Effect of Calcium Lactate Concentration on Biological Activity and Structural Properties of Alginate Gel Capsules Containing Pineapple Juice

Main Article Content

Ho B. Ngoc
Vo V. Thiep
Ho T. Hoang
Nguyen T. M. Nguyet

Abstract

Applying the spherification technique in encapsulating fruit juice and monitoring its changes during storage enhances the potential of this technique in developing food products for the beverage industry and other food-related sectors. This study investigates the encapsulation of pineapple juice in alginate beads, focusing on parameters such as polyphenol content, antioxidant capacity, enzymatic activity, encapsulation effic-iency, and textural properties. The polyphenol content in the alginate beads decreased notably over 96 hours (h) from 0.4652 to 0.1289 mgGAEg-1, 0.4314 to 0.1547 mgGAEg-1, 0.4205 to 0.1462 mgGAEg-1 corresponding to the content of Ca3%, Ca4% and Ca5%. Different calcium (Ca) concentrations in the formulation affected the diffusion rates, thereby influencing the release of polyphenols. Antioxidant capacity, assessed by radical scavenging activities (ABTS+ and DPPH•), varied among the formulations, with the 5 % Ca formulation showing the most promising outcomes. The enzymatic activity of bromelain in the beads also declined over time, influenced by storage conditions. Encapsulation efficiency (EE %) and textural properties such as diameter, cohesiveness, springiness, and gumminess were associated with sodium alginate concentrations but were not significantly impacted by Ca concentrations. The study concludes that alginate beads are an effective matrix for safeguarding bioactive compounds in pineapple juice.

Downloads

Download data is not yet available.

Article Details

How to Cite
Ngoc, H. B., Thiep, V. V., Hoang, H. T., & Nguyet, N. T. M. (2025). Effect of Calcium Lactate Concentration on Biological Activity and Structural Properties of Alginate Gel Capsules Containing Pineapple Juice . Tropical Journal of Natural Product Research (TJNPR), 9(4), 1882 – 1888. https://doi.org/10.26538/tjnpr/v9i4.64
Section
Articles

References

1. Dettmar PW, Strugala V, Richardson JC. The key role alginates play in health. Food Hydrocoll. 2011; 25(2):263-266. Doi: 10.1016/j.foodhyd.2009.09.009.

2. Sun Q, Yin S, He Y, Cao Y, Jiang C. Biomaterials and encapsulation techniques for probiotics: Current status and future prospects in biomedical applications. Nanomaterials. 2023; 13(15):2185. Doi: 10.3390/nano13152185.

3. Sangwai V, Deshmukh R. Bubble tea market by base ingredient (black tea, green tea, oolong tea, and white tea), flavor (original flavor, coffee flavor, fruit flavor, chocolate flavor, and others), and component (flavor, creamer, sweetener, liquid, tapioca pearls, and others): global opportunity analysis and industry forecast, 2020–2027. Allied Market Research; 2020.

4. Bulathgama AU, Gunasekara G, Wickramasinghe I, Somendrika M. Development of commercial tapioca pearls used in bubble tea by microwave heat–moisture treatment in cassava starch modification. Eur. J. Eng. Technol. Res. 2020; 5(1):103-106. Doi: 10.24018/ejeng.2020.5.1.1455.

5. Ong AKS, Prasetyo YT, Libiran MADC, Lontoc YMA, Lunaria JAV, Manalo AM, Miraja BA, Young MN, Chuenyindee T, Persada SF. Consumer preference analysis on attributes of milk tea: A conjoint analysis approach. Foods. 2021; 10(6):1382. Doi: 10.3390/foods10061382.

6. Agrawal P, Nikhade P, Patel A, Mankar N, Sedani S. Bromelain: a potent phytomedicine. Cureus. 2022; 14(8). Doi: 10.7759/cureus.27876.

7. Lee J-H, Lee J-B, Lee J-T, Park H-R, Kim J-B. Medicinal effects of bromelain (Ananas comosus) targeting oral environment as an antioxidant and anti-inflammatory agent. J. Food Nutr. Res. 2018; 6(12):773-84. Doi: 10.12691/jfnr-6-12-8.

8. Cupp-Enyard C. Sigma's non-specific protease activity assay-casein as a substrate. J Vis Exp. 2008; (19):e899. Doi: 10.3791/899.

9. Singleton VL, Rossi JA. Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. Am. J. Enol. Vitic. 1965;16(3):144-158. Doi: 10.5344/ajev.1965.16.3.144.

10. Ijoma KI, Ajiwe VIE, Odinma SC. The organic extracts from the leaves of Ficus thonningii Blume, Jatropha tanjorensis J.L Ellis and Saroja and Justicia carnea Lindley as potential nutraceutical antioxidants and functional foods. Trends Phytochem. Res. 2023; 7(1): 76-85.

11. Dallabona ID, de Lima GG, Cestaro BI, de Souza Tasso I, Paiva TS, Laureanti EJG, de Matos Jorge LM, da Silva BJG, Helm CV, Mathias AL. Development of alginate beads with encapsulated jabuticaba peel and propolis extracts to achieve a new natural colorant antioxidant additive. Int. J. Biol. Macromol. 2020; 163:1421-1432. Doi: 10.1016/j.ijbiomac.2020.07.256.

