Betalain Extraction Techniques, Principles, Optimal Conditions and Yield: A Review
Main Article Content
Abstract
Betalains are natural pigments predominantly found in beets, as well as in other plants such as cacti and Swiss chard. These bioactive compounds have gained significant attention due to their diverse applications in food, cosmetics, and pharmaceuticals. They possess antioxidant, anti-inflammatory, and potential health-promoting properties, making them valuable for functional foods and therapeutic formulations. However, the extraction efficiency and stability of betalains remain critical factors influencing their industrial use. This systematic review aims to evaluate commonly employed extraction methods for betalain-rich plant sources and compares their effects on extraction yields. Various techniques, including maceration, ultrasound-assisted extraction, and enzyme-assisted extraction, have been explored to optimize betalain recovery. Among these, maceration is the most widely used due to its simplicity and effectiveness, whereas percolation is the least adopted. However, emerging techniques such as supercritical fluid extraction (SFE) and enzyme-assisted extraction (EAE) show promise in enhancing yield while preserving pigment integrity. Optimizing extraction conditions, including solvent type, temperature, and pH, is essential for maximizing yield, stability, and efficiency, ensuring better applicability in different industries. Additionally, this review highlights strategies for improving betalain recovery while minimizing degradation, thereby maintaining pigment stability during processing and storage. The findings from this review provide valuable insights for researchers and industry professionals in selecting suitable extraction methods based on efficiency, sustainability, and practicality. By refining extraction processes, it contributes to advancing betalain utilization in various fields, ultimately supporting the development of stable and bioavailable functional ingredients.
Downloads
Article Details
Section

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
How to Cite
References
1. Kujala T, Loponen J, Pihlaja K. Betalains and phenolics in red beetroot (Beta vulgaris) peel extracts: extraction and characterisation. J. Biosci. 2001; 56(5-6):343–348.
2. Georgiev VG, Weber J, Kneschke EM, Denev PN, Bley T, Pavlov AI. Antioxidant activity and phenolic content of betalain extracts from intact plants and hairy root cultures of the red beetroot Beta vulgaris cv. detroit dark red. Plant Foods Hum. Nutr. 2010; 65 (2):105–111.
3. Stintzing FC, Carle R. Cactus Stems (Opuntia spp.): a review on their chemistry, technology, and uses. Mol. Nutr. Food Res. 2005; 49 (2):175–194.
4. Enaru B, Drețcanu G, Pop TD, Stǎnilǎ A, Diaconeasa Z. Anthocyanins: factors affecting their stability and degradation. Antioxidants. 2021; 10(12):1967.
5. Miguel M. Betalains in some species of the Amaranthaceae family: a review. Antioxidants. 2018; 7(4):53.
6. Ha QTT, Nguyen KK, Le AN, Vu HT, Nguyen TN. Opuntia ficus-indica (L.): an overview of the recent application and opportunities in food: Trop. J. Nat. Prod. Res, 8(1), 5734-5745.
7. Kanner J, Harel S, Granit R. Betalains- a new class of dietary cationized antioxidants. J. Agric. Food Chem. 2001; 49(11):5178–5185.
8. Yin Z, Yang Y, Guo T, Veeraraghavan VP, Wang X. Potential chemotherapeutic effect of betalain against human non‐small cell lung cancer through PI3K/Akt/mTOR signaling pathway. Environ. Toxicol. 2021; 36(6):1011–1020.
9. Kugler F, Stintzing FC, Carle R. Identification of betalains from petioles of differently colored swiss chard (Beta vulgaris L. ssp. cicla [L.] Alef. Cv. Bright Lights) by high-performance liquid chromatography−electrospray ionization mass spectrometry. J. Agric. Food Chem. 2004; 52(10):2975–2981.
10. Esteves LC, Machado CO, Pires C, Cavalcante VF, Obeid G, Correra TC, Bastos EL. Structural effects on the antioxidant properties of amino acid betaxanthins. Antioxidants. 2022; 11(11):2259.
11. Kumar SNA, Ritesh SK, Sharmila G, Muthukumaran C. Extraction optimization and characterization of water soluble red purple pigment from floral bracts of Bougainvillea glabra. Arab. J. Chem. 2017; 10:S2145–S2150.
