Advancing Food Sustainability in Nigeria: Biotechnological Strategies amidst Climate Change Challenges

Main Article Content

Olawole O. Obembe
Tobi T. Obadire
Princess P-M.P Tawari

Abstract

The effects of climate change are not just a looming threat but a present reality already being felt worldwide. One of the most visible and alarming impacts is the disruption of our food systems, caused by rising temperatures, changing precipitation patterns, and more frequent extreme weather events. These disruptions are leading to lower crop yields, food shortages, and higher prices, raising the spectre of a global food crisis that threatens the security of all nations. This study explores biotechnology's role in mitigating climate change and advancing sustainable agriculture in Nigeria. This work highlights how these approaches can significantly increase agricultural production, enhance food security, and reduce greenhouse gas emissions by leveraging innovative biotechnological techniques such as genetic engineering, biogas, biochar, bioremediation, and precision agriculture. For instance, genetic engineering improves crop resilience to environmental stresses, biochar enhances soil fertility while sequestering carbon, and biogas provides sustainable energy solutions. The findings emphasize the transformative potential of biotechnology despite challenges such as safety concerns and limited skilled personnel in Nigeria. By adopting these innovative techniques, Nigeria can enhance agricultural productivity, ensure food security, and actively contribute to global climate change mitigation efforts.

Downloads

Download data is not yet available.

Article Details

How to Cite
Obembe, O. O., Obadire, T. T., & Tawari, P. P.-M. (2025). Advancing Food Sustainability in Nigeria: Biotechnological Strategies amidst Climate Change Challenges. Tropical Journal of Natural Product Research (TJNPR), 9(4), 1654 – 1664. https://doi.org/10.26538/tjnpr/v9i4.39
Section
Articles
Author Biographies

Olawole O. Obembe, Department of Biological Sciences, Covenant University, Ota, Ogun State, Nigeria

Plant Science Research Cluster, Covenant University, Ota, Ogun State, Nigeria 


UNESCO Chair on Plant Biotechnology, Covenant University, Ota, Ogun State Nigeria

Tobi T. Obadire, Department of Biological Sciences, Covenant University, Ota, Ogun State, Nigeria

Plant Science Research Cluster, Covenant University, Ota, Ogun State, Nigeria 

References

1. Hallegatte S, Bangalore M, Bonzanigo L, Fay M, Kane T, Narloch U, Rozenberg J, Treguer D, Vogt-Schilb A. SHOCK WAVES Climate Change and Development Series Managing the impacts of climate change on poverty. [online]. 2016.Available: from https://documents1.worldbank.org/curated/en/2600114 86755946625/pdf/Shock-waves-

2. Aworunse OS, Olorunsola AH, Ahuekwe EF, Obembe OO. Resources, Environment, and Sustainability Towards a sustainable bioeconomy in a post-oil era Nigeria. Res. Environ. Sustain. 2023; 11, 100094. doi: https://doi.org/10.1016/m j.resenv.2022.100094.

3. Food and Agricultural Organization of the United Nations. The Future of Food and Agriculture: Alternative Pathways to 2050. 2018 [online] [Cited 2000 June 23]. Available: http://www.fao.org/3/I8429EN/i8429en.pdf.

4. Mbow C, Rosenzweig C, Barioni LG, Benton TG, Herrero M, Krishnapillai M, Liwenga E, Pradhan P, Rivera-Ferre MG, Sapkota T, Tubiello FN, Xu Y. Food Security. In: Shukla PR, Skea J, Calvo BE, Masson-Delmotte V, Pörtner HO, Roberts DC, Zhai P, Slade R, Connors S, van Diemen R, Ferrat M, Haughey E, Luz S, Neogi S, Pathak M, Petzold J, Portugal PJ, Vyas P, Huntley E, Kissick K, Belkacemi M, Malley J (eds.) Climate Change and Land: an IPCC Special Report on climate change, desertification, land degradation, sustainable land management, food security, and greenhouse gas fluxes in terrestrial ecosystems. 2019; p 7.

5. World Bank. The World Bank in Nigeria. [online]. 2022 [Cited 2023 April 5]. Available: https://www.worldbank.org/e n/country/nigeria/overview.

6. Skendžić S, Zovko M, Živković IP, Lešić V, Lemić D. The Impact of Climate Change on Agricultural Insect Pests. Insects. 2021; 12(5), 440. doi: https://doi.org/10.3390/insects12050440.

7. IPCC. Climate change 2014 mitigation of climate change working group III contribution to the fifth assessment report of the intergovernmental panel on climate change. [online] Cambridge University Press. Available at: https://www.ipcc.ch/site/assets/uploads/2018/02/ipcc_wg3_ar5_full.pdf.

