Optimization Formula and Stability of Rifampicin–Pectin Pulmospheres Produced by Aerosolization Technique: Effect of Polymer Concentration

Main Article Content

Finisha P. Dinanti
Tristiana Erawati
Dewi M. Hariyadi

Abstract

Tuberculosis is a global challenge notable in developing countries due to its high mortality rate and significant health problems. Rifampicin, semi-synthetic antibiotic effective against tuberculosis, undergoes first-pass metabolism in the liver when administered orally, resulting in low drug concentrations in the lungs. This can potentially reduce its bactericidal activity, leading to treatment failure, relapse, and bacterial resistance. One strategy is to administer the drug directly into the lungs by inhalation.This approach can improve the drug's bioavailability, enable controlled release, reduce toxicity, and enhance patient compliance. The purpose of this study is to investigate how the concentration of pectin affects the properties and stability of inhalable rifampicin–pectin pulmospheres. These pulmospheres, produced using the aerosolization technique, were prepared using different polymer concentrations of 1.5% (F1), 1.75% (F2), and 2% (F3). The physical characteristics of pulmospheres were assessed, including organoleptic, yield, moisture content (MC), drug loading, entrapment efficiency, and morphology. This study found that the yield was 53.23% ± 5.85 to 94.58% ± 3.06; the MC was 2.89% ± 0.66 to 3.44% ± 0.44; the drug loading was 0.43% ± 0.02 to 2.09% ± 0.58; and the entrapment efficiency was 7.71% ± 0.33 to 72.18% ± 16.78. Spherical and smooth pulmospheres were found. Formula 3 is the best rifampicin–pectin pulmospheres demonstrating superior physical characteristics and the ability to maintain stability up to day 28. Increasing the pectin concentration led to enhance drug loading, encapsulation efficiency and stability, suggesting their potency as an effective pulmonary delivery system for tuberculosis treatment.

Downloads

Download data is not yet available.

Article Details

Section

Articles

Author Biographies

Tristiana Erawati, Department of Pharmaceutical Sciences, Faculty of Pharmacy, Universitas Airlangga, Campus C Mulyorejo, Surabaya 60115, Indonesia

Pharmaceutics and Delivery Systems for Drugs, Cosmetics and Nanomedicine (Pharm-DCN) Research Group, Faculty of Pharmacy, Universitas Airlangga, Campus C Mulyorejo, Surabaya 60115, Indonesia
Centre of Excellent (PUIPT) Skin and Cosmetic Technology, Universitas Airlangga, Surabaya 60115, Indonesia

Dewi M. Hariyadi, Department of Pharmaceutical Sciences, Faculty of Pharmacy, Universitas Airlangga, Campus C Mulyorejo, Surabaya 60115, Indonesia

Pharmaceutics and Delivery Systems for Drugs, Cosmetics and Nanomedicine (Pharm-DCN) Research Group, Faculty of Pharmacy, Universitas Airlangga, Campus C Mulyorejo, Surabaya 60115, Indonesia
Centre of Excellent (PUIPT) Skin and Cosmetic Technology, Universitas Airlangga, Surabaya 60115, Indonesia
Inter-University Center of Excellence (IUCoE) of Health Autonomy-Drug Discovery, Universitas Airlangga, Surabaya 60115, Indonesia

How to Cite

Dinanti, F. P., Erawati, T., & Hariyadi, D. M. (2025). Optimization Formula and Stability of Rifampicin–Pectin Pulmospheres Produced by Aerosolization Technique: Effect of Polymer Concentration. Tropical Journal of Natural Product Research (TJNPR), 9(6), 2402-2408. https://doi.org/10.26538/tjnpr/v9i6.7

References

1. Nugraheni RW. Development of Liposomal Dry Powder Inhalation to Increase the Effectiveness of Tuberculosis TherapyinThe International Conference of Medicine and Health (ICMEDH), Conference Paper. Department of Pharmacy, University of Muhammadiyah. 2022.

