Chemical Constituents from Mallotus pierrei (Gagnep) Airy Shaw S (Euphorbiaceae) and Their Bioactivity Significance
Main Article Content
Abstract
The search for new plant-derived biological compounds is a challenging field with diverse applications, including the development of cosmetic products and the creation of medicines for various diseases. This study investigated the phytochemical components, antibacterial effects, and cytotoxic activities of three crude extracts obtained from the mixed leaves and twigs of Mallotus pierrei, a species from the Euphorbiaceae family. Maceration of dried mixed milled leaves and twigs of M. pierrei (2.7 kg) yielded crude extracts: hexane (27.39 g, 1.04 wt%), ethyl acetate (42.05 g, 1.55 wt%), and methanol (162.11 g, 6 wt%). The antibacterial activity tests indicated that the crude hexane extract was active against nine strains of bacteria, exhibiting the same minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of ≥3 mg/mL. In contrast, the ethyl acetate and methanol crude extracts exhibited specific activity against three bacterial strains: E. coli (ETEC), E. coli (EPEC), and S. flexneri, with MIC/MBC values of 6.25/>6.25-6.25/80 mg/mL. The cytotoxicity tests indicated that the crude hexane and ethyl acetate extracts had effective dose (ED50) values of 7.72 mg/mL and 8.80 mg/mL when tested on SH-SY5Y cells. However, the activity of the crude ethyl acetate extract was less potent than that of the standard compounds used in this study, such as chloramphenicol and ellipticine. Furthermore, the three crude extracts of M. pierrei were isolated and purified, identifying two significant compounds: friedelin-3 -ol (1) and D-pinitol (2). The findings of this study indicate that M. pierrei has anticancer properties, implying its potential for new medical applications.
Downloads
Article Details
Section

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
How to Cite
References
1. Wei Q, Yang Q, Xie Y, He X, Li X, Xiao W. Chemical constituents from Mallotus tetracoccus (Roxb.) Kurz (Euphorbiaceae) and their chemotaxonomic significance. Biochem. Syst. Ecol. 2023; 111:104739. https://doi.org/10.1016/j.bse.2023.104739
2. Toyama H, Aung MM, Tagane S, Naiki A, Suddee S, Nagamasu H, Nagahama A, Win SS, Tanaka N, Yahara T. Contributions to the flora of Myanmar V: a new record of Mallotus tokiae (Euphorbiaceae) with the description of flower morphology from Lampi Island. Thai Forest Bull. Bot. 2020; 48(1):1-6. https://doi.org/10.20531/tfb.2020.48.1.01
3. Cheng XF, Chen ZL. Three new diterpenoids from Mallotus apelta Muell. Arg. J. Asian Nat. Prod. Res. 1999; 1:319-325.
https://doi.org/10.1080/10286029908039881
4. Cheng XF, Chen ZL. Coumarinolignoids of Mallotus apelta. Fitoterapia. 2000; 71:341-342. https://doi.org/10.1016/S0367-326X(99)00160-4
5. Cheng XF, Meng ZM, Chen ZL. A pyridine-type alkaloid from Mallotus apelta. Phytochemistry. 1998; 49:2193-2194.
https://doi.org/10.1016/S0031-9422(98)00395-1
6. Cheng XF, Chen Z, Zeng-Mu M. Two new diterpenoids from Mallotus apelta Muell. Arg. J. Asian Nat. Prod. Res. 1999; 1:163-168. https://doi.org/10.1080/10286029908039860
7. Li DZ, Tang C, Quinn RJ, Feng Y, Ke CQ, Yao S, Ye Y. ent-Labdane Diterpenes from the Stems of Mallotus japonicus. J. Nat. Prod. 2013; 76(9):1580-1585. https://doi.org/10.1021/np400241p
8. Kiem PV, Minh CV, Huong HT, Nam NH, Lee JJ, Kim YH. Pentacyclic triterpenoids from Mallotus apelta. Arch. Pharm. Res. 2004; 27:1109-1113.
