Wound Healing Potential and Characterization of Sericin from Eri Silkworm (Samia cynthia ricini)
Main Article Content
Abstract
Eri silkworm sericin is isolated from the cocoon of the silkworm Samia cynthia ricini, which has been widely cultivated in Indonesia due to its adaptability to high temperatures and abundant food sources. Sericin was reported to have numerous health benefits, including antibacterial, antioxidant capacity, and wound healing. Meanwhile, inflammation is considered a critical phase in the process of wound healing and it is associated with oxidative stress conditions, which will further prolong the process. Therefore, this study aimed to examine the potential uses of sericin from Eri silkworms, assessing the antioxidant, anti-inflammatory, and wound healing properties. The ABTS and albumin denaturation methods were used to evaluate the antioxidant and anti- inflammatory activity. The wound-healing activity of Eri silkworm sericin hydrogel film was evaluated in vivo. Eri silkworm sericin was characterized based on protein, and total phenol content, as well as Scanning Electron Microscopy (SEM) and Fourier Transform Infrared Spectroscopy (FTIR). The result showed that the IC50 value antioxidant capacity and anti- inflammatory activity of Eri silkworm sericin were 71.957 ± 0.981 mg/L and 145.708 ± 5.082 mg/L, respectively. Furthermore, Eri silkworm sericin hydrogel film (HSE) at a dose of 750 mg showed the most potential in wound healing, with a duration of 9 days. The result of this study also showed that Eri silkworm sericin hydrogel film (HSE) has the potential for applications in wound dressings.
Downloads
Article Details
Section

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
How to Cite
References
1 Aghaz F, Hajarian H, Shabankareh, HK, Abdolmohammadi A. Effect of sericin supplementation in maturation medium on cumulus cell expansion, oocyte nuclear maturation, and subsequent embryo development in Sanjabi ewes during the breeding season. Theriogenology. 2015; 84(9): 1631-1635. DOI:10.1016/j.theriogenology.2015.08.013.
2 Aramwit P, Towiwat P, Srichana T. Anti-inflammatory potential of silk sericin. Nat Prod Com. 2013; 8(4): 501-504. DOI: 10.1177/1934578X1300800424.
3 Cao TT, Zhang YQ. Processing and characterization of silk sericin from Bombyx mori and its application in biomaterials and biomedicines. Mater. Sci. Eng. 2016; 61: 940-952. DOI: 10.1016/j.msec.2015.12.082.
4 Barajas-Gamboa JA, Serpa-Guerra AM, Restrepo-Osorio A, Álvarez-López C. Sericin applications: a globular silk protein. Ing. Compet. 2016; 18(2): 193-206. DOI: 10.25100/iyc.v18i2.2167.
5 Sahu N, Pal S, Sapru S, Kundu J, Talukdar S, Singh NI, Yao J, Kundu SC. Non-Mulberry and mulberry silk protein sericins as potential media supplement for animal cell culture. Biomed Res Int. 2016; 2016(1): 1-13. DOI: 10.1155/2016/7461041.
6 Kunz RI, Brancalhão RMC, Ribeiro L de FC, Natali MRM. Silkworm sericin: properties and biomedical applications. Biomed Res. Int. 2016; 2016(1): 1–19. DOI: 10.1155/2016/8175701.
7 Shree M, Sherlin GF, Allwin J. Silk sericin and its food application: a review. Res. J. Pharm. Technol. 2023; 16(4): 2068– 2074. DOI: 10.52711/0974-360X.2023.00340.
8 Maldia M, Darmawan N, Endrawati Y, Suparto I, Syamani F, Noor R. Physical characterization of indonesian eri silk fiber derived from novel strains of Samia cynthia ricini. Egypt. J. Chem. 2023; 67(4): 55–63. DOI: 10.21608/ejchem.2023.220190.8212.
9 Wilkinson HN, Hardman MJ. Wound healing: cellular mechanisms and pathological outcomes. Open Biol. 2020; 10(9): 1-14. DOI: 10.1098/rsob.200223.
