Green Synthesis of Zinc Oxide Nanoparticles Characterization and Use for Formulation of Sunscreen Topical Creams

Main Article Content

Romanus C. Omeh
Ibeabuchi J. Ali
Cyril C. Adonu
Josephat I. Ogbonna
Lydia O. Ugorji
Chukwuemeka C. Mbah
Celestine O. Ugwu
Felix K. Asogwa
Assumpta A. Omeh
Goodnews O. Ikeh
Audu M. Mommoh
Godswill C. Onunkwo

Abstract

Many nanomaterial compounds are known to possess inherent sun protection properties as well as the ability to enhance the effectiveness of other sun-screening compounds. The current work aimed to biologically synthesize zinc oxide nanoparticles (ZONPs) from zinc acetate dihydrate using Vernonia amygdalina (V.amygdalina) leaf extract as the reducing agents and, thereafter use
the synthesized nanoparticles to formulate sunscreen creams. The extract, obtained by the Soxhlet technique was subjected to quantitative phytocomponent analysis while the nanoparticles were characterized for optical, morphological, size, and elemental composition analysis. The fusion method was used to prepare six cream formulations containing varying proportions of the nanoparticles and the creams were, thereafter evaluated for standard cream characteristics. The nanoparticles showed maximum ultraviolet light absorption at 350 nm and a mean particle size of 49.75 ± 0.46 nm. The major elemental components consisted of zincites, smithsonite, sphalerite and quartz. The nanoparticles consisted of both singlet and aggregate hexagonal components while Fourier’s transform infrared spectroscopy indicated surface attachment of some biomolecules of the V. amygdalina to the nanoparticles. The pH, viscosity, spreadability and sun protection factors of the creams were in the ranges of 5.98 ± 0.18 - 6.87 ± 0.47, 12.03 ± 0.02 - 13.70 ± 0.73, 18.54 ± 0.03 - 19.72 ± 0.89 and 11.35 ± 0.5 - 30.21 ± 0.2 respectively. The calculated sun protection factor of the optimized formulation was comparable to that of the positive control. The current procedure, therefore, represents a simple green-based approach for enhancing the sun-screening property of zinc oxide compounds.

Downloads

Download data is not yet available.

Article Details

Section

Articles

Author Biography

Romanus C. Omeh, Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmaceutical Sciences, Enugu State University of Science and Technology, Enugu State, Nigeria.

Tel: +2347067175126

How to Cite

Omeh, R. C., Ali, I. J., Adonu, C. C., Ogbonna, J. I., Ugorji, L. O., Mbah, C. C., Ugwu, C. O., Asogwa, F. K., Omeh, A. A., Ikeh, G. O., Mommoh, A. M., & Onunkwo, G. C. (2025). Green Synthesis of Zinc Oxide Nanoparticles Characterization and Use for Formulation of Sunscreen Topical Creams. Tropical Journal of Natural Product Research (TJNPR), 9(6), 2384-2394. https://doi.org/10.26538/tjnpr/v9i6.5

References

1. Martel-Estrada S, Morales-Cardona A, Vargas-Requena C, Rubio-Lara J, Martínez-Pérez C, Jimenez-Vega F. Delivery systems in nanocosmeceuticals. Rev. Adv. Mat. Sci. 2022; 61; 901. https://doi.org/10.1515/rams-2022-0282

2. Ehsan M, Waheed A, Ullah A, Kazmi A, Ali A, Raja NI, Zia-ur-Rehman M, Tahira S, Nilofar M, Muhammad I. Plant-based bimetallic silver-zinc oxide nanoparticles: A comprehensive perspective of synthesis, biomedical applications, and future trends. BioMed Res Int. 2022; Article ID 1215183, https://doi.org/10.1155/2022/1215183

3. Ilomuanya MO, Ekerebe Z, Cardoso-Daodu L, Sowemimo A. Formulation and evaluation of sunscreen cream using Detarium Senegalese oil as a base. Trop J Nat Prod Res. 2020; 4(4); 141. doi.org/10.26538/tjnpr/v4i4.5

4. Merin KA, Shaji M, Kameswaran RA. A review on sun exposure and skin diseases. Indian J Dermatol. 2022; 67(5); 625. Doi: 10.4103/ijd.ijd_1092_20

5. Smijs, T. Pavel S. Titanium dioxide and zinc oxide nanoparticles in sunscreens: focus on their safety and effectiveness. Nanotechnol Sci Appl. 2011; 4; 95-112. https://doi.org/10.2147/NSA.S19419