12. Esatbeyoglu T, Ulbrich K, Rehberg C, Rohn S, Rimbach G. Thermal stability, antioxidant, and anti-inflammatory activity of curcumin and its degradation product 4-vinyl Guaiacol. Food Funct. 2015; 6(3):887–893.
13. Bianchi F, Pünsch M, Venir E. Effect of processing and storage on the quality of beetroot and apple mixed juice. Foods. 2021; 10(5):1052–1059.
14. Azeredo HMC, Santos AN, Souza ACR, Kenya CBM, Maria IRA. Betacyanin stability during processing and storage of a microencapsulated red beetroot extract. Am. J. Food Technol. 2007; 2(4):307–312.
15. Chandran J, Nisha P, Singhal RS, Pandit AB. Degradation of colour in beetroot (Beta vulgaris L.): a kinetics study. J. Food Sci. Technol. 2012; 51(10):2678–2684.
16. Azeredo HMC. Betalains: properties, sources, applications, and stability - a review. Int. J. Food Sci. Technol. 2008; 44(12):2365–2376.
17. Sutor-Świeży K, Proszek J, Popenda Ł, Wybraniec S. Influence of citrates and EDTA on oxidation and decarboxylation of betacyanins in red beet (Beta vulgaris L.) betalain-rich extract. Molecules. 2022; 27(24):9054.
18. Sadowska-Bartosz I, Bartosz G. Biological properties and applications of betalains. Molecules. 2021; 26(9):2520.
19. Gandía-Herrero F, Escribano J, García-Carmona F. Biological activities of plant pigments betalains. Crit. Rev. Food Sci. Nutr. 2014; 56(6):937–945.
20. Kujawska M, La Rosa SL, Roger LC, Pope PB, Hoyles L, McCartney AL, Hall LJ. Succession of Bifidobacterium longum strains in response to a changing early life nutritional environment reveals dietary substrate adaptations. iScience. 2020; 23(8):101368.
21. Chen C, Xie F, Hua Q, Tel-Zur NT, Zhang L, Zhang Z, Zhang R, Zhao J, Hu G, Qin Y. Integrated sRNAome and RNA-Seq analysis reveals miRNA effects on betalain biosynthesis in pitaya. BMC Plant Biol. 2023; 23:112.
22. Ninfali P, Angelino D. Nutritional and functional potential of Beta vulgaris cicla and rubra. Fitoterapia. 2013; 89:188–199.
23. Teixeira da Silva DV, Dos Santos Baião D, de Oliveira Silva F, Alves G, Perrone D, Del Aguila EM, Flosi Paschoalin VM. Betanin, a natural food additive: stability, bioavailability, antioxidant and preservative ability assessments. Molecules. 2019; 24(3):458.
24. Mzoughi Z, Abdelhamid A, Rihouey C, Le Cerf D, Bouraoui A, Majdoub H. Optimized extraction of pectin-like polysaccharide from Suaeda fruticosa leaves: characterization, antioxidant, anti-inflammatory and analgesic activities. Carbohydr. Polym. 2018; 185:127–137.
25. Ngamwonglumlert L, Devahastin S, Chiewchan N. Natural colorants: pigment stability and extraction yield enhancement via utilization of appropriate pretreatment and extraction methods. Crit. Rev. Food Sci. Nutr. 2017; 57(15):3243–3259.
26. Bimakr, M, Abdul Rahman, R, Taip, FS, Ganjloo, A, Md Salleh, L, Selamat, J, Hamid, A, Zaidul, ISM. Comparison of different extraction methods for the extraction of major bioactive flavonoid compounds from spearmint (Mentha spicata L.) leaves. Food Bioprod. Process. 2011; 89(1):67–72.
27. Cowan MM. Plant products as antimicrobial agents. Clin. Microbiol. Rev. 1999; 12(4):564–582.
28. Hosikian A, Lim S, Halim R, Danquah MK. Chlorophyll extraction from microalgae: a review on the process engineering aspects. Int J Chem Eng. 2010; 2010:1–11.
29. Machmudah S, Goto M. Methods for extraction and analysis of carotenoids. In: Natural Products. 2013. p. 3367–3411.
30. Lezoul NEH, Belkadi M, Habibi F, Guillén F. Extraction processes with several solvents on total bioactive compounds in different organs of three medicinal plants. Molecules (Basel, Switzerland). 2020; 25(20):4672.
