The Effect of Ethanol Extract from Salacca zalacca (Gaertn.) Voss Peel on Antioxidant and Uric Acid Levels in Hyperuricemia Rats
Main Article Content
Abstract
Hyperuricemia is a metabolic condition defined by excessive uric acid levels in the bloodstream. This condition may cause oxidative stress and reactive oxygen species (ROS) generation, overwhelming cellular antioxidant defense systems. Ethanol extract from snake fruit (Salacca zalacca peel (SZP)) contains bioactive compounds with potential antihyperuricemic properties, making it a promising alternative to conventional treatments like allopurinol. The mechanism of action is associated with the level of uric acid, superoxide dismutase (SOD), and malondialdehyde (MDA). Therefore, this research aimed to evaluate the impact of SZP on the level of SOD, MDA, and uric acid in male Wistar rats induced by chicken liver (CL) juice. A total of 30 rats were assigned to five groups, namely group I (control); II (hyperuricemia without any intervention), III (hyperuricemia treated with 1.8 mg/200 g BW allopurinol), IV, and V (hyperuricemia that were administered SZP at doses of 210 mg/kg BW and 420 mg/kg BW, respectively). The results showed significant reductions in uric acid levels (5.78 ± 0.10 mg/dL) and MDA (3.34 ± 0.28 nmol/mL) with the higher doses of SZP treatment (420 mg/kg BW). However, SOD levels increased (73.77 ± 2.00%) compared to the hyperuricemia control. The average SOD and MDA levels exhibited notable variations across all groups (p < 0.05). These findings suggested that ethanol extract from SZP effectively modulates oxidative stress and uric acid metabolism by influencing the serum levels of SOD, MDA, and uric acid and could serve as an alternative treatment for hyperuricemia.
Downloads
Article Details

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
References
1. Yu W, Cheng JD. Uric Acid and Cardiovascular Disease: An Update from Molecular Mechanism to Clinical Perspective. Front Pharmacol. 2020;11:582680.
2. Amiruddin M, Nuddin A, Hengky HK. Consumption Patterns as a Risk Factor for The Incidence of Gout in Coastal Communities in Parepare. J Ilm Manusia Kesehat. 2019;2(2):240-249.
3. Xia N, Li B, Liu H, Fan J, Shen W, He X. Anti-hyperuricemic effect of Plantago depressa Willd extract in rats. Trop J. Pharm Res. 2017;16(6):1365-1368.
4. Aihemaitijiang S, Zhang Y, Zhang L, Yang J, Ye C, Halimulati M, Zhang W, Zhang Z. The association between purine-rich food intake and hyperuricemia: A cross-sectional study in chinese adult residents. Nutrients. 2020;12(12):1-11.
5. Liu N, Xu H, Sun Q, Yu X, Chen W, Wei H, Jiang J, Xu Y, Lu W. The role of oxidative stress in hyperuricemia and xanthine oxidoreductase (XOR) inhibitors. Oxid Med Cell Longev. 2021;2021(1):1470380.
6. Gil-Del Valle L, Gravier-Hernández R, Delgado-Guerra MM, Sanchez-Marquez JA, Acosta-Suárez MA, Rossel-Guerra T, Suárez-Iznaga R, Martínez-Casanueva R, Zamora-Rodriguez Z, Fernández-García LA, Bermudez-Alfonso Y, Hernández-Gonzalez-Abreu MC, Garrido G. Oxidative stress in diverse clinical conditions of SARS-CoV-2 Cuban hospitalized patients. J Pharm Pharmacogn Res. 2023;11(1):63-75.
7. Wulandari A, Dirgahayu P, Wiboworini B. Beetroot Powder (Beta vulgaris L.) Decrease Oxidative Stress by Reducing of Malondialdehyde (MDA) Levels in Hyperuricemia. J Int Conf Proc. 2021;4(1):290-299.
8. Girsang E. Salak Peel: Benefits for Body Health. (1st ed.). Medan: Universitas Prima Indonesia; 2020.
9. Rohaeti E, Fauzi MR, Batubara I. Inhibition of α-Glucosidase, Total Phenolic Content and Flavonoid Content on Skin Fruit and Flesh Extracts of Some Varieties of Snake Fruits. IOP Conf Ser Earth Environ Sci. Vol 58. 2017;58:012066.
10. Adinortney MB, Ansah C, Aboagye B, Sarfo JK, Martey O, Nyarko AK. Flavonoid-Rich Extract of Dissotis rotundifolia Whole Plant Protects against Ethanol-Induced Gastric Mucosal Damage. Biochem Res Int. 2020;2020(1)7656127.
11. Susilawati E, Idar I, Aritonang MPU. Effect of ethanol extract of kerehau leaves (Callicarpa longifolia Lamk.) On malondialdehyde levels of Animals induced by alloxan. Media Informasi. 2019;15(1):81-88.
12. Xie J, Wang W, Dong C, Huang L, Wang H, Li C, Nie S, Xie M. Protective effect of flavonoids from Cyclocarya paliurus leaves against carbon tetrachloride-induced acute liver injury in mice. Food Chem Toxicol. 2018;119:392-399.
13. Muharni M, Ferlinahayati F, Yohandini H. Antioxidant, antibacterial, total phenolic and flavonoid contents of sungkai leaves (Paronema canescens). Trop J Nat Prod Res. 2021;5(3):528-533.