10 Dunnill C, Patton T, Brennan J, Barrett J, Dryden MC, Leaper J, Georgopoulos D. Reactive oxygen species (ROS) and wound healing: the functional role of ROS and emerging ROS-modulating technologies for augmentation of the healing process. Int. Wound J. 2017; 14(1): 89-96. DOI: 10.1111/iwj.12557.
11 Gonzalez ACDO, Andrade ZDA, Costa TF, Medrado ARAP. Wound healing—a literature review. An. Bras. Dermatol. 2016; 91(5): 614–620. DOI: 10.1590/abd1806-4841.20164741.
12 Senakoon W, Nuchadomrong S, Sirimungkararat S, Senawong T, Kitikoon P. Antibacterial action of eri (Samia ricini) sericin against Escherichia coli and Staphylococcus aureus. As. J. Food Ag-Ind. 2009; 2: Special Issue, S222-S228.
13 Butkhup L, Jeenphakdee M, Jorjong S, Samappito S, Samappito W, Butimal J. Phenolic composition and antioxidant activity of thai and eri silk sericins. Food Sci. Biotechnol. 2012; 21(2): 389–398. DOI: 10.1007/s10068-012-0050-0.
14 Bascou R, Hardouin J, Ben Mlouka MA, Guénin E, Nesterenko A. Detailed investigation on new chemical-free methods for silk sericin extraction. Mater. Today Commun. 2022; 33: 1044-1091. DOI: 10.1016/j.mtcomm.2022.104491.
15 Wang W-H, Lin W-S, Shih C-H, Chen C-Y, Kuo S-H, Li W-L, Lin Y-S. Functionality of silk cocoon (Bombyx mori L.) sericin extracts obtained through high-temperature hydrothermal method. Materials. 2021; 14(18): 5314. DOI:10.3390/ma14185314.
16 Aidoo DB, Konja D, Henneh IT, Ekor M. Protective effect of bergapten against human erythrocyte hemolysis and protein denaturation In Vitro. Int. J. Inflam. 2021; 2021: 1–7. DOI: 10.1155/2021/1279359.
17 Qin H, Wang J, Wang Y, Gao X, Wan Q, Pei X. Preparation and characterization of chitosan/β-glycerophosphate thermal-sensitive hydrogel reinforced by graphene oxide. Front. Chem. 2018; 6(565): 1-12. DOI: 10.3389/fchem.2018.00565.
18 Ali SM, Yosipovitch G. Skin pH: From basic science to basic skin care. Acta Derm. Venereol. 2013; 93(3): 261-267. DOI: 10.2340/00015555-1531.
19 Baptista-Silva S, Borges S, Costa-Pinto AR, Costa R, Amorim M, Dias JR, Ramos O, Alves P, Granja PL, Soares R, Pintado M, Oleivera AL. In situ forming silk sericin-based hydrogel: a novel wound healing biomaterial. ACS Biomater. Sci. Eng. 2021; 7(4): 1573–1586. DOI: 10.1021/acsbiomaterials.0c01745.
20 Paputungan F, Yamlean PVY. Testing the effectiveness of the ethanol oil extract of Black Rake Leaves (Rhizophora mucronata Lamk) and testing the process of healing backback wounds infected bacteria Staphylococcus aureus. Pharmacon. 2014; 3(1): 15–26.
21 Efendi MR, Elisma E, Zahira N. Evaluation of the wound healing activity of ethanol extract fractions from kirinyuh leaves (Chromolaena odorata (L.) R.M. King & H. Rob) on incision wounds in white rats (Rattus norvegicus). J.Pharm. Sci. 2023;Suppl 1(1): 91-98. DOI: https://doi.org/10.36490/journal-jps.com.v6i5-si.394.
22 Prasong S, Yaowalak S, Wilaiwan S. Characteristics of silk fiber with and without sericin component: a comparison between Bombyx mori and Philosamia ricini silks. Pakistan J. Biol. Sci. 2019; 12(11); 872–876. DOI: 10.3923/pjbs.2009.872.876.
23 Endrawati YC, Solihin DD, Suryani AS, Darmawan ND, Suparto IH, Rahmantika BF. Optimization of silkworm sericin extraction Attacus atlas and Samia cynthia ricini using Response Surface Methodology. agriTECH. 2023; 43(1): 64-73. DOI: 10.22146/agritech.71950.
