Osteogenic Effects of PMMA-HA Implants: Enhanced Osteocalcin and Osteopontin Expression in Experimental Rats
Main Article Content
Abstract
Periodontal disease if left untreated may result in tooth loss. Implants are a form of rehabilitative therapy for tooth replacement. However, implants are quite expensive in Indonesia. Therefore, there is the need for an alternative dental implant biomaterial with biocompatible properties that can effectively promote osseointegration. One of such material is polymethylmethacrylate (PMMA), which is widely used by orthopedic surgeons as implants. However, PMMA lacks the bioactivity necessary for effective osseointegration. Unlike PMMA, hydroxyapatite (HA) offers better osteoconductive, bioactive, and biocompatible properties. HA can be derived from limestone (CaCO3) through processing at Balai Besar Keramik (BBK) or from bovine bone following the Good Manufacturing Practice (GMP). This study aimed to evaluate the osteogenic potential of PMMA-HA implants by analyzing osteocalcin (OCN) and osteopontin (OPN) expression in a rat bone model. Rats were divided into six groups. Then PMMA-HA (GMP) and PMMA-HA (BBK) were implanted into the femurs of the rats at a ratio of 83.8:16.2. Immunohistochemical assays were conducted on days 7 and 14 to assesses OCN and OPN expression levels. Both PMMA-HA (BBK) and PMMA-HA (GMP) treatment groups demonstrated significantly higher expression of OCN and OPN compared to the control group (p < 0.05). These findings indicate that PMMA-HA implants effectively promote osteoblast differentiation, as evidenced by elevated levels of OCN and OPN, which are crucial for bone formation.
Downloads
Article Details

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
References
1. Rohmawati N, Dyah Y, Santik P. Periodontal Disease Status in Adult Male Smokers. J Pub Health Res Dev. 2019; 3(2):286-297.
2. Hijryana M, MacDougall M, Ariani N, Saksono P, Kusdhany LS, Walls AWG. Periodontal Disease and Oral Health–Related Quality of Life in the Older Population in Indonesia. JDR Clin Transl Res. 2021; 7(3):277. doi:10.1177/23800844211021391
3. Renjana AR, Pratomo H, Arminsih R. Factors Associated with the Dental Health Status of Health Promotion Students in the Faculty of Public Health, Universitas Indonesia: A Cross-Sectional Study. J Int Oral Health. 2020; 12(3):236-240. doi:10.4103/JIOH.JIOH_309_18
4. Hijryana M, MacDougall M, Ariani N, Kusdhany LS, Walls AWG. Impact of Periodontal Disease on the Quality of Life of Older People in Indonesia: A Qualitative Study. JDR Clin Transl Res. 2021; 7(4):360. doi:10.1177/23800844211041911.
5. Clark D and Levin L. In the Dental Implant Era, Why Do We Still Bother Saving Teeth? J Endod. 2019; 45(12S):57-65. doi:10.1016/j.joen.2019.05.014.
6. Anbarserri NM, Ismail KM, Anbarserri H, Alanazi D, AlSaffan AD, Baseer MA, Shaheen R. Impact of Severity of Tooth Loss on Oral-Health-Related Quality of Life Among Dental Patients. J Family Med Prim Care. 2020; 9(1):187. doi:10.4103/jfmpc.jfmpc_909_19.
7. Harsono V, Prabowo H. Dental Implant as an Alternative Treatment for Single Tooth Loss Rehabilitation. J Dentomaxillofac Sci. 2012; 11(3):170-173. doi:10.15562/jdmfs.v11i3.333.
8. Mohd Dom TN, Fang HP, En LJ, Meei TI, Mohd Said S, Abdul Aziz AF, Ahmad R, Mohd Dom TN. Impacts of Tooth Loss and Preferences for Tooth Replacement Among Clinic Attendees at a Public University. J Dent Indones. 2018; 25(2):108-113. doi:10.14693/jdi.v25i2.1237.