8. Yadav SS, Hegde VS, Habibi AB, Dia M, Verma S. Climate Change, Agriculture, and Food Security. In: Yadav SS, Redden RJ, Hatfield JL, Ebert AW, Hunter D (eds.) Food Security and Climate Change. Chichester, United Kingdom. 2019. P. 1–24

9. Okon EM, Falana BM, Solaja SO, Yakubu SO, Alabi OO, Okikiola BT, Awe TE, Adesina BT, Tokula BE, Kipchumba AK, Edeme AB. Systematic review of climate change impact research in Nigeria: Implication for sustainable development. Heliyon. 2021;7(9): e07941. doi: https://doi.org/10.1016/ j.heliyon.2021.e07941.

10. Adeagbo OA, Ojo TO, Adetoro AA. Understanding the determinants of climate change adaptation strategies among smallholder maize farmers in South-west, Nigeria. Heliyon. 2021;7(2): e06231. doi: https://doi.org/10.1016/ j.heliyon.2021.e06231.

11. Agric Focus Africa. Climate Change: The Agriculture Sector records a 3% drop this year. [online]. 2023 [Cited 2023 May 4]. Available: https://agrifocusafrica.com/ 2023/03/22/climate-change-agriculture-sector-records-34-drop-this-year/.

12. Smith P. Delivering food security without increasing pressure on land. Glob Food Secur. 2013; 2, 18–23. doi: https://doi.org/10.1016/j.gfs.2012.11.008.

13. Das S, Ray MK, Panday D, Mishra PK. Role of biotechnology in creating sustainable agriculture. PLOS Sustain. Transform. 2023; 2(7): e0000069. doi: https://doi.org/10.1371/journal.pstr.0000069

14. Adekiya AO, Agbede TM, Olayanju A, Ejue WS, Adekanye TA, Adenusi TT, Ayeni JF. Effect of biochar on soil properties, soil loss, and cocoyam yield on a tropical sandy loam Alfisol. Sci World J. 2020;2: 1–9. doi: https://doi.org/10.1155/2020/9391630.

15. Oni BA, Oziegbe O, Obembe OO. Significance of biochar application to the environment and economy. Annals Agric Sci. 2019;64(2): 222-236. doi: https://doi.org/10.1016/j.aoas.2019.12.006.

16. Itam DH. The use of biochar for bioremediation of crude oil/hydrocarbon polluted soils (Vol 1)–Bioremediation of polluted soils, studies, results and possibilities. Hydrom Poll Soils. 2020;8: 1. doi: http://dx.doi.org/10.2139/ssrn.3707749.

17. Obonukut, M, Alabi, S, Jock, A. Biochar from cassava waste: a paradigm shift from waste to wealth. In Biochar-Productive Technologies, Properties and Applications. 2022. IntechOpen.

18. Das S, Mohanty S, Sahu G, Rana M, Pilli K. Biochar: A sustainable approach for improving soil health and environment. In: Vieira A, Rodrigues SC, editors. Soil erosion - current challenges and future perspectives in a changing world. IntechOpen; 2021. p. 121–132. doi: https://dx.doi.org/10.5772/intechopen.97136.

19. Bo X, Zhang Z, Wang J, Guo S, Li Z, Lin H, Huang Y, Han Z, Kuzyakov Y, Zou J. Benefits and limitations of biochar for climate-smart agriculture: A review and case study from China. Biochar. 2023;5(1). doi: https://doi.org/10.1007/s42773-023-00279-x.

20. Bertrand S, Roberts AS, Walker E. Biochar and compost for climate change adaptation and mitigation. Environmental and Energy Institute (EESI). [online]. 2022 [cited 2024 March 06]. Available: https://www.eesi.org/articles/ view/biochar-and-compost-for-climate-change-adaptation-and-mitigation.

21. Yoro KO, Daramola MO. CO2 emission sources, greenhouse gases, and the global warming effect. Advances Carbon Capture. 2023: 3–28. doi: https://doi.org/10.1016/B978-0-12-819657-1.00001-3.

22. Marsh J. The top examples of bioremediation. Environment. [online] [cited 2023 March 5]. Available: https://environment.co/the-top-examples-of-bioremediation.

23. Yaashikaa PR, Kumar PS, Jeevanantham S, Saravanan R. A review on bioremediation approach for heavy metal detoxification and accumulation in plants. Environ Poll. 2022;301: 119035. doi: https://doi.org/10.1016/ j.envpol.2022.119035.

24. Sharma I. Bioremediation techniques for polluted environment: Concept, advantages, limitations, and prospects. In: Murillo-Tovar MA, Saldarriaga-Noreña H, Saeid A, editors. Trace metals in the environment - new approaches and recent advances. Rijeka, Croatia: IntechOpen; 2021.