https://doi.org/10.1007/BF02975113
9. Gao HM, Wang T, Hu HT, Yue JN, Shen T, Lou HX, Wang XN. Three new triterpenoids from Mallotus macrostachyus. Fitoterapia. 2020; 142:104498. https://doi.org/10.1016/j.fitote.2020.104498
10. Phan MG, Vu MT, Kawakami S, Otsuka H. (2S)-Prenylflavanones and taraxerane triterpenoids from Mallotus mollissimus. Biochem. Syst. Ecol. 2017; 73:22-25. https://doi.org/10.1016/j.bse.2017.05.004
11. Huang PL, Wang LW, Lin CN. New Triterpenoids of Mallotus repandus. J. Nat. Prod. 1999; 62(6):891-892. https://doi.org/10.1021/np980374u
12. Zhang Y, Chen H, Zhou D, Liu W, Zhang G, Hao L, Li C, Yang R, Deng S, Li J, Huang X. Paxiiones A–D, four new flavonoids from the stem of Mallotus paxii Pamp. Phytochem. Lett. 2020; 37:70-74. https://doi.org/10.1016/j.phytol.2020.03.011
13. Zhang LB, Lei C, Gao LX, Li JY, Li J, Hou AJ. Isoprenylated flavonoids with PTP1B inhibition from Macaranga denticulata. Nat. Prod. Bioprospect. 2016; 6(1):25-30. https://doi.org/10.1007/s13659-015-0082-2
14. Kim HJ, Woo ER, Park H. A novel lignan and flavonoids from Polygonum aviculare. J. Nat. Prod. 1994; 57(5):581-586. https://doi.org/10.1021/np50107a003
15. Kiem PV, Dang NH, Bao HV, Hương HT, Minh CV, Huong LM, Lee JJ, Kin YH. New cytotoxic benzopyrans from the leaves of Mallotus apelta. Arch. Pharm. Res. 2005; 28:1131-1134. https://doi.org/10.1007/BF02972974
16. An TY, Hu L, Cheng XF, Chen ZL. Two new benzopyran derivatives from Mallotus apelta. Nat. Prod. Res. 2003; 17:325-328. https://doi.org/10.1080/1057563031000072569
17. Cheng XF, Chen ZL. Coumarinolignoids of Mallotus apelta. Fitoterapia. 2000; 71(3):341-342. https://doi.org/10.1016/S0367-326X(99)00160-4
18. Xu JF, Feng ZM, Liu J, Zhang PC. New hepatoprotective coumarinolignoids from Mallotus apelta. Chem. Biodiversity. 2008; 5(4):591-597.
https://doi.org/10.1002/cbdv.200890055
19. Riviere C, Hong VNT, Hong QT, Chataigne G, Hoai NN, Dejaegher B, Tistaert C, Kim NT. Heyden YV, Van MC, Quetin-Leclercq J. Mallotus species from Vietnamese mountainous areas: phytochemistry and pharmacological activities. Phytochem. Rev. 2010; 9(2):217-253.
https://doi.org/10.1007/s11101-009-9152-6
20. Zhang YJ. Coumarins from Mallotus conspurcatus. Chin. Pharm. J. 2017; 1889-1892.
21. Supudompol B, Likhitwitayawuid K, Houghton PJ. Phloroglucinol derivatives from Mallotus pallidus. Phytochemistry. 2004; 65(18):2589-2594. https://doi.org/10.1016/j.phytochem.2004.08.003
22. Kouno I, Shigematsu N, Iwagami M, Kawano N. Further phloroglucinol derivatives in the fruits of Mallotus japonicus. Phytochemistry. 1985; 24(3):620-621. https://doi.org/10.1016/S0031-9422(00)80788-8
23. Tchangoue YAN, Tchamgoue J, Lunga PK, Knepper J, Paltinean R, Ibrom K, Crisan G, Kouam SF, Ali MS, Schulz S. Antibacterial phloroglucinols derivatives from the leaves of Mallotus oppositifolius (Geisler) Müll. Arg. (Euphorbiaceae). Fitoterapia. 2020; 142:104527.
https://doi.org/10.1016/j.fitote.2020.104527
24. Cheenpracha S, Pyne SG, Patrick BO, Andersen RJ, Maneerat W, Laphookhieo S. Mallopenins A–E, Antibacterial phenolic derivatives from the fruits of Mallotus philippensis. J. Nat. Prod. 2019; 82(8):2174-2180. https://doi.org/10.1021/acs.jnatprod.9b00182
25. Arisawa M, Fujita A, Morita N. Studies on cytotoxic constituents in pericarps of Mallotus japonicus, V. Three new phloroglucinol derivatives, butyrylmallotochromanol, isobutyrylmallotochromanol, and mallotojaponol. J. Nat. Prod. 1990; 53(3):638-643.
https://doi.org/10.1021/np50069a016
26. Adetunji TL, Adetunji AE, Odebunmi CA, Van der Kooy F, Siebert F. Mallotus oppositifolius (Geiseler) Müll. Arg.: The first review of its botany, ethnomedicinal uses, phytochemistry, and biological activities. S. Afr. J. Bot. 2022; 147:245-262.
https://doi.org/10.1016/j.sajb.2022.01.017
27. Likhitwitayawuid K, Supudompol B, Sritularak B, Lipipun V, Rapp K, Schinazi RF. Phenolics with anti-HSV and anti- HIV activities from Artocarpus gomezianus., Mallotus pallidus., and Triphasia trifolia. Pharm. Biol. 2005; 43(8):651-657. https://doi.org/10.1080/13880200500383058
28. Gangwar M, Goel RK, Nath G. Mallotus philippinensis Muell. Arg (Euphorbiaceae): Ethnopharmacology and phytochemistry review. BioMed. Research. International. 2014; 2014(1):213973. https://doi.org/10.1155/2014/213973
29. Chattopadhyay D, Arunachalam G, Mandal AB, Sur TK, Mandal SC, Bhattacharya SK. Antimicrobial and anti- inflammatory activity of folklore: Mallotus peltatus leaves extract. J. Ethnopharmacol. 2002; 82(2):229-237. https://doi.org/10.1016/S0378-8741(02)00165-4
30. An TY, Hu LH, Cheng XF, Chen ZL. Benzopyran derivatives from Mallotus apelta. Phytochemistry. 2001; 57(2):273-278. https://doi.org/10.1016/S0031-9422(00)00512-4
31. Van Chau M, Le MH, Phan VK. Chemical investigations and biological studies of Mallotus apelta. VI. Cytotoxic constituents from Mallotus apelta. Tap. Chi. Hoa. Hoc. 2005; 43:5-6.