31. Calva-Estrada SJ, Jiménez-Fernández M, Lugo-Cervantes E. Betalains and their applications in food: the current state of processing, stability and future opportunities in the industry. Food Chem.: Mol. Sci. 2022; 4:100089.
32. Grigonis D, Venskutonis PR, Sivik B, Sandahl M, Eskilsson CS. Comparison of different extraction techniques for isolation of antioxidants from sweet grass (Hierochloë odorata). J. Supercrit. Fluids. 2005; 33(3):223–233.
33. Azmir J, Zaidul ISM, Rahman MM, Sharif KM, Mohamed A, Sahena F, Jahurul MHA, Ghafoor K, Norulaini NAN, Omar AKM. Techniques for extraction of bioactive compounds from plant materials: a review. J. Food Eng. 2013; 117(4):426–436.
34. Delgado-Vargas F, Jiménez AR, Paredes-López O. Natural pigments: carotenoids, anthocyanins, and betalains - characteristics, biosynthesis, processing, and stability. Crit. Rev. Food Sci. Nutr. 2000; 40(3):173–289.
35. Sigwela V, De Wit M, du Toit A, Osthoff G, Hugo A. Bioactive betalain extracts from cactus pear fruit pulp, beetroot tubers, and Amaranth leaves. Molecules. 2021; 26(16):5012.
36. Barrera FAG, Reynoso CR, González de Mejía E. Stability of betalains extracted from garambullo (Myrtillocactus geometrizans). Food Sci. Technol. Int. 1998; 4(2):115–120.
37. Schliemann W, Kobayashi N, Strack D. The decisive step in betaxanthin biosynthesis is a spontaneous reaction. Plant Physiol. 1999; 119(4):1217–1232.
38. Strack D, Vogt T, Schliemann W. Recent advances in betalain research. Phytochemistry. 2003; 62(3):247–269.
39. Lazăr S, Constantin OE, Stănciuc N, Aprodu I, Croitoru C, Râpeanu G. Optimization of betalain pigments extraction using
beetroot by-products as a valuable source. Inventions. 2021; 6(3):50.
40. Albano C, Negro C, Tommasi N, Gerardi C, Mita G, Miceli A, De Bellis L, Blando F. Betalains, phenols and antioxidant capacity in cactus pear [Opuntia ficus-indica (L.) Mill.] fruits from Apulia (South Italy) genotypes. Antioxidants. 2015; 4(2):269–280.
41. Castro-Enríquez DD, Montaño-Leyva B, Del Toro-Sánchez CL, Juaréz-Onofre JE, Carvajal-Millan E, Burruel-Ibarra SE, Tapia-Hernández JA, Barreras-Urbina CG, Rodríguez-Félix F. Stabilization of betalains by encapsulation—a review. J. Food Sci. Technol. 2020; 57(5):1587–1600.
42. Jackman RL, Smith JL. Anthocyanins and betalains. In Hendry, G. A. F., Houghton, J. D. (Eds.), Natural Food Colourants, Second Ed. London: Blackie Academic. 1996; 244-309 p.
43. Das M, Saeid A, Hossain MdF, Jiang GH, Eun JB, Ahmed M. Influence of extraction parameters and stability of betacyanins extracted from red Amaranth during storage. J. Food Sci. Technol. 2018; 56(2):643–653.
44. Ramli NS, Ismail P, Rahmat A. Influence of conventional and ultrasonic-assisted extraction on phenolic contents, betacyanin contents, and antioxidant capacity of red dragon fruit (Hylocereus polyrhizus). Sci. World J. 2014; 2014:1–7.
45. Silva JPP, Bolanho BC, Stevanato N, Massa TB, Silva C. Ultrasound‐assisted extraction of red beet pigments (Beta vulgaris L.): influence of operational parameters and kinetic modeling. J. Food Process. Preserv. 2020; 44(10): e14762.
46. Swamy GJ, Sangamithra A, Chandrasekar V. Response surface modeling and process optimization of aqueous extraction of natural pigments from Beta vulgaris using Box–Behnken design of experiments. Dyes Pigm. 2014; 111:64–74.
47. Prakash Maran J, Manikandan S, Mekala V. Modeling and optimization of betalain extraction from Opuntia ficus-indica using Box–Behnken design with desirability function. Ind. Crops Prod. 2013; 49:304–311.