2. WHO. Global Tuberculosis Report. World Health Organization. 2023.

3. Khadka P, Dummer J, Hill PC, Das SC. Considerations in preparing for clinical studies of inhaled rifampicin to enhance tuberculosis treatment. Int J Pharm. 2018; 548(1):244-254. DOI: 10.1016/j.ijpharm.2018.07.011

4. Mehta P, Bothiraja C, Shivajirao K, Atmaram P. Potential of dry powder inhalers for tuberculosis therapy: facts, fidelity and future.Artif Cells NanomedBiotechnol. 2018; 46(sup3): S791-S806. DOI: 10.1080/21691401.2018.1513938.

5. Rosita N, Kalalo T, Miatmoko A, Pathak Y, Hariyadi DM. Microspheres for Inhalation Delivery (Characteristics and In Vitro Release). Int J Med Rev Case Reports. 2022; 6(2): 24-31.DOI: 10.5455/IJMRCR.MicrospheresforInhalationDelivery

6. Wenxi L, Shuang C, Lanfang Z, Yan Z, Xiaohong Y, Beibei X, Jian G, Yun H, Chenhui W. Inhalable functional mixed-polymer microspheres to enhance doxorubicin release behavior for lung cancer treatment, Colloids and Surfaces B: Biointerfaces. 2020; 196:111350.

DOI:10.1016/j.colsurfb.2020.111350

7. Gutierrez-Alvarado K, Chacón-Cerdas R, Starbird-Perez R. Pectin Microspheres: Synthesis Methods, Properties, and Their Multidisciplinary Applications. Chemistry. 2022; 4: 121-136. DOI: 10.3390/chemistry4010011

8. NižićL, Potaś J, Winnicka K, Szekalska M, Erak I, Gretić M, Jug M, Hafner A. Development, characterisation and nasal deposition of melatonin-loaded pectin/hypromellose microspheres. European J. Pharm. Sci. 2020; 141:105115. DOI: 10.1016/j.ejps.2019.105115

9. Hariyadi DM, Erawati T, Rosita N, Desanto G, Firman AT, Azizah N, Hendradi E, Rahmadi M. Influence of Polymer Combınatıon Concentratıon on the Characterıstıcs, In Vıtro Release, and In vivo Lung Deposıtıon of Algınate-Carrageenan Mıcrospheres Encapsulatıng Cıprofloxacın

HCl. Indonesian J. Pharm. 2023;34(1): 162 – 173. DOI: 10.22146/ijp.4162

10. Mukhidinov ZK, Kasymova GF, Usmanova SR, Murzagulova KB, Kim ME, Yanovich AV. Production of Rifampicin-Containing Microcapsules Based on Apple Pectin Complexes with β-Lactoglobulin. Pharm. Chem. J. 2012;46(5): 46–49. DOI:10.1007/s11094-012-0786-0

11. Opanasopit P, Apirakaramwong A, Ngawhirunpat T, Rojanarata T, Ruktanonchai U. Development and characterization of pectinate micro/nanoparticles for gene delivery. AAPS PharmSciTech. 2008; 9(1):67-74. DOI: 10.1208/s12249-007-9007-7

12. Siles-Sánchez MLN, García-Ponsoda P, Fernandez-Jalao I, Jaime L, Santoyo S. Development of Pectin Particles as a Colon-Targeted Marjoram Phenolic Compound Delivery System. Foods. 2024; 13(2):188. DOI:10.3390/foods13020188

13. Vyas SP, Kannan ME, Jain S, Mishra V, Singh P. Design of liposomal aerosols for improved delivery of rifampicin to alveolar macrophages. Int. J. Pharmaceutics. 2004; 269: 37-49. DOI:10.1016/j.ijpharm.2003.08.017

14. Deliaz MF, Hendradi E, Hariyadi DM. The Effect of Polymer-Drug Ratio on Characteristics, Release and Stability of Ciprofloxacin-Alginate-Kappa Carrageenan Microspheres. Trop. J. Nat. Prod. Res. 2023; 7(11): 5286–5291. DOI: 10.26538/tjnpr/v7i11.38

