Characterization and Penetration of Quercetin Spanlastic Gel with Span 60 as Vesicle Builder and Edge Activator of Brij 35 and Tween 60

Main Article Content

Tutiek Purwanti
Esti Hendradi
Soleha N. Amalia
Feira S. Arum
Dewi M. Hariyadi

Abstract

Aging is a process in which the skin undergoes degenerative changes caused by intrinsic and extrinsic factors. Quercetin has characteristics that demonstrate antioxidant potential. This research aimed to determine the effects of edge activators (EAs), namely, Tween 60 and Brij 35, on the characteristics and penetration of quercetin spanlastic gel with Span 60 as a vesicle builder. Spanlastic was made using the thin-layer hydration method and then formulated in an HPMC 4000 gel; its composition consisted of Span 60–Brij 35 (B1) and Span 60–Tween 60 (T1) at a ratio of 9:1. Characterization included particle size, the polydispersity index, entrapment efficiency, and drug loading. A penetration test was carried out in vivo on male balb/c mice with six samples, namely, F1 (quercetin spanlastic with EA Tween 60), F2 (quercetin spanlastic with EA Brij 35), F3 (quercetin spanlastic gel with EA Tween 60), F4 (quercetin spanlastic gel with EA Brij 35), K (quercetin gel), and R (gel base). Quercetin spanlastic F1 and F2 had a high entrapment efficiency of 94.48-99.06%, a drug loading of 0.142-0.158%, and a size of 841.2-1443.0 nm. F1 and F2 penetrated better than K and R, and F2 penetrated better than F1. Although quercetin spanlastic gel F3 and F4 also showed a good penetration ability, it was not as good as that of quercetin spanlastic F1 and F2. Spanlastic and spanlastic gel demonstrate potential which may be beneficial as innovative delivery systems.

Downloads

Download data is not yet available.

Article Details

Section

Articles

How to Cite

Purwanti, T., Hendradi, E., Amalia, S. N., Arum, F. S., & Hariyadi, D. M. (2025). Characterization and Penetration of Quercetin Spanlastic Gel with Span 60 as Vesicle Builder and Edge Activator of Brij 35 and Tween 60. Tropical Journal of Natural Product Research (TJNPR), 9(6), 2750-2754. https://doi.org/10.26538/tjnpr/v9i6.53

References

1. Bonté F, Archambault J, Girard D, Desmoulière A. Skin changes during ageing, In: Biochemistry and Cell Biology of Ageing: Part II Clinical Science. 2019; 249–280. DOI: 10.1007/978-981-13-3681-2_10

2. Salehi B, Machin L, Monzote L, Sharifi-Rad J, Ezzat SM, Salem MA, Merghany RM, El Mahdy NM, Kılıç CS, Sytar O, Sharifi-Rad M, Sharopov F, Martins N, Martorell M, Cho WC. Therapeutic potential of quercetin: new insights and perspectives for human health. ACS Omega. 2020; 5: 11849–11872. DOI: 10.1021/acsomega.0c01818

3. Zou H, Ye H, Kamaraj R, Zhang T, Zhang J. A review on pharmacological activities and synergistic effect of quercetin with small molecule agents. Phytomedicine. 2021; 92: 153736. DOI: 10.1016/j.phymed.2021.153736

4. Cui Z, Zhao X, Amevor FK, Du X, Wang Y, Li D, Shu G, Tian Y, Zhao X. Therapeutic application of quercetin in aging-related diseases: SIRT1 as a potential mechanism. Front Immunol. 2022; 13: 943321. DOI: 10.3389/fimmu.2022.943321

5. Hatahet T, Morille M, Hommoss A, Devoisselle J, Müller R, Bégu S. Quercetin topical application, from conventional dosage forms to nanodosage forms. Eur J Pharm Biopharm. 2016; 108: 41–53. DOI: 10.1016/j.ejpb.2016.08.011

6. Madaan K, Lather V, Pandita D. Evaluation of polyamidoamine dendrimers as potential carriers for quercetin, a versatile flavonoid. Drug Deliv. 2016; 25(1): 254–262. DOI: 10.3109/10717544.2014.910564