48. Sanchez-Gonzalez N, Jaime-Fonseca MR, San Martin-Martinez E, Zepeda LG. Extraction, stability, and separation of betalains from Opuntia joconostle cv. using response surface methodology. J. Agric Food Chem. 2013; 61(49):11995–12004.
49. Cai YZ, Sun M, Corke H. Identification and distribution of simple and acylated betacyanins in the amaranthaceae. J. Agric Food Chem. 2001; 49(4):1971–1978.
50. Fathordoobady F, Mirhosseini H, Selamat J, Manap MYA. Effect of solvent type and ratio on betacyanins and antioxidant activity of extracts from Hylocereus polyrhizus flesh and peel by supercritical fluid extraction and solvent extraction. Food Chem. 2016; 202:70–80.
51. Paramita O, Ansori M, Kusumastuti A, Fatimah N. Natural food colourant of beetroot skin (Beta vulgaris L): characterisation study. IOP Conf. Ser. Earth Environ. Sci. 2022; 969(1):012047.
52. Susanto D, Hapsari S, Trilutfiani Z, Borhet A, Aparamarta HW, Widjaja A, Gunawan S. Effect of solvent polarity levels on separation of xanthone and coumarin from Calophyllum inophyllum leaves extract. IOP Conf. Ser. Mater. Sci. Eng. 2018; 334:012071.
53. Sambasevam KP, Yunos N, Mohd Rashid HN, Baharin S, Suhaimi NF, Raoov M, Shahabuddin S. Optimization of natural colour extraction from dragon fruit (Hylocereus polyrhizus) peel. Sci. Res. J. 2020; 17(2):33.
54. Zin MM, Márki E, Bánvölgyi Sz. Conventional extraction of betalain compounds from betroot peels with aqueous ethanol solvent. Acta Aliment. 2020; 49(2):163–169.
55. Moßhammer MR, Stintzing FC, Carle R. Colour studies on fruit juice blends from Opuntia and Hylocereus cacti and betalain- containing model solutions derived therefrom. Food Res. Int. 2005; 38(8-9):975–981.
56. Pourrat A, Lejeune B, Grand A, Pourrat H. Betalains assay of fermented red beet root extract by high performance liquid chromatography. J. Food Sci. 1988; 53(1):294–295.
57. Rastogi NK, Eshtiaghi MN, Knorr D. Accelerated mass transfer during osmotic dehydration of high intensity electrical field pulse pretreated carrots. J. Food Sci. 1999; 64(6):1020–1023.
58. Ade-Omowaye BIO, Angersbach A, Taiwo KA, Knorr D. Use of pulsed electric field pre-treatment to improve dehydration characteristics of plant-based foods. Trends Food Sci. Technol. 2001; 12(8):285–295.
59. Fincan M, DeVito F, Dejmek P. Pulsed electric field treatment for solid–liquid extraction of red beetroot pigment. J. Food Eng. 2004; 64(3):381–388.
60. Nayak CA, Chethana S, Rastogi NK, Raghavarao KSMS. Enhanced mass transfer during solid–liquid extraction of gamma-irradiated red beetroot. Radiat. Phys. Chem. 2006; 75(1):173–178.
61. Drdák M, Rolando C A, Rajniakova A, Šimko P, Karovičová J, Benkovska D. Red beet pigment composition. effects of fermentation by different strains of Saccharomyces cerevisiae. J. Food Sci. 1992; 57(4):935–936.
62. Li H, Deng Z, Liu R, Zhu H, Draves J, Marcone M, Sun Y, Tsao R. Characterization of phenolics, betacyanins and antioxidant activities of the seed, leaf, sprout, flower and stalk extracts of three Amaranthus species. J. Food Compos. Anal. 2015; 37:75–81.
63. Gengatharan A, Dykes G, Choo WS. Betacyanins from Hylocereus polyrhizus: pectinase-assisted extraction and application as a natural food colourant in ice cream. J. Food Sci. Technol. 2020; 58(4):1401–1410.
64. Pérez-Loredo MG, García-Ochoa F, Barragán-Huerta BE. Comparative analysis of betalain content in Stenocereus stellatus fruits and other cactus fruits using principal component analysis. Int. J. Food Propert. 2015; 19(2):326–338.