15. Putri KSS, Ramadhani LS, Rachel T, Suhariyono G, Surini S. Promising chitosan-alginate combination for rifampicin dry powder inhaler to target active and latent tuberculosis. J Appl Pharm Sci. 2022;12(5): 98–103. DOI: 10.7324/JAPS.2022.120507

16. Prabhu P, Fernandes T, Chaubey P, Sawarkar S. Design, development and characterization of carrier mediated drug delivery system for effective management of Osteoarticular Tuberculosis. Drug Deliv. Transl. Res. 2021; 1-29. DOI: 10.21203/rs.3.rs-383712/v1

17. Lascol M, Bourgeois S., Barratier C, Marote P, Lantéri P, Bordes C. Development of pectin microparticles by using ionotropic gelation with chlorhexidine as cross-linking agent. Int. J. Pharm. 2018; 542: 205–212. DOI: 10.1016/j.ijpharm.2018.03.011

18. Kumar RK, Suresh G. Development and Characterization of Alginate Microsphere. Int.J.Pharm. Sci. Drug. Res. 2018; 10 (4): 335-341. DOI: 10.25004/IJPSDR.2018.100420

19. Hariyadi DM, Hendradi E, Sharon N. Development of carrageenan polymer for encapsulation of ciprofloxacin HCl: In vitro characterization. Int. J. Drug Deliv. Technol. 2019; 9(1): 89–93. DOI: 10.25258/ijddt.9.1.14

20. Rosita N, Ambarwati N, Erawati T, Hariyadi D. Characterization and in vitro release of inhalation quercetin solid lipid microparticles: Effect of lipid. J. Adv. Pharm. Technol. Res. 2022; 13(1): 11 – 17. DOI: 10.4103/japtr.japtr_263_21

21. Rawat S, Pavithra T, Sunil CK. Citrus byproduct valorization: pectin extraction, characterization, and research advances in biomaterial derivation for applications in active film packaging. Discover Food. 2024;4(1):149. DOI:10.1007/s44187-024-00238-w

22. Setyajati FE, Prasetyo VK, Husin AS, Ratri MC, Junedi S, Sanjayadi S, Setiawati A. Comparative Physicochemical Properties of Isolated Pectin from Various Tropical Fruit Peel Wastes. Trop. J. Nat. Prod. Res. 2023; 7(2): 2408–2413. DOI:10.26538/tjnpr/v7i2.17

23. Bajaj S, Singla D, Sakhuja N, Stability Testing of Pharmaceutical Products. J. Appl. Pharm. Sci. 2012; 2(3): 129–138. DOI: 10.7324/JAPS.2012.2322

24. Liu LS, Fishman ML, Hicks KB. Pectin, a polysaccharide for drug delivery systems. 8th US –Japan Symposium on Drug Delivery Systems. 2005. DOI:10.1007/s10570-006-9095-7

25. Andrade F, Rafael D, Videira M, Ferreira D, Sosnik A, Sarmento B. Nanotechnology and pulmonary delivery to overcome resistance in infectious diseases, Adv. Drug Deliv. Rev. 2013; 65(13–14): 1816-1827. DOI:10.1016/j.addr.2013.07.020

26. Shetty N, Cipolla D, Park H, Zhou QT. Physical stability of dry powder inhaler formulations. Expert Opin Drug Deliv. 2020; 17(1):77-96. DOI: 10.1080/17425247.2020.1702643

27. Hariyadi DM,Hendradi E, Kurniawan TD. Alginate Microspheres Encapsulating Ciprofloxacin HCl: Characteristics, Release and Antibacterial Activity. Int. J. Pharma Res Health Sci. 2019; 7(4): 3020–3027. DOI: 10.21276/ijprhs.2019.04.02

28. Amiruddin A, RijalMAS,HariyadiDM. Effect of CaCl₂ crosslinker concentration on the characteristics, release, and stability of ciprofloxacin HCl-alginate-carrageenan microspheres. Pharmacy Pharm. Sci. J.2023; 10(3):312-323. DOI:10.20473/jfiki.v10i32023.312-323