32. Sierra SEC, Aparicio M, Gebraad MJH, Kulju KKM, van Welzen PC. The morphological range in Mallotus (Euphorbiaceae) and a taxonomic revision of its section Rottleropsis (including Axenfeldia) in Malesia, Thailand, and Africa. Blumea. 2007; 4;52(1):21-113.
https://doi.org/10.3767/000651907X612355
33. Perera MMN, Dighe SN, Katavic PL, Collet TA. Antibacterial potential of extracts and phytoconstituents isolated from Syncarpia hillii leaves In Vitro. Plants. 2022; 11(3), 283. https://doi.org/10.3390/plants11030283
34. Sharma A, Sharma KK. Chemoprotective role of Triphala against 1,2-dimethyl hydrazine dihydrochloride induced carcinogenic damage to mouse liver. Indian J. Clin. Biochem. 2011; 26:290-295. https://doi.org/10.1007/s12291-011-0138-y
35. Sandhya T, Lathika KM, Pandey BN, Mishra KP. Potential of traditional ayurvedic formulation, Triphala, as a novel anticancer drug. Cancer Lett. 2006; 231(2):206-214. https://doi.org/10.1016/j.canlet.2005.01.035
36. Wongprayoon P, Leelasart S, Jantham J, Pootaeng-on Y, Oekchuae S, Limpachayaporn P, Rayanil K, Charoensuksai P. A triterpenoid friedelan-3β-ol isolated from Euphorbia lactea exhibited cytotoxic activity against HN22 cells by inducing an S-phase cell cycle arrest. J. Appl. Pharm. Sci. 2022; 12(10):31-48. https://doi.org/10.7324/JAPS.2022.121004
37. Salazar GCM, Silva GDF, Duarte LP, Vieira Filho SA, Lula IS. Two epimeric friedelane triterpenes isolated from Maytenus truncata Reiss: 1H and 13C chemical shift assignments. MRC. 2000; 38(11):977-980. https://doi.org/10.1002/1097-458X(200011)38:11%3C977.
38. Credo D, Mabiki FP, Machumi F, Chacha M, Cornett C, Styrishave B. Anti-newcastle disease virus activity of 3β and 3α Friedelanol triterpenoids from the leaves of Synadenium glaucescens Pax. Trop. Biomed. 2022; 39(2):257-264. https://doi.org/10.47665/tb.39.2.016
39. Kamperdick C, Adam G, Van NH, Sung TV. Chemical constituents of Madhuca pasquiery. Z. Naturforsch. C. 1997; 52(5-6):295-300. https://doi.org/10.1515/znc-1997-5-603
40. Kuete V, Mafodong FLD, Celik I, Fobofou SAT, Ndontsa BL, Karaosmanoğlu O, Weissjohann LA, Tane P, Koparal AT, Sivas H. In vitro cytotoxicity of compounds isolated from Desbordesia glaucescens against human carcinoma cell lines. S. Afr. J. Bot. 2017; 111:37-43.
https://doi.org/10.1016/j.sajb.2017.03.031
41. Poongothai G, Sripathi SK. A review on insulinomimetic pinitol from plants. Int. J. Pharm. Bio. Sci. 2013; 4(2):992- 1009.
42. Sharma N, Verma MK, Gupta DK, Satti NK, Khajuria RK. Isolation and quantification of pinitol in Argyrolobium roseum plant, by 1H-NMR. J. Saudi Chem. Soc. 2016; 20(1):81-87. https://doi.org/10.1016/j.jscs.2014.07.002
43. Obendorf RL, Steadman KJ, Fuller DJ, Horbowicz M, Lewis BA. Molecular structure of fagopyritol A1 (O-α-d- galactopyranosyl-(1→ 3)-d-chiro-inositol) by NMR. Carbohydr. Res. 2000; 328(4):623-627. https://doi.org/10.1016/S0008-6215(00)00133-6
44. Ali A, Chen H, Xu H, Wang S, Yao S. Accessing the medicinal potential of Mallotus philippensis: Comprehensive exploration of antioxidant and antibacterial properties through phytochemical analysis and extraction techniques. Separations. 2024;11(6):165.
https://doi.org/10.3390/separations11060165
45. Kumar A, Patil M, Kumar P, Bhatti RC, Kaur R, Sharma NK, Sing AN. Mallotus philippensis (Lam.) Müll. Arg.: A review on its pharmacology and phytochemistry. J. Herbmed. Pharmacol. 2020; 10(1):31-50. doi: 10.34172/jhp.2021.03