65. Le TTH, Le NL. Antioxidant capacities and betacyanin LC‐MS profile of red‐fleshed dragon fruit juice (Hylocereus polyrhizus) extracted by ultrasound‐assisted enzymatic treatment and optimized by response surface methodology. J. Food Process. Preserv. 2021;45: e15217.
66. Phan Van M, Tran Duc D, Thi Thanh HD, Chi HT. Comparison of ultrasound assisted extraction and enzyme assisted extraction of betacyanin from red dragon fruit peel. Web Conf. 2020; 187:04004.
67. Naderi N, Stintzing FC, Ghazali HM, Manap YA, Jazayeri SD. Betalain extraction from Hylocereus polyrhizus for natural food coloring purposes. J. Prof. Assoc. Cactus Dev. 2010; 12:143–154.
68. Li A, Xiao R, He S, An X, He Y, Wang C, Yin S, Wang B, Shi X, He J. Research advances of purple sweet potato anthocyanins: extraction, identification, stability, bioactivity, application, and biotransformation. Molecules. 2019; 24(21):3816.
69. Lombardelli C, Benucci I, Mazzocchi C, Esti M. A novel process for the recovery of betalains from unsold red beets by low-temperature enzyme-assisted extraction. Foods. 2021; 10(2):236.
70. Dao TP, Nguyen LPU, Le DT, Tran TYN, Huynh PX. Effects of pectinase treatment on the quality of red dragon fruit (Hylocereus polyrhizus) juice. Int. Food Res. J. 2023; 30(4):945–952.
71. Chauhan M, Thakur N, Hamid. Standardization of enzymatic treatments for the extraction of juice from wild prickly pear (Opuntia dillenii Haw.). Indian J. Ecol. 2017; 44(6):715–720.
72. Amulya PR, ul Islam R. Optimization of enzyme-assisted extraction of anthocyanins from eggplant (Solanum melongena L.) peel. Food Chem.: X. 2023; 18:100643.
73. Rasul M. Conventional extraction methods use in medicinal plants, their advantages and disadvantages. IJBSAC. 2018; 2:10–14.
74. Seebaluck-Sandoram R, Lall N, Fibrich B, Blom van Staden A, Saleem H, Mahomoodally MF. Antimicrobial, antioxidant and cytotoxic evaluation of two underutilised food plants: Averrhoa bilimbi L. (Oxalidaceae) and Phyllanthus acidus L. skeels (Phyllanthaceae). Biocatal. Agric. Biotechnol. 2019; 18:100998.
75. Gao Y, Dong Y, Guo Q, Wang H, Feng M, Yan Z, Bai D. Study on supramolecules in traditional chinese medicine decoction. Molecules. 2022; 27(10):3268–3268.
76. Jabri MA, Rtibi K, Sebai H. Chamomile decoction mitigates high fat diet-induced anxiety-like behavior, neuroinflammation and cerebral ROS overload. Nutr. Neurosci. 2020; 1–12.
77. Nair KP. Pharmacology and nutraceutical uses of ginger. turmeric (Curcuma longa L.) and ginger (Zingiber officinale Rosc.) In: The Agronomy and Economy of Turmeric and Ginger. Springer; 2019. 519 - 536 p.
78. Ranjbar A, Khorami S, Safarabadi M, Shahmoradi A, Malekirad AA, Vakilian K, Mandegary A, Abdollahi M. Antioxidant activity of Iranian Echium amoenum Fisch & C.A. mey flower decoction in humans: a cross-sectional before/after clinical trial. Evid.-based Complement. Alternat. Med. 2006; 3(4):469–473.
79. Khan KY, Khan MA, Ahmad M, Hussain I, Mazari P, Fazal H, Ali B, Khan IZ. Hypoglycemic potential of genus Ficus L.: a review of ten years of plant based medicine used to cure diabetes (2000-2010). J. Appl. Pharm. Sci. 2011; 1(6):223–227.
80. Fazil M, Nikhat S. Therapeutic and palliative role of a Unani herbal decoction in COVID-19 and similar respiratory viral illnesses: phytochemical & pharmacological perspective. J. Ethnopharmacol. 2022; 297:115526.
81. Abubakar A, Haque M. Preparation of medicinal plants: basicextraction and fractionation procedures for experimental purposes. J. Pharm. and Bioallied Sci. 2020; 12(1):1–10.