25. Contaminated Site Clean-Up Information (CLU-IN). Bioremediation. [online]. 2023. Available: https://clu-in.org/techfocus/default.focus/sec/Bioremediation/cat/Overview/.

26. Obaideen K, Abdelkareem MA, Wilberforce T, Elsaid K, Sayed ET, Maghrabie HM, Olabi AG. Biogas role in the achievement of the sustainable development goals: Evaluation, challenges, and guidelines. J. Taiwan Inst. Chem. Eng. 2022;131: 104207. doi: https://doi.org/10.1016/j.jtice.2022.104207.

27. Asian and Pacific Centre for Agricultural Engineering and Machinery (APCAEM). A feasibility study on the application of green technology for sustainable agriculture development: Assessing the policy impact in selected member. [online]. Available: www.unapcaem.org.

28. Van Midden C, Harris J, Shaw L, Sizmur T, Pawlett M. The impact of anaerobic digestate on soil life: A review. Appl. Soil Ecol. 2023;191: 105066. doi: https://doi.org/10.1016/j.apsoil.2023.105066.

29. Ogundele OM, Rapheal OM, Abiodun AM. Effects of municipal waste disposal methods on community health in Ibadan - Nigeria. Polytechnica. 2018;1: 61–72. doi: https://doi.org/10.1007/s41050-018-0008-y.

30. Kabeyi MJB, Olanrewaju OA. Biogas production and applications in the sustainable energy transition. J Energy. 2022;43. doi: https://doi.org/10.1155/2022/8750221.

31. Alhassan KA, Abdullahi BT, Shah MM. A review on biogas production as the alternative source of fuel. J Appl Adv Res. 2019;4(2): 61–65. doi: http://dx.doi.org/ 10.21839/jaar.2019.v4i2.266.

32. Ayodele TR, Alao MA, Ogunjuyigbe ASO, Munda JL. Electricity generation is prospective of hydrogen derived from biogas using food waste in southwestern Nigeria. Biomass Bioenergy. 2019;127(1): 105–291. doi: https://doi.org/10.1016/j.biombioe.2019.105291.

33. Chukwuma EC, Orakwe LC, Ugwuishiwu BO, Nwoke OA, Igbokwe E. GIS hotspot application and use of set-cover problem for centralized abattoir biogas plant treatment facilities in Anambra State of Nigeria. Agric Eng Inter CIGR J. 2019;20(4): 63–68.

34. Mulyono Y, Suranto S, Yamtinah S, Sarwanto S, Jamil A. Biogas: Strengthening green energy infrastructure for a more sustainable future. J Biotech and Nat Sci. 2024;4(1): 15–37. doi: https://doi.org/10.12928/jbns.v4i1.10266.

35. Jameel MK, Mustafa MA, Ahmed HS, Mohammed A, Jassim G, Ghazy H, Shakir MN, Lawas AM, Mohammed SK, Idan AH, Mahmoud ZH, Sayadi H, Kianfar E. Biogas: Production, properties, applications, economic and challenges: A review. Results Chem. 2024;7: 101549. doi: https://doi.org/10.1016/j.rechem.2024.101549.

36. International Society of Precision Agriculture (ISPA). Precision agriculture definition. [online]. [cited 2023 March 8]. Available: https://www.ispag.org/about/definition.

37. Shafi U, Uferah MR, García-Nieto J, Hassan SA, Zaidi SAR, Iqbal N. Precision agriculture techniques and practices: From considerations to applications. Sensors. 2019;19(17): 3796. doi: https://doi.org/10.3390/s19173796.

38. Getahun S, Kefale H, Gelaye Y. Application of precision agriculture technologies for sustainable crop production and environmental sustainability: A systematic review. The Sci World J. ;2024(1): 2126734. doi: https://doi.org/10.1155/2024/2126734.

39. Malhi GS, Kaur M, Kaushik P. Impact of climate change on agriculture and its mitigation strategies: A review. Sustainability. 2021;13(3): 1318. doi: https://doi.org/10.3390/su13031318.

40. Oluwole OO, Aworunse OS, Aina AI, Oyesola OL, Popoola JO, Oyatomi OA, Obembe OO. A review of biotechnological approaches towards crop improvement in African yam bean (Sphenostylis stenocarpa Hochst. Ex A. Rich.). Heliyon. 2021;7(11): e08481. doi: https://doi.org/10.1016/ j.heliyon.2021.e08481.

41. Abdul Aziz M, Brini F, Rouached H, Masmoudi K. Genetically engineered crops for sustainably enhanced food production systems. Front Plant Sci. 2022;8(13): 1027828. doi: 10.3389/fpls.2022.1027828.

42. Akinbo O, Obukosia S, Ouedraogo J, Sinebo W, Savadogo M, Timpo S, Mbabazi R, Maredia K, Makinde D, Ambali A. Commercial Release of Genetically Modified Crops in Africa: Interface Between Biosafety Regulatory Systems and Varietal Release Systems. Front Plant Sci. 2021;12. doi: https://doi.org/10.3389/fpls.2021.605937.

