Moringa oleifera Seed Oil Nanoemulsion Using Tween 80 and Polyethylene Glycol 400: Oil Characterization and Formula Optimization
Main Article Content
Abstract
Moringa oleifera is a useful plant known for its antialopecia properties. Nanoemulsions have been proven effective as a carrier for the delivery of lipophilic compounds in Moringa oleifera seed oil to increase the permeation of active ingredients. This study aimed to characterize the physical and chemical properties of Moringa oleifera seed oil and identify its composition using GCMS, optimize the formulation of a nanoemulsion containing Moringa oleifera seed oil, using Tween 80 as a surfactant and PEG 400 as a co-surfactant. The optimal formulation was determined using Design-Expert through the simplex lattice design approach. A total of 14 formulations were tested for particle size response, polydispersity index (PDI), and zeta potential. The results showed that Moringa oleifera seed oil contained 12 fatty acids, with oleic acid as the most abundant (71.52%), followed by palmitic (8.05%), stearic (5.99%), behenic (5.31%), and arachidic acid (2.97%).The acid value, peroxide, density, saponification, refractive index, and moisture content of the oil were 0.46 mg KOH/g oil, 6.28 meq O2/kg oil, 0.915 grams/cm3, 253.5 mg KOH/g oil, as well as 1.4668 and 0.12% w/w, respectively. The optimal formulation obtained consisted of 6.401% Moringa oleifera seed oil, 36% Tween 80, and 18.599% PEG 400. Evaluation of the optimal formula showed particle size response value was 237.06 nm, PDI 0.467, zeta potential -20.89 mV, transmittance value 97.7%, spherical shape in observations using TEM. Nanoemulsion containing high quality of Moringa oleifera seed oil was able to be formulated, which may serve as a promising dosage form for hair growth treatments.
Downloads
Article Details

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
References
1. Mishra P, Handa M, Ujjwal RR, Singh V, Kesharwani P, Shukla R. Potential of nanoparticulate based delivery systems for effective management of alopecia. Colloids Surf B Biointerfaces [Internet]. 2021;208:112050. Available from: https://doi.org/10.1016/j.colsurfb.2021.112050
2. Mingsan M, Mengfan P, Dandan L, Zhengwang Z. Effects of AiQingHua oil on microcirculation disturbance and alopecia mice model. J King Saud Univ - Sci [Internet]. 2020;32(6):2669–2674. Available from: https://doi.org/10.1016/j.jksus.2020.03.023
3. Rizg WY, Hosny KM, Elgebaly SS, Alamoudi AJ, Felimban RI, Tayeb HH, Alharbi M, Bukhary HA, Abualsunum A, Almehmady AM, Khallaf RA.. Preparation and optimization of garlic oil/apple cider vinegar nanoemulsion loaded with minoxidil to treat alopecia. Pharmaceutics. 2021;13(12):1–14. https://doi.org/10.3390/ pharmaceutics13122150
4. Korassa YB, Saptarini NM, Mustarichie R, Hendriani R, Ola ARB, Novicadlitha Y. Anti-Alopecia Activity of Moringa Oleifera Lamk. Seed Oil Against Dihydrotestosterone-Induced Rabbits. Int J Appl Pharm. 2023;15(Special Issue 2):19–24. Doi : 10.22159/ijap.2023.v15s2.04.
5. Leone A, Spada A, Battezzati A, Schiraldi A, Aristil J, Bertoli S. Cultivation, Genetic, Ethnopharmacology, Phytochemistry and Pharmacology of Moringa oleifera Leaves: Int J Mol Sci. 2015;16:12791–12835. Doi : doi:10.3390/ijms160612791.
6. Junlatat J, Sripanidkulchai B. Moringa oleifera seed oil promotes hair growth in mice and modulates the genetic expressions of factors affecting hair growth cycle in skin cell culture. Songklanakarin. J Sci Technol. 2022;44(3):817–825.
7. Leone A, Spada A, Battezzati A, Schiraldi A, Aristil J, Bertoli S. Moringa oleifera seeds and oil: Characteristics and uses for human health. Int J Mol Sci. 2016;17(12):1–14. Doi : 10.3390/ijms17122141.
8. Özcan MM, Ghafoor K, Al Juhaimi F, Ahmed IAM, Babiker EE. Effect of cold-press and soxhlet extraction on fatty acids, tocopherols and sterol contents of the Moringa oleifera seed oils. S Afr J Bot. 2019;124:333–337. Doi : 10.1016/j.sajb.2019.05.010.