9. Warreth A, Ibieyou N, O’Leary RB, Cremonese M, Abdulrahim M. Dental Implants: An Overview. Dent Update. 2017; 44(7):596-620. doi:10.12968/denu.2017.44.7.596.
10. Parithimarkalaignan S and Padmanabhan TV. Osseointegration: An Update. J Indian Prosthodont Soc. 2013;13(1):2-6. doi:10.1007/s13191-013-0252-z.
11. Jeong J, Kim JH, Shim JH, Hwang NS, Heo CY. Bioactive Calcium Phosphate Materials and Applications in Bone Regeneration. Biomater Res. 2019; 23(1):2-11. doi:10.1186/s40824-018-0149-3.
12. Nicholson JW. Titanium Alloys for Dental Implants: A Review. Prosthesis. 2020; 2(2):100-116. doi:10.3390/prosthesis2020011
13. Prahasanti C, Nugraha AP, Kharisma VD, Ansori ANM, Ridwan RD, Putri TPS, Ramadhani NF, Narmada IB, Ardani IGAW, Noor TNEBA. A Bioinformatic Approach of Hydroxyapatite and Polymethylmethacrylate Composite Exploration as Dental Implant Biomaterial. J Pharm Pharmacogn Res. 2021; 9(5):746-754. doi:10.56499/jppres21.1078_9.5.746.
14. Phakatkar AH, Shirdar MR, Qi M-L, Taheri MM, Narayanan S, Foroozan T, Sharifi-Asl S, Huang Z, Agrawal M, Lu Y-P, Shahbazian-Yassar R, Shokuhfar T. Novel PMMA Bone Cement Nanocomposites Containing Magnesium Phosphate Nanosheets and Hydroxyapatite Nanofibers. Mater Sci Eng C Mater Biol Appl. 2020; 109:110497. doi:10.1016/j.msec.2019.110497.
15. Kattimani VS, Kondaka S, Lingamaneni KP. Hydroxyapatite—Past, Present, and Future in Bone Regeneration. Bone Tissue Regen Insights. 2016; 7:S36138. doi:10.4137/btri.s36138.
16. Darjanki CM, Prahasanti C, Fitria AE, Kusumawardani B, Wijaksana IKE, Aljunaid M. RUNX2 and ALP Expression in Osteoblast Cells Exposed by PMMA-HAp Combination: An In Vitro Study. J Oral Biol Craniofac Res. 2023; 13(2):277-282. doi:10.1016/j.jobcr.2023.02.007.
17. Saskianti T, Novianti A, Sahar D, Nugraha AP, Putri TS, Kanawa M, Puteri MM, Dewi AM, Ernawati DS. Mixed Polymethylmethacrylate and Hydroxyapatite as a Candidate of Synthetic Graft Materials for Cleft Palate. J Int Dent Med Res. 2022; 15(2):538-543.
18. Saskianti T, Purnamasari S, Pradopo S, Nugraha AP, Prahasanti C, Ernawati DS, Kanawa M. The Effect of Mixed Polymethylmethacrylate and Hydroxyapatite on Viability of Stem Cell from Human Exfoliated Deciduous Teeth and Osteoblast. Eur J Dent. 2024; 18(1):314-320. doi:10.1055/S-0043-1768971
19. Wancket LM. Animal Models for Evaluation of Bone Implants and Devices: Comparative Bone Structure and Common Model Uses. Vet Pathol. 2015; 52(5):842-850. doi:10.1177/0300985815593124
20. Zhu S, Chen W, Masson A, Li YP. Cell Signaling and Transcriptional Regulation of Osteoblast Lineage Commitment, Differentiation, Bone Formation, and Homeostasis. Cell Discov. 2024; 10(1):1-39. doi:10.1038/s41421-024-00689-6.