6. Dransfield GP. Inorganic sunscreens. Radiat. Prot. Dosim. 2000; 91; 273. https://doi.org/10.1093/oxfordjournals.rpd.a033216

7. Rizwana H, Alwhibi MS, Al-Judaie RA, Aldehaish HA, Alsaggabi NS. Sunlight-mediated green synthesis of silver nanoparticles using the berries of Ribes rubrum (Red Currants): characterization and evaluation of their antifungal and antibacterial activities. Molecules. 2022; 27; 2186. https://doi.org/10.3390/molecules27072186

8. Gupta V, Mohapatra S, Mishra H, Farooq U, Kumar K, Ansari MJ, Aldawsari FM, Alalaiwa SA, Mirza AM, Igbal Z. Nanotechnology in cosmetics and cosmeceuticals - a review of latest advancements. Gels. 2022; 8; 173. https://doi.org/10.3390/gels8030173.

9. Geoffrey K, Mwangi AN, Maru SM. Sunscreen products: Rationale for use, formulation development and regulatory considerations. Saudi Pharm J. 2019; 27(7):1009-1018. doi: 10.1016/j.jsps.2019.08.003. Epub 2019

10. Rahman A, Harunsani MH, Tan AL, Ahmad N, Hojamberdiev M, Khan MM. Effect of Mg doping on ZnO fabricated using aqueous leaf extract of Ziziphus mauritiana Lam. for antioxidant and antibacterial studies. Bioprocess Biosyst Eng. 2021; 44(4); 875. doi:

10.1007/s00449-020-02496-1. Epub 2021 Feb

11. Hassan H, Zaazou M, Sadony D, Mohamed T. Investigating the Effects of Herbal Nanoparticle Endodontic Irrigants on Candida albicans and Enterococcus faecalis: An In Vitro Study. Trop J Nat Prod Res. 2024; 8(2):6093-6099. http://www.doi.org/10.26538/tjnpr/v8i2.6

12. Asif N, Amir M, Fatma T. Recent advances in the synthesis, characterization, and biomedical applications of zinc oxide nanoparticles. Bioprocess Biosyst Eng. 2023; 46:1377 1398. https://doi.org/10.1007/s00449-023-02886-1

13. Sekar A, Murugan PJ, Paularokiadoss F. Biological synthesis and characterization of zinc oxide nanoparticles (ZnONPs) from Anisomeles malabarica. Vietnam J Chem. 2022; 60(4); 459 – 471. https://doi.org/10.1002/vjch.202100191

14. Okafor CE, Ijoma, KI, Igboamalu, CA, Ezebalu CE, Eze CF, Osita-Chikeze JC, Uzor CE., Ekwuekwe AL. Secondary metabolites, spectra characterization, and antioxidant correlation analysis of the polar and nonpolar extracts of Bryophyllum pinnatum (Lam) Oken. BioTechnologia. 2024; 105(2):121-136

15. Ijoma KI, Ajiwe VIE, Ndubuisi JO. Evidence-based preferential in vitro antisickling mechanism of three native Nigerian plants used in the management of sickle cell disease. Malays J Biochem Mol Biol. 2022; 3. 9-17

16. Harbone JB. Phytochemical methods: A guide to modern techniques of plant analysis. (1st ed.). London; Chapman and Hall; 1973. 109 p

17. Yang, X., Trinh HM, Agrahari V, Sheng Y, Pal D, Mitra AK. Nanoparticle-based topical ophthalmic gel formulation for sustained release of hydrocortisone butyrate. AAPS PharmSciTech. 2016; 17. 294–306. https://doi.org/10.1208/s12249-015-0354-5

18. Rowe RC, Sheskey PJ, Owen SC (eds) Handbook of Pharmaceutical Excipients. London: Pharmaceutical Press; 2006.

19. Yu HK, Yee KT, Jaspreet SK, Hairui L, Ai-Ling P, Lifeng K. Handbook of Cosmeceutical Excipients and their Safeties. Singapore; Woodhead Publishing Series in Biomedicine; 2014.

20. Dutra EA, Daniella A. Gonçalves C, Oliveira E. Rosa M, Rocha M, Santoro M. Determination of sun protection factor (SPF) of sunscreens by ultraviolet spectrophotometry. Braz. J. Pharm. Sci. 2004; 40(3); 382 – 385.