9. Debnath S, Kumar GV, Satayanarayanaand. Nanoemulsion a method to improve the solubility of lipophilic drugs Nanoemulsion-A Method To Improve The Solubility Of Lipophilic Drugs. An Int Jof Advances In Pharm Sci. 2017; 2(2):72-83.
10. Singh S, Sonia, Sindhu RK, Alsayegh AA, Batiha GES, Alotaibi SS, Albogami S, Conte CA. Formulation Development and Investigations on Therapeutic Potential of Nanogel from Beta vulgaris L. Extract in Testosterone-Induced Alopecia. Biomed Res Int. 2023;(2023):1-17.
11. Bhatt P, Madhav S. A detailed review on oral mucosal drug delivery system. Int J Pharm Sci Res. 2011;2(10):2482–2489.
12. Reubun YTA, Pangalila AA. Combination of Candlenut Oil (Aleurites mollucana L.) and Celery Leaf Powder (Apium graveolens L.) nanoemulsion on Alopecia Disease Model. J Farm Indones. 2023;20(1):46–53.
13. Thanida Chuacharoen SP and CMS. Effect of Surfactant Concentrations on Physicochemical Properties and Functionality of Curcumin Nanoemulsions Under Conditions Relevant to Commercial Utilization. Molecules. 2020;24(15):2744. doi:10.3390/molecules24152744.
14. Miksusanti, Apriani EF, Bihurinin AHB. Optimization of Tween 80 and PEG-400 Concentration in Indonesian Virgin Coconut Oil Nanoemulsion as Antibacterial against Staphylococcus aureus. Sains Malays. 2023;52(4):1259–1272.
15. Nita T, Julia R, Jansen S. Formulation and Evaluation Of Moringa oleifera Seed Oil Nanoemulsion Gel. Asian J Pharm Res Dev. 2020;7(6):1–5.
16. Riangjanapatee P, Khongkow M, Treetong A, Unger O, Phungbun C, Jaemsai S, Bootsiri C, Okonogi S. Development of Tea Seed Oil Nanostructured Lipid Carriers and In Vitro Studies on Their Applications in Inducing Human Hair Growth. Pharmaceutics. 2022;14(5): 984. DOI: 10.3390/ pharmaceutics14050984.
17. Chen YS, Chiu YH, Li YS, Lin EY, Hsieh DK, Lee CH. Integration of PEG 400 into a self-nanoemulsifying drug delivery system improves drug loading capacity and nasal mucosa permeability and prolongs the survival of rats with malignant brain tumors. Int J Nanomedicine. 2020;14:3601–3613. DOI: 10.2147/IJN.S193617.
18. Rowe, R. C., Sheskey, P. J., dan Owen SC. Handbook of Pharmaceutical Excipients. Ed V. Pharmaceutical Press and American Pharmacists Association.; 2006.
19. Gharsallah K, Rezig L, B’chir F, Bourgou S, Achour N Ben, Jlassi C,Soltani T, Chalh A. Composition and Characterization of Cold Pressed Moringa oleifera Seed Oil. J Oleo Sci. 2022;71(9):1263–1273. DOI : 10.5650/jos.ess22095.
20. Ogunsina BS, Indira TN, Bhatnagar AS, Radha C, Debnath S, Gopala Krishna AG. Quality characteristics and stability of Moringa oleifera seed oil of Indian origin. J Food Sci Technol. 2020;51(3):503–510. DOI 10.1007/s13197-011-0519-5.
21. Nafisah U, Wikantyasning ER, Sukmawati A. Optimization of Nanostructured Lipid Carriers for Essential Oil of Artemisia herba- alba. Trop J Nat Prod Res. 2025;8(12):9578–9585. DOI: 10.26538/tjnpr/v8i12.33.
22. Salmannejad F, Qorab H, Ghari T. Formulation, Characterization and Optimization of Peel-Off Gel of Soybean Extract as a Face Mask. Trop J Nat Prod Res. 2024;8(3):6544–6551. doi: 10.26538/tjnpr/v8i3.11. The effects of particle properties on nanoparticle drug retention and release in dynamic minoxidil foams
23. Thakkar H, Nangesh J, Parmar M, Patel D. Formulation and characterization of lipid-based drug delivery system of raloxifene-microemulsion and self-microemulsifying drug delivery system. J Pharm Bioalli Sci. 2011;3(3):442–448.