14. Wahyuningsih S, Noviana RN, Sholihah PSD, Vikasari SN. Antihyperuricemia Effect of Piper crocatum Ruiz & Pav Leave Ethanol Extract in Male Wistar Rats. IOP Conf Ser Earth Environ Sci. 2022;1104(1):012023.
15. Nurhasnawati Henny, Sukarmi, Handayani Fitri. Comparison of Maceration and Soxhlet Extraction Methods on the Antioxidant Activity of Ethanol Extract from Malay Apple (Syzygium malaccense L.) Leaves. J Ilm Manuntung. 2017;3(1):91-95.
16. Donovan J, Brown P. Blood Collection. Curr Protoc Neurosci. 2005;33(1):A.4G.1-A.4G.9.
17. Barham D, Trinder P. An improved colour reagent for the determination of blood glucose by the oxidase system. Analyst. 1972;97(1151):142-145.
18. Fossati P, Prencipe L, Berti G. Use of 3,5-dichloro-2-hydroxybenzenesulfonic acid/4-aminophenazone chromogenic system in direct enzymic assay of uric acid in serum and urine. Clin Chem. 1980;26 2:227-231.
19. De Leon JAD, Borges CR. Evaluation of Oxidative Stress in Biological Samples Using the Thiobarbituric Acid Substances Assay. J Vis Exp. 2022;(159):10-3791.
20. Atmakusuma TD, Nasution IR, Sutandyo N. Oxidative Stress (Malondialdehyde) in Adults Beta-Thalassemia Major and Intermedia: Comparison Between Before and After Blood Transfussion and Its Correlation with Iron Overload. Int J Gen Med. 2021;1(1):8.
21. Khotimah H, Prima WE, Weningtyas A, Aninditha D, Alita SNP, Kalsum U, Nandar SK, Rahayu M, Handayani D. Neuroprotective Activity and Antioxidant Effect of Salacca zalacca Peel Ethanol Extract on High Glucose Induced Zebrafish (Danio rerio) Embryo. Trop J Nat Prod Res. 2022;5(12):2079-2084.
22. Xue Hui, Xu Meng, Gong Deming, Zhang Guowen. Mechanism of flavonoids inhibiting xanthine oxidase and alleviating hyperuricemia from structure-activity relationship and animal experiments: A review. Food Front. 2023;4(4):1643-1665.
23. Juwita R, Saleh C, Sitorus S. Evaluation of Antihyperuricemic Activity of Green Leaves from Pucuk Merah (Syzygium myrtifolium Walp.) in Male Mice (Mus musculus). J Atomik. 2017;2:162-168.
24. Qurie A, Preuss CV, Musa R. Allupurinol. [Online]. June 26, 2023 [cited 2025 Jan 24]. Available from: https://www.ncbi.nlm.nih.gov/books/NBK499942.
25. Zheng M, Liu Y, Zhang G, Yang Z, Xu W, Chen Q. The Applications and Mechanisms of Superoxide Dismutase in Medicine, Food, and Cosmetics. Antioxidants. 2023;12(9):1675.
26. Khalaf HM, Ibrahim MA, Amin EF, Ibrahim SA, Abdel-Wahab S, Fouad YM. Allopurinol potentiates the hepatoprotective effect of metformin and vitamin E in fructose-induced fatty liver in rats. Clin Exp Hepatol. 2019;5(1):65-74.
27. Xu D, Hu MJ, Wang YQ, Cui YL. Antioxidant activities of quercetin and its complexes for medicinal application. Molecules. 2019;24(6):1123.
28. Murray RK, Blender DA, Botham KM, Kennelly PJ, Rodwell VW, Anthony Weil P. Harper’s Biochemistry. (30th ed.). Jakarta: Buku Kedokteran EGC; 2017.
29. Dasgupta A, Klein K. Methods for Measuring Oxidative Stress in the Laboratory. Antioxidants in Food, Vitamins and Supplements. 2014;10:19-40.
30. Sumarya I, Suanda I. Uric Acid Induces Inflammatory Response, VSMC Proliferation, and Endothelial Cell Dysfunction. Widya Biol. 2021;12(1):48-57.
31. Lee Y, Hwang J, Desai SH, Li Xiaobai, Jenkins C, Kopp JB, Winkler CA, Cho SK. Efficacy of Xanthine Oxidase Inhibitors in Lowering Serum Uric Acid in Chronic Kidney Disease: A Systematic Review and Meta-Analysis. J Clin Med. 2022;11(9):2468.
32. Atifah Y, Diana OP. Effects of Sidempuan Salacca (Salacca sumatrana) Vinegar on Hyperuricemia: Histopathological Assessment. In: BIO Web of Conferences. Vol 91. EDP Sciences; 2024:01025.
33. Widiartini C, Pribadi W, Sulistyo H. Comparison of the Antioxidant Stress Potential of Ethanol Extract of Salak (Salacca zalacca) Peel and Allopurinol in Hyperuricemic White Rats (Rattus norvegicus). Prosiding Seminar Nasional dan Call for Papers. 2018;8(1):41-52.
34. Sumarya I M. Hyperurichemia as A Risk Factor of Cardiovascular Disease Through Oxidative Stress Mechanism. Widya Biol. 2019;10(2):87–98.