24 Mondal M, Trivedy K, Kumar SN. The silk proteins, sericin and fibroin in silkworm, Bombyx mori Linn. Casp. J. Environ. Sci. 2007; 5(2): 63–76.
25 Capar G, Aygun SS. Characterization of sericin protein recovered from silk wastewaters. Turk Hij. ve Deney. Biyol. Derg. 2015; 72(3):219-234. DOI: 10.5505/TurkHijyen.2015.47113.
26 Wang L, Pu Z, Li M, Wang K, Deng L, Chen W. Antioxidative and antiapoptosis: neuroprotective effects of dauricine in Alzheimer’s disease models. Life Sci. 2020; 243. DOI: 10.1016/j.lfs.2019.117237.
27 Wei ZZ, Weng YJ, Zhang YQ. Enhancing the In Vitro biological activity of degraded silk sericin and its analog metabolites. Biomolecules. 2022; 12(2): 161-172. DOI: 10.3390/biom12020161.
28 Kumar JP, Mandal BB. Antioxidant potential of mulberry and non- mulberry silk sericin and its implications in biomedicine. Free Radic. Biol. Med. 2017; 108: 803–818. DOI: 10.1016/j.freeradbiomed.2017.05.002.
29 Wahyuni HS, Yuliasmi S, Winata G. Synthesis of sodium carboxymethyl cellulose-based hydrogel from Durian (Durio zibethinus) rind using aluminium sulphate as crosslinking agent. Trop. J Nat. Prod. Res. 2021; 5(5): 873-876. DOI: doi.org/10.26538/tjnpr/v5i5.13.
30 Pavia DL, Lampman GL, Kriz GS. Introduction to Spectroscopy. (3rd ed.). Boston: Thomson Learning; 2001. 680 p.
31 Hawthorne B, Simmons JK, Stuart B, Tung R, Zamierowski DS, Mellott AJ. Enhancing wound healing dressing development through interdisciplinary collaboration. J Biomed Mater Res B Appl Biomater. 2021; 109(12): 1967-1985. DOI: 10.1002/jbm.b.34861.
32 Aramwit P, Sangcakul A. The effects of sericin cream on wound healing in rats. Biosci. Biotechnol. Biochem. 2007; 71(10): 2473–2477. DOI: 10.1271/bbb.70243.
33 Tobat SR, Yenny SW, Wahyuni FS, MYH E, Sartika D, Supriwardi E, Azyenella L, Wahyudi R, Hastuti W, Annisa A, Akbar PD, Fauziah F. Wound healing activity of phyllanthin-rich sub-fractions ointment: isolated from Meniran (Phyllanthus niruri L.) leaf in experimental rats using hydroxyproline asbiochemical marker. Trop. J. Nat. Prod. Res. 2024: 8(7): 7722-7733. DOI: 10.26538/tjnpr/v8i7.15.
34 Gonzalez AC, Costa TF, Andrade ZA, Medrado AR. Wound healing - a literature review. An Bras Dermatol. 2016; 91(5): 614-620. DOI: 10.1590/abd1806-4841.20164741.
35 Koopman R, Caldow MK, Ham DJ, Lynch GS. Glycine metabolism in skeletal muscle: Implications for metabolic homeostasis. Curr. Opin. Clin. Nutr. Metab. Care. 2017; 20(4): 237–242. DOI: 10.1097/MCO.0000000000000383.
36 Paz-Lugo P, Lupiáñez JA, Meléndez-Hevia E. High glycine concentration increases collagen synthesis by articular chondrocytes in vitro: acute glycine deficiency could be an important cause of osteoarthritis. Amino Acids. 2018; 50(10): 1357–1365. DOI: 10.1007/s00726-018-2611-x.
37 Qi C, Xu L, Deng Y, Wang G, Wang Z, Wang L. Sericin hydrogels promote skin wound healing with effective regeneration of hair follicles and sebaceous glands after complete loss of epidermis and dermis. Biomater. Sci. 2018; 6(1): 2859–2870. DOI: 10.1039/c8bm00934a.