21. Prati AJ, Casati MZ, Ribeiro FV, Cirano FR, Pastore GP, Pimentel SP, Casarin RCV. Release of Bone Markers in Immediately Loaded and Nonloaded Dental Implants: A Randomized Clinical Trial. J Dent Res. 2013; 92(12):161S. doi:10.1177/0022034513504951
22. Retnam L, Chatikavanij P, Kunjara P, Paramastri YA, Goh YM, Hussein FN, Mutalib AR, Poosala S. Laws, Regulations, Guidelines and Standards for Animal Care and Use for Scientific Purposes in the Countries of Singapore, Thailand, Indonesia, Malaysia, and India. Int. League Assoc. Rheumatol. 2016;57(3):312-323. doi:10.1093/ILAR/ILW038
23. Darjanki CM, Prahasanti C, Fitria AE, Kusumawardani B, Wijaksana IKE, Aljunaid M. RUNX2 and ALP Expression in Osteoblast Cells Exposed by PMMA-HAp Combination: An In Vitro Study. J Oral Biol Craniofac Res. 2023; 13(2):277-282. doi:10.1016/j.jobcr.2023.02.007
24. Bahraminasab M, Arab S, Safari M, Talebi A, Kavakebian F, Doostmohammadi N. In Vivo Performance of Al₂O₃-Ti Bone Implants in the Rat Femur. J Orthop Surg Res. 2021; 16(1):79. doi:10.1186/S13018-021-02226-7.
25. He Z, Sun S and Deng C. Effect of Hydroxyapatite Coating Surface Morphology on Adsorption Behavior of Differently Charged Proteins. J Bionic Eng. 2020; 17(2):345-356. doi:10.1007/S42235-020-0028-1
26. Sa Y, Yu N, Wolke JGC, Chanchareonsook N, Goh BT, Wang Y, Yang F, Jansen JA. Bone Response to Porous Poly (methyl methacrylate) Cement Loaded with Hydroxyapatite Particles in a Rabbit Mandibular Model. Tissue Eng Part C Methods. 2017; 23(5):262-273. doi:10.1089/TEN.TEC.2016.0521
27. Makishi S, Watanabe T, Saito K, Ohshima H. Effect of Hydroxyapatite/β-Tricalcium Phosphate on Osseointegration after Implantation into Mouse Maxilla. Int J Mol Sci. 2023; 24(4):3124. doi:10.3390/IJMS24043124
28. He Y, Li Z, Ding X, Xu B, Wang J, Li Y, Chen F, Meng F, Song W, Zhang Y. Nanoporous Titanium Implant Surface Promotes Osteogenesis by Suppressing Osteoclastogenesis via Integrin β1/FAKpY397/MAPK Pathway. Bioact Mater. 2022; 8:109-123. doi:10.1016/j.bioactmat.2021.06.033.
29. Schumacher S, Dedden D, Nunez RV, Matoba K, Takagi J, Biertümpfel C, Mizuno N. Structural Insights into Integrin α5β1 Opening by Fibronectin Ligand. Sci Adv. 2021; 7(19):eabe9716. doi:10.1126/sciadv.abe9716
30. Nuswantoro NF, Manjas M, Suharti N, Juliadmi D, Fajri H, Tjong DH, Affi J, Niinomi M, Gunawarman. Hydroxyapatite Coating on Titanium Alloy TNTZ for Increasing Osseointegration and Reducing Inflammatory Response In Vivo on Rattus norvegicus Wistar Rats. Ceram Int. 2021; 47(11):16094-16100. doi:10.1016/j.ceramint.2021.02.184.
31. Jin P, Liu L, Cheng L, Chen X, Xi S, Jiang T. Calcium-to-Phosphorus Releasing Ratio Affects Osteoinductivity and Osteoconductivity of Calcium Phosphate Bioceramics in Bone Tissue Engineering. Biomed Eng Online. 2023; 22(1):1-16. doi:10.1186/s12938-023-01067-1.