82. Pardo-Muras M, Puig CG, Souto XC, Pedrol N. Water-soluble phenolic acids and flavonoids involved in the bioherbicidal potential of Ulex europaeus and Cytisus scoparius. S. Afr. J. Bot. 2020; 133:201–211.
83. Goyal MR, Malik JA, Pandiselvam R. Enzyme inactivation in food processing. Apple Academic Press eBooks. 2023. 1-156 p.
84. Li C, Tian Y, Liu C, Dou Z, Diao J. Effects of heat treatment on the structural and functional properties of Phaseolus vulgaris L. protein. Foods. 2023; 12(15):2869.
85. Lee S. Effect of different cooking methods on the content of vitamins and true retention in selected vegetables. Food Sci. Biotechnol. 2017; 27(2):333–342.
86. Moreno-Ley CM, Osorio-Revilla G, Hernández-Martínez DM, Ramos-Monroy OA, Gallardo-Velázquez T. Anti-inflammatory activity of betalains: a comprehensive review. Hum. Nutr. Metab. 2021; 25:200126.
87. Smeriglio A, Bonasera S, Germanò MP, D'Angelo V, Barreca D, Denaro M, Monforte MT, Galati EM, Trombetta D. Opuntia ficus‐indica (L.) Mill. fruit as source of betalains with antioxidant, cytoprotective, and anti‐angiogenic properties. Phytother. Res. 2019; 33(5):1526–1537.
88. Bitwell C, Indra SS, Luke C, Kakoma MK. A review of modern and conventional extraction techniques and their applications for extracting phytochemicals from plants. Sci. Afr. 2023; 19:e01585.
89. Eliseeva S, Smolentseva A, Ivanova A, Strelkova V. Effect of variety of processing on keeping of betalain pigments of table beetroot. J. Hyg. Eng. Des. 2021; 36:130–135.
90. Šeremet D, Durgo K, Jokić S, Huđek A, Vojvodić Cebin A, Mandura A, Jurasović J, Komes D. Valorization of banana and red beetroot peels: determination of basic macrocomponent composition, application of novel extraction methodology and assessment of biological activity in vitro. Sustainability. 2020; 12(11):4539.
91. Zin MM, Nagy K, Bánvölgyi S, Abrankó L, Nath A. Effect of microwave pretreatment on the extraction of antioxidant‐rich red color betacyanin, phenolic, and flavonoid from the crown of cylindra‐type beetroot ( Beta vulgaris L.). J. Food Process Eng. 2022; 45(12): 1–11.
92. Howard JE, Villamil MB, Riggins CW. Amaranth as a natural food colorant source: survey of germplasm and optimization of extraction methods for betalain pigments. Front. Plant Sci. 2022; 13: 1-13.
93. Kushwaha R, Kumar V, Vyas G, Kaur J. Optimization of different variable for eco-friendly extraction of betalains and phytochemicals from beetroot pomace. Waste Biomass Valor. 2017; 9(9):1485–1494.
94. López-Hortas L, Rodríguez P, Díaz-Reinoso B, Gaspar MC, de Sousa HC, Braga MEM, Domínguez H. Supercritical fluid extraction as a suitable technology to recover bioactive compounds from flowers. J. Supercrit. Fluids. 2022; 188:105652.
95. Azaroual L, Liazid A, El Mansouri F, Brigui J, Ruíz-Rodriguez A, Barbero GF, Palma M. Optimization of the microwave-assisted extraction of simple phenolic compounds from grape skins and seeds. Agronomy. 2021; 11(8):1527.
96. Pinela J, Prieto MA, Carvalho AM, Barreiro MF, Oliveira MBPP, Barros L, Ferreira ICFR. Microwave-assisted extraction of phenolic acids and flavonoids and production of antioxidant ingredients from tomato: a nutraceutical-oriented optimization study. Sep. Purif. Technol. 2016; 164:114–124.
97. Liao W, Liu S, Dong R, Xie J, Chen Y, Hu X, Xie J, Xue P, Feng L, Yu Q. Mixed solid-state fermentation for releasing bound polyphenols from insoluble dietary fiber in carrots via Trichoderma viride and Aspergillus niger. Food Funct. 2022; 13(4):2044–2056.