21. Mansur JS., Breder MNR, Mansur MCA, Azulay, R.D. Determination of sunscreen protection factor (SPF) of sunscreens by ultraviolet spectrophotometry. Rev. Bras. Cienc. Farm. 2024: 40 (3); 181-185 https://doi.org/10.1590/S1516-93322004000300014

22. Sayre RM, Agin PP, Levee GJ, Marlowe EA. A comparison of in vivo and in vitro testing of sunscreen formulas.

Photochem. Photobiol. 1979; 29(3); 559 doi: 10.1111/j.1751-1097. 1979.tb07090.x.

23. Gnanasangeetha D.Thambavani S. One-pot synthesis of zinc oxide nanoparticles via chemical and green methods. J Mater Sci Res. 2013; 1; 1-8.

24. Savita G, Anjali B, Drashti T, Pratik P, Mamta C, Sarita K, Niral M, Mohammad K, Mir WA, Virendra KY, Maha AA, Krishna KY. Recent trends in the synthesis, characterization and commercial applications of zinc oxide nanoparticles- a review. Inorganica Chimica Acta. 2024; 122350.

https://doi.org/10.1016/j.ica.2024.122350

25. Domenico Osella (ed), Green approaches, potentials, and

applications of zinc oxide nanoparticles in surface coatings and films. Bioinorganic. Chemistry. Applications. London;

WILEY online Library; 2022. https://doi.org/10.1155/2022/3077747

26. Zhou X-Q. Hayat Z, Zhang, D-D, Li M-Y, Hu S, Wu Q, Cao Y-F, Yuan Y. Zinc oxide nanoparticles: synthesis, characterization, modification, and applications in food and agriculture. Processes. 2023; 11(4); 1193. https://doi.org/10.3390/pr11041193

27. Thakral F, Bhatia GK, Tuli HS, Sharma AK, Sood S. Zinc oxide nanoparticles: from biosynthesis, characterization, and optimization to synergistic antibacterial potential. Cur Pharmacol Rep. 2021; 7; 15. DOI: 10.1007/s40495-021-00248-7

28. Shetty PK, Venuvanka V, Jagani HV, Chethan GH, Ligade VS, Musmade PB, Musmade PB, Nayak UY, Reddy MS, Kalthur G, Udupa N, Rao CM, Mutalik S. Development and evaluation of sunscreen creams containing morin- encapsulated nanoparticles for enhanced UV radiation

protection and antioxidant activity. Int. J Nanomed. 2015; 10; 6477. https://doi.org/10.2147/ijn.s90964

29. Khajuria AK, Bisht NS, Kumar G. Synthesis of zinc oxide nanoparticles using leaf extract of Viola canescens Wall. ex, Roxb. and their antimicrobial activity. J. Pharmacogn. Phytochem. 2017; 6(5); 1301.

30. Nandiyanto BAD, Ragadhita ROP. How to read and interpret FTIR spectroscopy of organic material Indones. J. Sci. Technol. 2019; 4(1); 97. DOI: http://dx.doi.org/10.17509/ijost.v4i1.15806

31. Qidwai A, Pandey A, Kumar R, Shukla SK, Dikshit A. Advances in biogenic nanoparticles and the mechanisms of antimicrobial effects. Indian J Pharm Sci. 2018; 80(4): 592. DOI: 10.4172/pharmaceutical-sciences.1000398

32. Manaia EB, Kaminski RCK, Corrêa MA, Chiavacci LA. Inorganic UV filters. Braz. J. Pharm. Sci. 2013; 49 201 https://doi.org/10.1590/S1984- 82502013000200002

33. Osterwalder U, Herzog B. Sun protection factors: worldwide confusion. Br. J. Dermatol. 2009; 161; 13. https://doi.org/10.1111/j.1365-2133.2009.09506.x.

34. ANSES. Definition of nanomaterials: analysis, challenges and controversies ANSES opinion: Collective expert appraisal report 2022, Request No 2018-SA-0168. Maisons-Alfort: ANSES, 13 p.

35. Simanjuntak HA, Rahmiati T., Ginting JG, Purba H, Zega DF, Singarimbun NB, Barus LB, Situmorang TS. GC-MS analysis, antidiarrhoeal, and in vitro antioxidant activities of ethanol extract of Blumea balsamifera (L.) DC. leaves from North Sumatra Province. Trop J Nat Prod Res. 2024; 8(10): 8662-8669 https://doi.org/10.26538/tjnpr/v8i10.7

36. Aboyewa JA, Sibuyi NRS, Meyer M, Oguntibeju OO. Green synthesis of metallic nanoparticles using some selected medicinal plants from Southern Africa and their biological applications. Plants. 2021; 10(9); 1929; https://doi.org/10.3390/plants10091929