32. Bailey S, Karsenty G, Gundberg C, Vashishth D. Osteocalcin and Osteopontin Influence Bone Morphology and Mechanical Properties. Ann N Y Acad Sci. 2017; 1409(1):79-84. doi:10.1111/NYAS.13470.
33. Khotib J, Gani MA, Budiatin AS, Lestari MLAD, Rahadiansyah E, Ardianto C. Signaling Pathway and Transcriptional Regulation in Osteoblasts during Bone Healing: Direct Involvement of Hydroxyapatite as a Biomaterial. Pharmaceuticals. 2021; 14(7):615. doi:10.3390/PH14070615
34. Schincaglia G, Kim Y, Piva R, Sobue T, Torreggiani E, Kalajzic I. Osteogenesis During Early Healing Around Titanium and Roxolid Implants: Evaluation of Bone Markers by Immunohistochemistry and RT-PCR Analysis in Miniature Pigs: A Pilot Study. Int J Oral Maxillofac Implants. 2017; 32(1):42-51. doi:10.11607/JOMI.4859
35. Bargowo L, Kusumawardhani B, Perdana S, Wijaksana IKE, Saskianti T, Ridwan RD, Setijanto D, Prahasanti C, Saquib Abullais S. Expression of Osteopontin and Osteocalcin in Osteoblast Cells Exposed to a Combination of Polymethylmethacrylate (PMMA) and Hydroxyapatite (HAp): A Prospective Observational Study. Medicine (Baltimore). 2024; 103(42):e40088. doi:10.1097/MD.0000000000040088.
36. Choi MH, Noh WC, Park JW, Lee JM, Suh JY. Gene Expression Pattern During Osteogenic Differentiation of Human Periodontal Ligament Cells In Vitro. J Periodontal Implant Sci. 2011; 41(4):167. doi:10.5051/JPIS.2011.41.4.167
37. Makishi S, Yamazaki T, Ohshima H. Osteopontin on the Dental Implant Surface Promotes Direct Osteogenesis in Osseointegration. Int J Mol Sci. 2022; 23(3):1039. doi:10.3390/IJMS23031039/S1
38. Bano N, Salwah Jikan S, Basri H, Adzila Abu Bakar SS, Hussain Nuhu A. Natural Hydroxyapatite Extracted from Bovine Bone. J Sci Technol. 2017; 9(2):22-28. https://publisher.uthm.edu.my/ojs/index.php/JST/article/view/1990
39. Rianti D, Kristanto W, Damayanti H, Putri TS, Dinaryanti A, Syahrom A, Yuliati A. The Characteristics and Potency of Limestone-based Carbonate Hydroxyapatite to Viability and Proliferation of Human Umbilical Cord Mesenchymal Stem Cell. Res J Pharm Technol. 2022; 15(5):2285-2292. doi:10.52711/0974-360X.2022.00380
40. Ayu Pridanti K, Cahyaraeni F, Harijanto E, Rianti D, Kristanto W, Damayanti H, Setiana Putri T, Dinaryanti A, Karsari D, Yuliati A. Characteristics and Cytotoxicity of Hydroxyapatite from Padalarang–Cirebon Limestone as Bone Grafting Candidate. Biochem Cell Arch. 2020; 20(2):4727-4731.
41. Zhang L, Lu T, He F, Zhang W, Yuan X, Wang X, Ye J. Physicochemical and Cytological Properties of Poorly Crystalline Calcium-Deficient Hydroxyapatite with Different Ca/P Ratios. Ceram Int. 2022; 48(17):24765-24776. doi:10.1016/j.ceramint.2022.05.126.
42. Mohd Pu’ad NAS, Koshy P, Abdullah HZ, Idris MI, Lee TC. Syntheses of Hydroxyapatite from Natural Sources. Heliyon. 2019; 5(5):e01588. doi:10.1016/j.heliyon.2019.e01588.