7. Rahman F, Hendradi E, Purwanti T. Physicochemical Characterization, Release and Penetration Study of Nanostructured Lipid Carriers Quercetin Incorporated into Membrane-Type Patches. Trop J Nat Prod Res. 2023; 7(12): 5581–5586. DOI: 10.26538/tjnpr/v7i12.30

8. Yusuf VAJ, Soeratri W, Erawati T. The Effect of Surfactant Combination on the Characteristics, Stability, Irritability, and Effectivity of Astaxanthin Nanoemulsion as Anti-Ageing Cosmetics. Trop J Nat Prod Res. 2023; 7(12): 5509–5518. DOI: 10.26538/tjnpr/v7i12.21

9. Kakkar S, Kaur I. Spanlastics - a novel nanovesicular carrier system for ocular delivery. Int J Pharm. 2011; 413(1–2): 202–210. DOI: 10.1016/j.ijpharm.2011.04.027

10. Alaaeldin E, Abou-Taleb H, Mohamad S, Elrehany M, Gaber S, Mansour H. Topical nano-vesicular spanlastics of celecoxib: enhanced anti-inflammatory effect and downregulation of TNF-α, NF-κB, and COX-2 in complete Freund’s adjuvant-induced arthritis model in rats. Int J Nanomedicine. 2021; 16: 133–145. DOI: 10.2147/IJN.S289828

11. Purwanti T, Erawati T, Rosita N, Suyuti A. Release and penetration of natrium diclofenac niosome system Span 60 from gel base HPMC 4000. PharmaScientia. 2013; 2(1): 1–12.

12. Arifin W, Zahiruddin W. Sample size calculation in animal studies using resource equation approach. Malays J Med Sci. 2017; 24(5): 101–105. DOI: 10.21315/mjms2017

13. Abbas H, Kamel R. Potential role of resveratrol-loaded elastic sorbitan monostearate nanovesicles for the prevention of UV-induced skin damage. J Liposome Res. 2020; 30(1): 45–53. DOI: 10.1080/08982104.2019.1580721

14. Sallam N, Sanad R, Ahmed M, Khafagy E, Ghorab M, Gad S. Impact of the mucoadhesive lyophilized water loaded with novel carvedilol nano-spanlastics on biochemical markers in the heart of spontaneously hypertensive rat models. Drug Deliv Transl Res. 2021; 11(3): 1009–1036. DOI: 10.1007/s13346-020-00814-4

15. Elhabak M, Ibrahim S, Abouelatta S. Topical delivery of L-ascorbic acid spanlastics for stability enhancement and treatment of UVB-induced damaged skin. Drug Deliv. 2021; 28(1): 445–453. DOI: 10.1080/10717544.2021.1886377

16. Vindhya VS, Krishnananda KK, Jain SK, Shabaraya AR. Spanlastics: a modern formulation approach in drug delivery. Eur J Pharm Med Res. 2023; 10(4): 96–102.

17. Kaur I, Rana C, Singh M, Bhushan S, Singh H, Kakkar S. Development and evaluation of novel surfactant-based elastic vesicular system for ocular delivery of fluconazole. J Ocul Pharmacol Ther. 2012; 28(5): 484–496. DOI: 10.1089/jop.2011.0176

18. Opatha S, Titawiwatanakun V, Chutoprapat R. Transfersomes: a promising nanoencapsulation technique for transdermal drug delivery. Pharmaceutics. 2020; 12(9): 855. DOI: 10.3390/pharmaceutics12090855

19. Duangjit S, Pamornpathomkul B, Opanasopit P, Rojanarata T, Obata Y, Takayama K, Ngawhirunpat T. Role of the charge, carbon chain length, and content of surfactant on the skin penetration of meloxicam-loaded liposomes. Int J Nanomedicine. 2014; 9(1): 2005–2017. DOI: 10.2147/IJN.S60674

20. Paul S, Sharma H, Jeswani G, Jha A. Novel gels: implications for drug delivery. In: Nanostructures for Drug Delivery. 2017; 379–412. DOI: 10.1016/B978-0-323-46143-6.00012-9

21. Pamungkas ST, Nursal FK, Nugrahaeni F, Yati K. Formulation of Ketoconazole Niosomal Delivery System using Non-Ionic Surfactants. Trop J Nat Prod Res. 2024; 8(12): 9626–9631. DOI: https://doi.org/10.26538/tjnpr/v8i12.40