98. Zin MM, Borda F, Márki E, Bánvölgyi S. Betalains, Total polyphenols, and antioxidant contents in red beetroot peel (Cylindra type). Prog. Agric. Eng. Sci. 2021; 16(S2):27–36.
99. Rafiq N, Gupta N, Bhat A, Singh J, Bandral JD, Sood M, Bashir M, Thakur N. Extraction techniques and utilization of natural pigments. Chem. Sci. Rev. Lett. 2022; 11(42):239–245.
100. Wang F, Zhang S, Deng G, Xu K, Xu H, Liu J. Extracting total anthocyanin from purple sweet potato using an effective ultrasound-assisted compound enzymatic extraction technology. Molecules. 2022; 27(14):4344.
101. Halim R, Gladman B, Danquah MK, Webley PA. Oil extraction from microalgae for biodiesel production. Bioresour. Technol. 2011; 102(1):178–185.
102. Lim GB, Lee SY, Lee EK, Haam SJ, Kim WS. Separation of astaxanthin from red yeast Phaffia rhodozyma by supercritical carbon dioxide extraction. Biochem. Eng. J. 2002; 11(2-3):181–7.
103. Mohamed A, Eastoe J. How Can We Use Carbon Dioxide as a Solvent?.Sch. Sci. Rev. 2011; 93(343):73–80.
104. Da Silva RPFF, Rocha-Santos TAP, Duarte AC. Supercritical fluid extraction of bioactive compounds. Trends Anal. Chem. 2016; 76:40–51.
105. Sharif KM, Rahman MM, Azmir J, Mohamed A, Jahurul MHA, Sahena F, Zaidul ISM. Experimental design of supercritical fluid extraction – a review. J. Food Eng. 2014; 124:105–116.
106. Careri M, Furlattini L, Mangia A, Musci M, Anklam E, Theobald A, von Holst C. Supercritical fluid extraction for liquid chromatographic determination of carotenoids in Spirulina pacifica algae: a chemometric approach. J. Chromatogr. A. 2001; 912(1):61–71.
107. Halim R, Danquah MK, Webley PA. Extraction of oil from microalgae for biodiesel production: a review. Biotechnol. Adv. 2012; 30(3):709–732.
108. Oberholster A. Chapter 19. Extraction of carotenoids from plants: a focus on carotenoids with vitamin A activity. In: Vitamin A and Carotenoids: Chemistry, Analysis, Function and Effects. Cambridge, U.K.: Royal Society of Chemistry; 2012. 316–331 p.
109. Yen HW, Liu YX, Chang JS. The effects of feeding criteria on the growth of oleaginous yeast—Rhodotorula glutinis in a pilot-scale airlift bioreactor. J. Taiwan Inst. Chem. Eng. 2015; 49:67–71.
110. Fathordoobady F, Manap MY, Selamat J and Singh AP. Development of supercritical fluid extraction for the recovery of betacyanins from red pitaya fruit (Hylocereus polyrhizus) peel: a source of natural red pigment with potential antioxidant properties. Int. Food Res. J. 2019; 26(3): 1023-1034.
111. Pawliszyn J. Theory of solid-phase microextraction. Handbook of Solid Phase Microextraction. Elsevier; 2012. 13-59 p.
112. Alara OR, Abdurahman NH, Olalere OA. Optimization of microwave-assisted extraction of flavonoids and antioxidants from Vernonia amygdalina leaf using response surface methodology. Food Bioprod. Process. 2018; 107:36–48.
113. Borjan D, Šeregelj V, Cör Andrejč D, Pezo L, Tumbas Šaponjac V, Knez Ž, Vulić J, Knez Marevci M. Green techniques for preparation of red beetroot extracts with enhanced biological potential. Antioxidants. 2022; 11(5):805.
114. Adama Hilou, Millogo-Rasolodimby J, Odile Germaine Nacoulma. Betacyanins are the most relevant antioxidant molecules of Amaranthus pinosus and Boerhavia erecta. J. Med. Plants Res. 2013; 7(11):645–652.
115. Hudu A, Saeed SA, Gumel SM. Studies on the dyeing properties of cotton and antimicrobial activity of natural colourant extracted from Beta vulgaris (Beetroot). Earthline J. Chem. Sci. 2020; 4(1):53–66.