Muntingia calabura Modulates Alveolar Matrix Metalloproteinase-9 (MMP-9) and Decreases The Alveolar Diameter in Sprague-Dawley Rats Exposed to Cigarette Smoke
Main Article Content
Abstract
Exposure to cigarette smoke is a major risk factor for chronic obstructive pulmonary disease (COPD), characterized by oxidative stress and inflammation. The fruit of Muntingia calabura demonstrates significant antioxidant and anti-inflammatory properties. This study investigates the effects of Muntingia calabura fruit extract on matrix metalloproteinase-9 (MMP-9) expression and changes in alveolar diameter in Sprague-Dawley rats subjected to cigarette smoke exposure. Eighteen male Sprague-Dawley rats were randomly assigned to three groups: control (K), treatment 1 (P1) receiving 100 mg/kg body weight/day of M. calabura extract, and treatment 2 (P2) receiving 200 mg/kg body weight/day of the extract. All groups were exposed to cigarette smoke from burning seven cigarettes daily for four weeks. MMP-9 expression was assessed via immunohistochemistry, and alveolar diameter was measured using Optilab software. Both treatment groups exhibited a significant increase in MMP-9 expression compared to the control group (p < 0.0001). Alveolar diameter was significantly reduced in the P2 group compared to P1 and K (p < 0.0001). A negative correlation was observed between MMP-9 expression and alveolar diameter (r = -0.384, p < 0.0001). Administration of Muntingia calabura fruit extract enhances MMP-9 expression and decreases alveolar diameter in rats exposed to cigarette smoke, suggesting its potential protective role against smoke-induced pulmonary damage.
Downloads
Article Details

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
References
1. Mak JCW. Pathogenesis of COPD. Part II. Oxidative-Antioxidative Imbalance. Int J Tuberc Lung Dis. 2008;12(4):368-374.
2. Prasad B. Chronic Obstructive Pulmonary Disease (COPD). IJPRT. 2020;10(1):67-71. doi:10.31838/ijprt/10.01.12
3. Pompe E, Moore CM, Mohamed Hoesein FAA, de Jong P, Charbonnier J, Han M, Humphries S, Hatt C, Galban C, Silverman E, Crapo J, Washko
G, Regan E, Make B, Strand M, Lammers J, van Rikxoort E, Lynch D. Progression of Emphysema and Small Airways Disease in Cigarette Smokers. Chronic Obstr Pulm Dis. 2021;8(1):198-212. doi:10.15326/JCOPDF.2020.0140
4. Uche OK, Otimize MF. Modulation in airway smooth muscle reactivity and improvement in lung function of cigarette smokers and passive non-smokers following Garcinia kola treatment. Trop J Nat Prod Res. 2017;1(5):209-212. doi:10.26538/tjnpr/v1i5.7
5. Fischer BM, Voynow JA, Ghio AJ. COPD: Balancing oxidants and antioxidants. Int J Chron Obstruct Pulmon Dis. 2015;10:261-276.
doi:10.2147/COPD.S42414
6. Bozkurt N, Bozkurt AI. Effects of active/passive smoking exposure in patients with COPD. Ank. Med. J. 2022;(1):93-103. doi:10.5505/amj.2022.79026
7. Lisdiana L, Widiatningrum T, Kurniawati F. Molecular Docking Bioactive Compound of Rambutan Peel (Nephelium lappaceum L) and NF-Κb in the Context of Cigarette Smoke-Induced Inflammation. Trop J Nat Prod Res. 2022;6(10):1654-1659. doi:10.26538/tjnpr/v6i10.16
8. Knudsen L, Weibel ER, Jørgen Gundersen HG, Weinstein F V, Ochs M, Weibel ER. Assessment of air space size characteristics by intercept (chord) measurement: an accurate and efficient stereological approach. J Appl Physiol. 2010;108:412-421.
doi:10.1152/japplphysiol.01100.2009.
9. Abboud RT, Vimalanathan S. Pathogenesis of COPD. Part I. The Role of Protease-Antiprotease Imbalance in Emphysema. Int J Tuberc Lung Dis. 2008.12(4):361-367
10. Finlay GA, O’driscoll LR, Russell KJ, D’arcy E, Masterson J, Fitzgerald M, O’connor C. Matrix Metalloproteinase Expression and Production by Alveolar Macrophages in Emphysema. Am J Res.1997;156:240-247.
