lettres Bot 1), 71–72.

10. Daniele, C., Dahamna, S., Firuzi, O., Sekfali, N., Saso, L., & Mazzanti, G. (2005). Atractylis gummifera L. poisoning: An ethnopharmacological review. *Journal of Ethnopharmacology, 97*, 175–181.

11. Mouffouk, S., Mouffouk, C., Mouffouk, S., Mekki, A. H., Messaoud, A. M., & Haba, H. (2023). Anti-inflammatory, antibacterial and antioxidant activities of the medicinal species Atractylis cancellata. *Journal of Biological Research (Thessaloniki), 96*, 11096.

12. Yong-guang, B., Ding-long, Y., Xiao-jun, H., Yu-min, L., & Min-xia, H. (2012). Study on ultrasonic-assisted extraction of polysaccharide of Atractylis macrocephala Koidz of experiment1. *Energy Procedia, 17*, 1778–1785.

13. Gray, S. F., & Redwood, T. (1848). *Gray's supplement to the pharmacopoeia*. London: Longman & Co.

14. Cheriti, A., Rouisset, A., Sekkoum, K., & Balanard, G. (1995). Plants of the traditional pharmacopoeia in the El-Bayadh region (Algeria). *Fitoterapia, LXVI*(6).

15. Bouafia, M., Amamou, F., Gherib, M., Benaissa, M., Azzi, R., & Nemmiche, S. (2021). Ethnobotanical and ethnomedicinal analysis of wild medicinal plants traditionally used in Naâma, Southwest Algeria. *Journal of Ethnobotany and Applied Sciences, 21*, e37.

16. Quézel, P., & Santa, S. Nouvelle Flore de l'Algérie et des Régions Désertiques Méridionales (7th ed., Vol. 2). Paris: CNRS; 1963. pp. 992–1043.

17. Smith, J., & Jones, M. Methods for Extracting Plant Compounds. J. Bot. Sci. 2020; 45:123–130.

18. Li, H. B., Cheng, K. W., Wong, C. C., Fan, K. W., Chen, F., & Tian, Y. Evaluation of antioxidant capacity and total phenolic content of different fractions of selected microalgae. Food Chem. 2007; 102:771–776.

19. Singleton, V. L., & Rossi, J. A. Colorimetry of total phenolics with phosphomolybdic phosphotungstic acid reagents. Am. J. Enol. Vitic. 1965; 16:144–158.

20. Caponio, F., Nicoletti, I., & Ferracane, R. Phenolic composition of olive oil. J. Agric. Food Chem. 2007; 55:234–240.

21. Topcu, G., Bilici, M. A., Sarikurkcu, C., Ozturk, M., & Ulubelen, A. A new flavone from antioxidant extracts of Pistacia terebinthus. Food Chem. 2007; 103:816–822.

22. Oyaizu, M. Studies on products of browning reactions: Antioxidative activities of browning reaction prepared from glucosamine. Jpn. J. Nutr. Diet. 1986; 44(6):307–315. doi:10.5264/eiyogakuzashi.44.307.

23. Fallah, H., Ksouri, R., Chaieb, K., Karray-Bouraoui, N., Trabelsi, N., Boulaaba, M., & Abdelly, C. Phenolic composition of Cynara cardunculus L. organs, and their biological activities. CR Biol. 2008; 331(5):372–379.

24. Han, H., & Baik, B. K. Antioxidant activity and phenolic content of lentils (Lens culinaris), chickpeas (Cicer arietinum L.), peas (Pisum sativum L.), and soybeans (Glycine max), and their quantitative changes during processing. Int. J. Food Sci. Technol. 2008; 43(11):1971–1978. doi:10.1111/j.1365-2621.2008.01800.x.

25. Sifouane, S. Phytochemical study of two plants Atractylis humilis and Carduncellus pinnatus (Asteraceae) [dissertation]. Batna 1 University; 2021.

26. Bhuyan, U., & Handique, J. G. Plant polyphenols as potent antioxidants: Highlighting the mechanism of antioxidant activity and synthesis/development of some polyphenol conjugates. Stud. Nat. Prod. Chem. 2022; 74:243–266. doi:10.1016/b978-0-323-91250-1.00006-9.

27. Tsao, R. Chemistry and biochemistry of dietary polyphenols. Nutrients. 2010; 2(12):1231–1246. doi:10.3390/nu2121231.

28. Zakaria, N. N., Azwanida, A., Okello, E. J., & Howes, M. J. Antioxidant, anti-collagenase, anti-elastase, and anti-tyrosinase activities of an aqueous Cosmos caudatus Kunth (Asteraceae) leaf extract. Trop. J. Nat. Prod. Res. 2020; 4(12):1124–1130.