24. Rohmah A, Prabowo HA, Setiasih S, Handayani S, Jufri M, Hudiyono S. The evaluation of activity and stability of isolated bromelain from pineapple cores (Ananas comosus [L.] Merr) and in vitro penetration test of nanoemulsion topical base. Int J Appl Pharm. 2021;13(5):336–342.DOI : 10.22159/ijap.2021v13i5.41769.
25. Gohel M, Purohit A, Patel A, Hingorani L. Optimization of bacoside a loaded snedds using d-optimal mixture design for enhancement insolubility and bioavailability. Int J Pharm Pharm Sci. 2016;8(12):213–220. DOI: 10.22159/ijpps.2016v8i12.13488.
26. Widyanastuti NA, Susilo B. Study of Hydraulic Press Extraction of Moringa oleifera Seed Oil (Moringa oleifera) with Variation of Heat Treatment. J Bioproses Komod Trop. 2021;1(2):48–55.
27. Rahman IR, Kartikasari D, Kurnianto E, Herdaningsih S. Antioxidant Screening and Sunscreen Activity of Nanocream of Purified Extract of Kenikir Leaves (ETDK) and Tampoi Fruit Peel Extract (EKBT). J Farm Galen (Galenika J Pharmacy). 2021;7(3):231–237. DOI: 10.22487/j24428744.2021.v7.i3.15663.
28. Okonkwo TJN, Obonga WO, Okonkwo CJO. Fatty acid profile and physicochemical properties of Landolphia owariensis P. beauv stringy seed oil. Trop J Pharm Res. 2020;13(8):1347–1352. DOI: 10.4314/tjpr.v13i8.21.
29. Barakat H, Ghazal GA. Physicochemical Properties of ;Moringa oleifera; Seeds and Their Edible Oil Cultivated at Different Regions in Egypt. Food Nutr Sci. 2016;07(06):472–484. DOI: 10.4236/fns.2016.76049.
30. Fu X, Su J, Hou L, Zhu P, Hou Y, Zhang K,Li H, Liu X, Jia C, Xu J. Physicochemical and thermal characteristics of Moringa oleifera seed oil. Adv Compos Hybrid Mater. 2021;4(3):685–695. DOI: 10.1007/s42114-021-00302-4.
31. Nebolisa NM, Umeyor CE, Ekpunobi UE, Umeyor IC, Okoye FB. Profiling the effects of microwave-assisted and soxhlet extraction techniques on the physicochemical attributes of Moringa oleifera seed oil and proteins. Oil Crop Sci. 2023;8(1):16–26. DOI: 10.1016/j.ocsci.2023.02.003.
32. Anwar F, Latif S, Ashraf M, Gilani AH. Moringa oleifera: a food plant with multiple medicinal uses. Phyther Res. 2023;21(1):17–25.
33. Timilsena YP, Vongsvivut J, Adhikari R, Adhikari B. Physicochemical and thermal characteristics of Australian chia seed oil. Food Chem. 2020;228:394–402. DOI: 10.1016/j.foodchem.2020.02.021.
34. Schwingshackl L, Hoffmann G. Monounsaturated fatty acids, olive oil and health status: A systematic review and meta-analysis of cohort studies. Lipids Health Dis. 2020;13(1): 154. DOI : 10.1186/1476-511X-13-154.
35. Anwar F, Rashid U. Physico-chemical characteristics of Moringa oleifera seeds and seed oil from a wild provenance of Pakistan. Pak J Bot. 2007;39(5):1443–1453.
36. Rahman IMM, Barua S, Nazimuddin M, Begum ZA, Rahman AM, Hasegawa H. Physicochemical properties of Moringa oleifera Lam. seed oil of the indigenous-cultivar of Bangladesh. J Food Lipids. 2009;16(4):540–553. DOI : 10.1111/j.1745-4522.2009.01165.x.
37. Lasanudin RI, Bachri MS, Wahyuningsih I, Efiana NA. Nanoemulsion Formulation Combination of Virgin Coconut Oil (VCO) and Candlenut Oil (Alleurites mollucanus) for Hair Growth in Male White Rats (Rattus novergicus). Pharmacon: J Farm Indones. 2024;21(1):59–67. DOI : 10.23917/pharmacon.v21i1.4348.
38. Schreiner TB, Santamaria-Echart A, Ribeiro A, Peres AM, Dias MM, Pinho SP, Barreiro MF. Formulation and optimization of nanoemulsions using the natural surfactant saponin from Quillaja bark. Molecules. 2020;25(7) :1538. DOI: 10.3390/molecules25071538
39. Pandya BR, Chotai NP, Suthar RM, Patel HK. Formulation, in-vitro evaluation and optimization of nanoemulsion of raloxifene hydrochloride. Int J Pharm Res. 2017;9(2):38–48.