11. Arti Rani D, Ritu D. Importance of Antioxidant in Our Life. IJHS.2023;9(2):199-202. https://www.homesciencejournal.com
12. Stoia M, Oancea S. Low-Molecular-Weight Synthetic Antioxidants: Classification, Pharmacological Profile, Effectiveness and Trends. Antioxidants. 2022;11(4).1-28. doi:10.3390/antiox11040638
13. Sivasankaran SM, Abdulla SHS, Elanchezhiyan C, Pethanasamy M, Surya S, Theerthu A, Krishnan H. Reactive Oxygen Species Scavenging and Anti-Proliferative Potential of Veratric Acid: An in vitro Approach. Trop J Nat Prod Res. 2023;7(4):2837-2843. doi:10.26538/tjnpr/v7i4.28
14. Nur S, Aswad M, Yulianti R, Sami F, Burhan A, Fadri A, Khairi N, Nursamsiar. Antioxidant activity profile of extract and fraction of kersen (Muntingia calabura L.) fruits prepared by different methods. In: IOP Conference Series: Earth and Environmental Science. Vol 976. IOP Publishing Ltd; 2022. doi:10.1088/1755-1315/976/1/012066
15. Mahmood ND, Mamat SS, Kamisan FH, Yahya F, Kamarolzaman M, Nasir N, Mohtarudin N, Tohid S, Zakaria Z. Amelioration of paracetamol-induced hepatotoxicity in rat by the administration of methanol extract of Muntingia calabura L. Leaves. Biomed Res Int. 2014;2014:1-10. doi:10.1155/2014/695678
16. Akcakavak G, Ozdemir O, Ates MB, Ortatatli M, Hatipoglu. Immunohistochemical Detection of Tissue Localization of Acute Phase Proteins in Cattle Pneumonic Pasteurellosis. Isr J Vet Med. 2023; 78(4):28-38
17. Abdella AM, Attia GA, Eed MA, Eldib AS, Haleem SS. Evaluation of matrix metalloproteinase-9 and tissue inhibitor metalloproteinase-1 levels in bronchoalveolar lavage of apparently healthy smokers. Egypt J Chest Dis Tuberc. 2015;64(2):371-378. doi:10.1016/j.ejcdt.2014.12.001
18. Fehrenbach H. Animal models of pulmonary emphysema: A stereologist’s perspective. Eur Respir Rev. 2006;15(101):136-147. doi:10.1183/09059180.00010104
19. Borzone G, Liberona L, Olmos P, Saez C, Meneses M, Reyes T, Moreno R, Lisboa C. Rat and hamster species differences in susceptibility to elastase-induced pulmonary emphysema relate to differences in elastase inhibitory capacity. Am J Physiol Regul Integr Comp Physiol. 2007;293:1342-1349. doi:10.1152/ajpregu.00343.2007.
20. Khodayari N, Oshins R, Mehrad B, Lascano J, Qiang X, West J, Holliday L, Lee J, Wiesemann G, Eydgahi S, Brantly M. Cigarette smoke exposed airway epithelial cell-derived EVs promote pro-inflammatory macrophage activation in alpha-1 antitrypsin deficiency. Respir Res. 2022;23(1):1-14. doi:10.1186/s12931-022-02161-z
21. Sandford AJ, Weir TD, Paré PD. Genetic risk factors for chronic obstructive pulmonary disease. Eur Respir J. 1997;10(6):1380-1391. doi:10.1183/09031936.97.10061380
22. Taraseviciene-Stewart L, Voelkel NF. Molecular pathogenesis of emphysema. J Clin Invest. 2008;118(2):394-402. doi:10.1172/JCI31811
23. Herron M, Fraughen D, Leacy E, Roche S, Alhaddah L, Heeney R, Carroll T, Murphy M, Mcelvaney N. The Protease-Antiprotease Balance in Alpha-1 Antitrypsin Deficiency. Am J Respir Crit Care Med. 2023;207.
24. Miklós Z, Horváth I. The Role of Oxidative Stress and Antioxidants in Cardiovascular Comorbidities in COPD. Antioxidants. 2023;12(6):1-29. doi:10.3390/antiox12061196
25. Lago JHG, Toledo-Arruda AC, Mernak M, Barrosa K, Martins M, Tiberio I, Prado C. Structure-Activity association of flavonoids in lung diseases. Molecules. 2014;19(3):3570-3595. doi:10.3390/molecules19033570
26. Kristianingsih A, Soetrisno, Reviono R, Wasita B. Molecular Docking Study of Quercetin from Ethanol Extract of Mimosa pudica Linn on Asthma Biomarkers. Trop J Nat Prod Res. 2024;8(10):8640-8645. doi:10.26538/tjnpr/v8i10.4
27. Addissouky TA, El Sayed IET, Ali MMA, Wang Y, El Baz A, Elrabany N, Khalil A. Oxidative stress and inflammation: elucidating mechanisms of smoking-attributable pathology for therapeutic targeting. Bull Natl Res Cent. 2024;48(1).1-16. doi:10.1186/s42269-024-01174-6
28. Wu R, Zhu X, Guan G, Cui Q, Zhu L, Xing Y, Zhao J. Association of dietary flavonoid intakes with prevalence of chronic respiratory diseases in adults. J Transl Med. 2024;22(1):1-12. doi:10.1186/s12967-024-04949-7