29. Parnham, M. J., & Kesselring, K. Rosmarinic acid. Drugs Future. 1985; 10:756–757.

30. D’Amelio, F. S. Botanicals: A Phytocosmetic Desk Reference. CRC Press; 1999. p. 361.

31. Pamunuwa, G., Karunaratne, D. N., & Waisundara, V. Y. Antidiabetic properties, bioactive constituents, and other therapeutic effects of Scoparia dulcis. Evid. Based Complement. Alternat. Med. 2016; 2016:8243215. doi:10.1155/2016/8243215.

32. Shay, J., Elbaz, H. A., Lee, I., Zielske, S. P., Malek, M. H., & Huttermann, M. Molecular mechanisms and therapeutic effects of (–)-Epicatechin and other polyphenols in cancer, inflammation, diabetes, and neurodegeneration. Oxid. Med. Cell. Longev. 2015; 2015:181260. doi:10.1155/2015/181260.

33. Knekt, P., Järvinen, R., Seppänen, R., Hellovaara, M., Teppo, L., Pukkala, E., & Aromaa, A. Dietary flavonoids and the risk of lung cancer and other malignant neoplasms. Am. J. Epidemiol. 1997; 146(3):223–230. doi:10.1093/oxfordjournals.aje.a009270.

34. Wdowiak, K., Walkowiak, J., Pietrzak, R., Bazan-Woźniak, A., & Cielecka-Piontek, J. Bioavailability of hesperidin and its aglycone hesperetin compounds found in citrus fruits as a parameter conditioning the pro-health potential (neuroprotective and antidiabetic activity) – Mini-review. Nutrients. 2022; 14(13):2647. doi:10.3390/nu14132647.

35. Kumar, A., Khan, F., & Saikia, D. Phenolic compounds and their biological and pharmaceutical activities. In: The Chemistry Inside Spices & Herbs: Research and Development. 2022:206–236. doi:10.2174/9789815039566122010010.

36. De, P., Baltas, M., & Bedos-Belval, F. Cinnamic acid derivatives as anticancer agents—A review. Curr. Med. Chem. 2011; 18:1672–1703.

37. Luo, Z., Hu, Z., Bian, Y., Su, W., Li, X., Li, S., Wu, J., Shi, L., Song, Y., Zheng, G., Ni, W., & Xue, J. Scutellarin attenuates the IL-1β-induced inflammation in mouse chondrocytes and prevents osteoarthritic progression. Front. Pharmacol. 2020; 11:107. doi:10.3389/fphar.2020.00107.

38. Somade, O. T., Oyinloye, B. E., Ajiboye, B. O., & Osukoya, O. A. Syringic acid demonstrates an anti-inflammatory effect via modulation of the NF-κB-iNOS-COX-2 and JAK-STAT signaling pathways in methyl cellosolve-induced hepato-testicular inflammation in rats. Biochem. Biophys. Rep. 2023; 34:101484.

39. Exner, M., Hermann, M., Hofbauer, R., Kapiotis, S., Speiser, W., Held, I., Seelos, C., & Gmeiner, B. M. The salicylate metabolite gentisic acid, but not the parent drug, inhibits glucose autoxidation-mediated atherogenic modification of low-density lipoprotein. FEBS Lett. 2000; 470(1):47–50. doi:10.1016/S0014-5793(00)01289-8.

40. Sharma, S., Khan, N., & Sultana, S. Modulatory effect of gentisic acid on the augmentation of biochemical events of tumor promotion stage by benzoyl peroxide and ultraviolet radiation in Swiss albino mice. Toxicol. Lett. 2004; 153(3):293–302. doi:10.1016/j.toxlet.2004.04.048.

41. Roseman, S., & Dorfman, A. Effect of gentisic acid and related compounds on bovine testicular hyaluronidase. J. Biol. Chem. 1952; 199(1):345–355.

42. Driscoll, J. A., Brody, S. L., & Kollef, M. H. The epidemiology, pathogenesis and treatment of Pseudomonas aeruginosa infections. Drugs. 2007; 67:351–368.

43. Bassetti, M., Vena, A., Croxatto, A., Righi, E., & Guery, B. How to manage Pseudomonas aeruginosa infections. Drugs Context. 2018; 7:212527.

44. Cheung, G. Y., Bae, J. S., & Otto, M. Pathogenicity and virulence of Staphylococcus aureus. Virulence. 2021; 12(1):547–569.