Goroho Banana (Musa acuminata Sp) Flour: An Assessment for Type 1 Antidiabetic Solution
Main Article Content
Abstract
This study assessed Goroho banana flour's functional capacities as a potential type 1 antidiabetic solution. The study incorporated an in vivo model of 25 male Sprague-Dawley rats aged 8-10 weeks. Fifteen rats were streptozotocin (STZ, 55mg/kg weight) induced as a type 1 diabetic model. Treatments were grouped: normal feed group (KN/K. Normal, Normal subject + standard rodent feed), a positive control group (K. Pos, Diabetic subject + standard rodent feed), the K3 group (Normal subject + Goroho flour feed), K4 group (Diabetic subject + Goroho flour feed), and K5 group (Diabetic subject + standard rodent feed + glibenclamide 5mg/kg weight). The test was conducted for 30 days intragastrical feed by oral gavage. Weight loss was observed in the modelled group, while weight gain was observed in the normal feed groups. Blood sugar in the K. Pos group appeared insignificantly different from K4. The Langerhans islets of K4 (161.07
μm) and K5 (162.05 μm) were insignificantly different from the K. Pos group (161.16 μm). Pancreatic β cells of K4 (70.4) and K. Pos (83.8) were insignificantly different. It was concluded that Goroho flour had no significant impact on type 1 diabetes models, and no blood sugar reduction was observed. Weight gain was observed on normal feed subjects without increased blood sugar levels.
Downloads
Article Details
Section

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
How to Cite
References
1. Su J, Xu J, Hu S, Ye H, Xie L, Ouyang S. Advances in small-molecule insulin secretagogues for diabetes treatment. Biomed Pharmacol 2024;178 (2024): 1-11 https://doi.org/10.1016/j.biopha.2024.117179.
2. Ezugworie JO, Anene AO, Ugbede FO. Hypoglycaemic and histopathological effect of Myrianthus arboreus in alloxan-induced diabetic rats. Trop J Nat Prod Res. 2024; 8(9): 8424-8431. https://doi.org/10.26538/tjnpr/v8i9.26.
3. Holt RIG, DeVries JH, Hess-Fischl A, Hirsch IB, Kirkman MS, Klupa T, Ludwing B, Norgaard K, Pettus J, Renard E, Skyler JS, Snoek FJ, Weinstock RS, Peters AL. The management of type 1 diabetic in adults: a consensus report by the American Diabetic Association (ADA) and the
European Association for the Study of Diabetic (EASD). Diabetic Care. 2021;44: 2589-2625. DOI: 10.1007/s00125-021-05568-3.
4. Lin YK, Fisher SJ, Pop-Busui R. Hypoglicemia unawareness and autonomic dysfunction in diabetic: Lessons learned and roles of diabetes technologies. J Diabetic Investig. 2020;11(6): 1388-1402. doi: 10.1111/jdi.13290.
5. Nguyen NH, Pham QT, Luong TNH, Le HK, Vo VG. Potential antidiabetic activity of extract and isolated compound from Adenosma bracteosum (Bonati). Biomolecules. 2020:10; 201. doi: 10.3390/biom10020201.
6. Wojdyto A, Nowicka P, Carbonell-Barrachina AA, Hernandez F. Phenolic compounds, antioxidant and antidiabetic activity of different cultivars of Ficus carica L. fruits. J Funct Foods. 2016; 25:421-432. https://doi.org/10.1016/j.jff.2016.06.015.
7. Sabrina NZ, Choesrina R, Fitrianingsih SP. Literature study of antidiabetic activity assessment of botanic extracts of the Musaceae group towards the reduction of in vivo blood glucose. Pharmacy Proceeding. 2020:6(2); 699–705. http://dx.doi.org/10.29313/.v6i2.23660.
8. Adikila GG, Keintjem EFA, Dalengkade S, Manus M, Rasubala MK, Siahaan BM. Phytochemical and pharmacological analysis of goroho (Musa acuminafe sp.) banana stem towards the reduction of in vivo blood glucose levels. Jurnal MIPA. 2024;13(2): 57-61.DOI: https://doi.org/10.35799/jm.v13i2.54634.
9. Tampai R. Inhibition of the maillard reaction of white goroho fruit extract (Musa acuminata colla) as prevention of diabetic millitus. Fullerene Sci. Technol. 2019;4(1):16–20. DOI: 10.37033/fjc.v4i1.49.