40. Danaei M, Dehghankhold M, Ataei S, Hasanzadeh Davarani F, Javanmard R, Dokhani A, Khorasani S, Mozaari M. Impact of particle size and polydispersity index on the clinical applications of lipidic nanocarrier systems. Pharmaceutics. 2020;10(2):1–17. DOI: 10.3390/pharmaceutics10020057.
41. Monika, Sharma S, Shrivastva M, Kumar S, Rabbani SA, Garg A. Novel In-Situ NanoEmulGel (NEG) of Azithromycin with Eugenol for the Treatment of Periodontitis: Formulation Development and Characterization. J Clust Sci. 2022;33(6):2589–2600. DOI: 10.1007/s10876-021-02172-8.
42. Pongsumpun P, Iwamoto S, Siripatrawan U. Response surface methodology for optimization of cinnamon essential oil nanoemulsion with improved stability and antifungal activity. Ultrason Sonochem. 2020;60:104604. DOI: 10.1016/j.ultsonch.2020.05.021.
43. Sreeram KJ, Nidhin M, Indumathy R, Nair BU. Synthesis of iron oxide nanoparticles of narrow size distribution on polysaccharide templates. Bull Mater Sci. 2008;31(1):93–96. DOI: 10.1007/s12034-008-0016-2.
44. Abdullah TM, Al-Kinani KK. Topical Propranolol Hydrochloride Nanoemulsion: A Promising Approach Drug Delivery for Infantile Hemangiomas. Iraqi J Pharm Sci. 2023;32:300–315. DOI : 10.31351/vol32issSuppl.pp300-315.
45. Indrati O, Martien R, Rohman A, Nugroho AK. Application of simplex lattice design on the optimization of andrographolide self nanoemulsifying drug delivery system (SNEDDS). Indones J Pharm. 2020;31(2):124–30. DOI : 10.14499/indonesianjpharm31iss2pp124.
46. Apriani EF, Mardiyanto M, Hendrawan A. Optimization of Green Synthesis of Silver Nanoparticles From Areca catechu L. Seed Extract With Variations of Silver Nitrate and Extract Concentrations Using Simplex Lattice Design Method. Farmacia. 2022;70(5):917–924.
47. Ghosh V, Mukherjee A, Chandrasekaran N. Colloids and Surfaces B : Biointerfaces Eugenol-loaded antimicrobial nanoemulsion preserves fruit juice against, microbial spoilage. Colloids Surf B Biointerfaces. 2021;114:392–397. DOI: 10.1016/j.colsurfb.2020.10.034.
48. Koocheki A, Kadkhodaee R. Effect of Alyssum homolocarpum seed gum, Tween 80 and NaCl on droplets characteristics, flow properties and physical stability of ultrasonically prepared corn oil-in-water emulsions. Food Hydrocoll. 2021;25(5):1149–1157.
49. Chuesiang P, Siripatrawan U, Sanguandeekul R, McLandsborough L, Julian McClements D. Optimization of cinnamon oil nanoemulsions using phase inversion temperature method: Impact of oil phase composition and surfactant concentration. J Colloid Interface Sci. 2020;514:208–216. DOI: 10.1016/j.jcis.2019.11.084.
50. Yang T, Liu C, Zheng Y, Liu TC, Li K, Liu J, Liu Y, Zhou P. Effect of WPI/Tween 80 mixed emulsifiers on physicochemical stability of ginsenosides nanoemulsions. Food Biosci. 2023;53:102519. DOI: 10.1016/j.fbio.2023.102519.
51. Ariani LW, Zulkarnain AK, Hertiani T, Nurrochmad A. Optimization of Nanostructured Lipid Carriers ( NLC ) Extract Crude Fucoidan Algae. Trop J Nat Prod Res. 2024;8(12):9610–9618.DOI: 10.26538/tjnpr/v8i12.38.
52. Kotta S, Khan AW, Ansari SH, Sharma RK, Ali J. Formulation of nanoemulsion: A comparison between phase inversion composition method and high-pressure homogenization method. Drug Deliv. 2015;22(4):455–466. DOI : 10.3109/10717544.2013.866992.
53. Abbas IK, Abd-AlHammid SN. Design, Optimization and Characterization of Self-Nanoemulsifying Drug Delivery Systems of Bilastine. Iraqi J Pharm Sci. 2023;32(7):164–176. DOI: 10.31351/vol32issSuppl.pp164-176.