12.Buenaflor JP, Lydon CK, Zimmerman A, DeSutter OL, Wissinger JE. Student explorations of calcium alginate bead formation by varying pH and concentration of acidic beverage juices. Chem. Teach. Int. 2022; 4(2), 155-164. Doi: 10.1515/cti-2021-0027.

13. Orellana-Palma P, Macias-Bu L, Carvajal-Mena N, Petzold G, Guerra-Valle M. Encapsulation of Concentrated Solution Obtained by Block Freeze Concentration in Calcium Alginate and Corn Starch Calcium Alginate Hydrogel Beads. Gels. 2023; 9(5), 374. Doi: 10.3390/gels9050374.

14. Kulkarni AR, Soppimath KS, Aminabhavi TM, Dave AM, Mehta MH. Glutaraldehyde cross-linked sodium alginate beads containing liquid pesticide for soil application. J Control Release. 2000; 63(1-2):97-105.Doi: 10.1016/S0168-3659(99)00176-5.

15. Wu L, Brazel CS. Mathematical model to predict drug release, including the early-time burst effect, from swellable homogeneous hydrogels. Ind Eng Chem Res. 2008; 47(5):1518-1526.Doi: 10.1021/ie071139m.

16. Arriola NDA, de Medeiros PM, Prudencio ES, Müller CMO, Amboni RDdMC. Encapsulation of aqueous leaf extract of Stevia rebaudiana Bertoni with sodium alginate and its impact on phenolic content. Food Biosci. 2016; 13:32-40. Doi: 10.1016/j.fbio.2015.12.001.

17. Zhang Y, Kong Q, Niu B, Liu R, Chen H, Xiao S, Wu W, Zhang W, Gao H. The dual function of calcium ion in fruit edible coating: Regulating polymer internal cross-linking state and improving fruit postharvest quality. Food Chem. 2024; 138952. Doi: 10.1016/j.foodchem.2024.138952.

18. Hui YH, Chen F, Nollet LM, Guiné RP, Martín-Belloso O, Mínguez-Mosquera MI, Paliyath G, Pessoa FL, Le Quéré J-L, Sidhu JS. Handbook of fruit and vegetable flavors: Wiley Online Library; 2010. Doi: 10.1002/9780470622834.

19. Shahidi F, Naczk M. Phenolics in food and nutraceuticals: CRC press; 2003. Doi: 10.1201/9780203508732.

20. Floegel A, Kim D-O, Chung S-J, Koo SI, Chun OK. Comparison of ABTS/DPPH assays to measure antioxidant capacity in popular antioxidant-rich US foods. J. Food Compos. Anal. 2011; 24(7):1043-1048. Doi: 10.1016/j.jfca.2011.01.008.

21. Gonçalves NB, Carvalho VDD, Gonçalves JRDA. Effect of calcium chloride and hydrothermical treatment on enzymatic activity and phenol content of pineapple. Pesqui. Agropecu. Bras. 2000; 35:2075-2081. Doi: 10.1590/S0100-204X2000001000020.

22. Manosroi A, Chankhampan C, Pattamapun K, Manosroi W, Manosroi J. Antioxidant and gelatinolytic activities of papain from papaya latex and bromelain from pineapple fruits. Chiang Mai J Sci. 2014; 41(3):635-648

23. Jana S, Samanta A, Nayak AK, Sen KK, Jana S. Novel alginate hydrogel core–shell systems for combination delivery of ranitidine

HCl and aceclofenac. Int J Biol Macromol. 2015; 74:85-92. Doi: 10.1016/j.ijbiomac.2014.11.027.

24. Pongjanyakul T, Puttipipatkhachorn S. Xanthan–alginate composite gel beads: molecular interaction and in vitro characterization. Int J Pharm. 2007; 331(1):61-71. Doi: 10.1016/j.ijpharm.2006.09.011.

25. Li J, Wu Y, He J, Huang Y. A new insight to the effect of calcium concentration on gelation process and physical properties of alginate films. J Mater Sci. 2016; 51:5791-5801. Doi: 10.1007/s10853-016-9880-0.

26. Rhim J-W. Physical and mechanical properties of water resistant sodium alginate films. LWT Food Sci Technol. 2004; 37(3):323-330. Doi: 10.1016/j.lwt.2003.09.008.

27. Weng Y, Yang G, Li Y, Xu L, Chen X, Song H, et al. Alginate-based materials for enzyme encapsulation. Adv. Colloid Interface Sci. 2023; 102957. Doi: 10.1016/j.cis.2023.102957.

28. Kashima K, Imai M. Advanced membrane material from marine biological polymer and sensitive molecular-size recognition for promising separation technology. Advancing desalination. 2012; 1-35. Doi: 10.5772/50734.

29. Zhang X, Wang K, Hu J, Zhang Y, Dai Y, Xia F. Role of a high calcium ion content in extending the properties of alginate dual-crosslinked hydrogels. J Mater Chem A. 2020; 8(47):25390-25401. Doi: 10.1039/d0ta09315g.

30. Xin Y, Bligh MW, Kinsela AS, Wang Y, Waite TD. Calcium-mediated polysaccharide gel formation and breakage: Impact on membrane foulant hydraulic properties. J Membr Sci. 2015; 475:395-405. Doi: 10.1016/j.memsci.2014.10.033.