10. Okon JE, Esenowo GJ, Utuk KE. Phytochemical screening and antidiabetic properties of Musa acuminate ethanolic fruit extract on alloxan-induced diabetic albino rats. Cont J Pharm Sci. 2013;7(1): 22–9.
11. Darawati M, Riyadi H, Damayanthi E, Kustiyah L. The development of functional food products based on local food as breakfast for overweight/obese adolescents. J Gizi Pangan. 2016;11(1): 45–50. https://doi.org/10.25182/jgp.2016.11.1.%25p.
12. Khoerunisa TK. A Review: Development of functional food products in Indonesia based on local ingredients. Indonesian J Agric Res. 2020;2(1): 49–59. DOI: 10.5220/0009983401530165.
13. Soumya NPP, Mini S, Sivan SK, Mondal S. Bioactive compounds in functional food and their role as therapeutics. Bioact Compd Health Dis. 2021;4(3): 24–39. DOI: https://doi.org/10.31989/bchd.v4i3.786.
14. Suryanto E, Momuat LI, Taroreh M, Wehantouw F. The potency of antioxidant polyphenol from goroho banana (Musa sapien sp.). Agritech 2011;31(4): 289–296.
15. Sangkilen L, Djarkasi GSS, Mandey LC. Nutrional value evaluation of modified goroho plantain (Musa acuminate sp). Jurnal Teknologi Pertanian. 2019;10(2): 139–44. DOI: 10.35791/jteta.10.2.2019.29124.
16. Lasker S, Rahman MM, Parvez F, Zamila M, Miah P, Nahar K, Kabir F, Sharmin SB, Subhan N, Ahsan GU, Alam MdA. High-fat diet-induced metabolic syndrome and oxidative stress in obese rats are ameliorated by yoghurt supplementation. Sci Rep. 2019; 9(20026): 1-15.
https://doi.org/10.1038/s41598-019-56538-0.
17. Rajesh R, Kotasthane DS, Manimekalai K, Singh A, Sreekala V, Rajasekar SS. Histopathological and Histomorphometric analysis of Pancreas and liver of diabetic rats treated with Mucuna Pruriens seed extract. Annals Pathol. Lab. Med. 2017;4(5):A546-552.
18. Hall R, Keeble L, Sunram-Lea S, To M. A review of risk factors associated with insulin omission for weight loss in type 1 diabetic. Clin Child Psychol Psychiatry. 2021; 26(3): 606-616. doi: 10.1177/13591045211026142.
19. Biondi B, Kahaly GJ, Robertson RP. Thyroid dysfunction and diabetic millitus: two closely associated disorders. Endocr Rev. 2019;40(3): 789-82 DOI: 10.1210/er.2018-00163.
20. Hu C. Reasons for unexplainable weight loss among diabetics. African Journal of Diabetic Medicine. 2022;30(11).
21. Lasale NR, Liputo SA, Limonu M. Physical and chemical characteristics of goroho banana resistance starch (Musa acuminafe sp) at various drying temperatures. Jambura Jurnal of Food Technology. 2022;4(1): 64-77. DOI: 10.37905/jjft.v4i1.11049.
22. Zhou J, Kang X, Luo Y, Yuan Y, Wu Y, Wang M, Liu D. Glibenclamide-induced autophagy inhibits its insulin secretion-improving function in β Cells. Int J Endocrinol. 2019;15:1265175. Doi: 10.1155/2019/1265175. 2019;1265175.
23. Shahab F, Hameed A, Ali A, Imad R, and Hazifur RM. Apigenin potentiates glucose- stimulated insulin secretion through the PKA-MEK kinase signaling pathway independent of K-ATP channels. Biomed Pharmacother. 2024;177 :1-8. https://doi.org/10.1016/j.biopha.2024.116986.
24. Damasceno DC, Netto AO, Iessi IL, Gallego FQ, Corvino SB, Dallaqua B, Sinzato YK, Bueno A, Calderon IM, Rudge MV. Streptozotocin-induced diabetic models: pathophysiological mechanisms and fetal outcomes. Biochem Res Int. 2014; 819065: 1-11. doi: 10.1155/2014/819065.
25. Da Silva Xavier G. The Cells of the islets of Langerhans. J Clin Med. 2018;12;7(3): 54. doi: 10.3390/jcm7030054.
26. Srivastava A, Bhatt NM, Patel TP, Dadheech N, Singh A, Gupta S. Anti-apoptotic and cytoprotective effect of Enicostemma littorale against oxidative stress in islets of Langerhans. Pharm Biol. 2016;54(10): 2061-2072. doi: 10.3109/13880209.2016.1141222.
27. Suba K, Patel Y, Martin-Alonso A, Hansen B, Xu X, Roberts A, Norton M, Chung P, Shrewsberry J, Kwok R, Kalogianni V, Chen S, Liu X, Kalyviotis K, Rutter GA, Jones B, Minnion J, Owen BM, Pantazis P, Distaso W, Drucker DJ, Tan TM, Bloom SR, Murphy KG, and Salem V. Intra-islet
glucagon signalling regulates beta-cell connectivity, first-phase insulin secretion and glucose homoeostasis. Mol Metab. 2024; 85: 1-11.
https://doi.org/10.1016/j.molmet.2024.101947.
28. Fuyuki A, Sohel MSH, Homma T, Kitamura K, Takashima S, Onouchi S, Saito S. Selective prosaposin expression in Langerhans islets of the mouse pancreas. Tissue and Cell. 2024;88: 1-8. https://doi.org/10.1016/j.tice.2024.102367.
29. Szkudelski T. The mechanism of alloxan and streptozotocin action in B cells of the rat pancreas. Physiol Res. 2001;50(6): 537-546.
30. Wu J, Yan LJ. Streptozotocin-induced type 1 diabetes in rodents as a model for studying mitochondrial mechanisms of diabetic β cell glucotoxicity. Diabetic Metab Syndr Obes. 2015; 2;8:181-8. doi: 10.2147/DMSO.S82272. 2015;8: 181-8.
31. Dinic S, Javanovic JA, Uskokovic A, Mihailovic M, Grdovic N, Tolic A, Rajic J, Dordevic M, Vidakovic M. Oxidative stress-mediated beta cell death and dysfunction as a target for diabetic management. Front Endocrinol. 2022;13: 1006376. DOI: 10.3389/fendo.2022.1006376
32. Anastasious IA, Eleftheriadou I, Tentolouris A, Koliaki C, Kosta OA, Tentolouris N. The effect of oxidative stress and antioxidant therapies on pancreatic β -cell dysfunction Results from in vitro and in vivo studies. Curr Med Chem. 2021; 28(7): 1328-1346.
33. Al-Ani IM, Santosa RI, Yankuzo MH, Saxena AK, Alazzawi KS. The antidiabetic activity of curry leaves Murraya Koenigii on the glucose levels, kidneys, and islets of Langerhans of rats with streptozotocin-induced diabetes. Makara J Health Res. 2017;21(2): 54-60. https://doi.org/10.7454/msk.v21i2.7393.
34. Kein DX, Ha DV, Kein PT, Huy THA, Nga NT, Dung VM, Toan TD, Anh NP, Ngan NH. Blood Glucose Lowering Effect of Lagerstroemia speciosa L. Leaves extract on type 2 diabetic rat model. Trop J Nat Prod Res. 2024;8(7): 7709-7714. https://doi.org/10.26538/tjnpr/v8i7.13.
35. Siswoyo TA, Supriyadi A, Isnainun A, Novianti E, Harmoko R. Impact of maturity stage on free radical scavenging and antidiabetic activities of melinjo (Gnetum gnemon L.) seed proteins. Trop J Nat Prod Res. 2024;8(8): 8001-8006. https://doi.org/10.26538/tjnpr/v8i8.11.
36. Sadeghian M, Rahmani S, Jafarieh A, Jamialahmadi T, Sahebkar A. The effect of curcumin supplementation on renal function: A systematic and meta-analysis of randomised controlled trials. J Funct Foods. 2023;100: 1-10. https://doi.org/10.1016/j.jff.2022.105396.
37. Li B, Lee JY, Luo Y. Health benefits of astaxanthin and its encapsulation for improving bioavailability: A review. J Agric Food Res. 2023; 14:1-10.
https://doi.org/10.1016/j.jafr.2023.100685.
38. Medoro A, Intieri M, Passarella D, Willcox DC, Davinelli S, Scapagini G. Astaxanthin as a metabolic regulator of glucose and lipid homeostasis. J Funct Foods. 2024;112: 1-11. https://doi.org/10.1016/j.jff.2023.105937.