43. Juroszek P, Racca P, Link S, Farhumand J, Kleinhenz B. Overview of the review articles published during the past 30 years relating to the potential climate change effects on plant pathogens and crop disease risks. Plant Pathol. 2020;69(2): 179–193. doi: https://doi.org/10.1111/ppa.13119.

44. Wijerathna-Yapa A, Hiti-Bandaralage J. Tissue culture - A sustainable approach to explore plant stresses. Life (Basel, Switzerland). 2023;13(3): 780. doi: https://doi.org/10.3390/life13030780.

45. Dong OX, Ronald PC. Genetic engineering for disease resistance in plants: Recent progress and future perspectives. Plant Physiol. 2019;180(1): 26–38. doi: https://doi.org/10.1104/pp.18.01224.

46. Abdallah NA, Prakash CS, McHughen AG. Genome editing for crop improvement: Challenges and opportunities. Gene Mod Crops Food. 2015;6(4): 183-205. doi: https://doi.org/10.1080/21645698.2015.1129937.

47. Haroon M, Wang X, Afzal R, Zafar MM, Idrees F, Batool M, Khan AS, Imran M. Novel plant breeding techniques shake hands with cereals to increase production. Plants. 2022;11: 1052. doi: https://doi.org/10.3390/plants11081052.

48. Xu J, Hua K, Lang Z. Genome editing for horticultural crop improvement. Hort Res. 2019;6(113). doi: https://doi.org/10.1038/s41438-019-0196-5.

49. Dowd-Uribe B, Rock JS, Spreadbury T, Chiril P, Uminsky D. Bridging the gap? Public–private partnerships and genetically modified crop development for smallholder farmers in Africa. Plants, People, Planet. 2023:1–15. doi: https://doi.org/10.1002/ppp3.10453.

50. Bailey-Serres J, Parker JE, Ainsworth EA, Oldroyd GED, Schroeder JI. Genetic strategies for improving crop yields. Nature. 2019;575(7781): 109–118. doi: 10.1038/s41586-019-1679-0.

51. Rafeeq, H, Afsheen, N, Rafique, S, Arshad, A, Intisar, M, Hussain, A, Bilal, M, Iqbal, H. M. Genetically engineered microorganisms for environmental remediation. Chemosphere. 2022: 310, 136751. https://doi.org/10.1016/ j.chemosphere.2022.136751

52. Shrestha S, Subedi S, Shrestha J. Marker-assisted selection: A smart biotechnological strategy for modern plant breeding. Peruvian J Agro. 2020;4(3): 104–120. doi: https://doi.org/10.21704/pja.v4i3.1490.

53. Sameena ML, Hussain K, Ajaz M, Mudasir M, Syed MH, Majid R, Syeda F. Plant propagation through tissue culture – A biotechnological intervention. Inter J Current Micro and Applied Sci. 2020;9(07): 2176-2190. doi: https://doi.org/10.20546/ijcmas.2020.907.254.

54. Twaij BM, Jazar ZH, Hasan MN. Trends in the use of tissue culture, applications and future aspects. Inter J Plant Biotech. 2020;11(1): 8385. doi: https://doi.org/10.4081/ pb.2020.8385.

55. Ochieng JW, Ananga A. Biotechnology in agricultural policies of Sub-Saharan Africa. In: Biernat K, ed. Biotechnology in Agricultural Policies of Sub-Saharan Africa. Elements of Bioeconomy. 2019;27: 157–171. doi: https://dx.doi.org/10.5772/intechopen.85567. IntechOpen.

56. Hasnain, A, Naqvi, SAH, Ayesha, SI, Khalid, F, Ellahi, M, Iqbal, S, Hassan, MZ, Abbas, A, Adamski, R, Markowska, D, Baazeem, A. Plants in vitro propagation with its applications in food, pharmaceuticals and cosmetic industries; current scenario and future approaches. Front plant sci. 2022; 13, p.1009395.

57. Srivastav P, Vutukuru M, Ravindran G, Awad MM. Biofortification—Present scenario, possibilities, and challenges: A scientometric approach. Sustainability. 2022;14(18): 11632. doi: https://doi.org/10.3390/ su141811632.

58. Olasanmi, B, Kyallo, M, Yao, N. Marker-assisted selection complements phenotypic screening at seedling stage to identify cassava mosaic disease-resistant genotypes in African cassava populations. Sci Rep. 2021; 11, 2850. https://doi.org/10.1038/s41598-021-82360-8

59. Oladipo OH, Ibrahim RR, Adeboye SE, Kuiper H. Readiness of the Nigerian public for introducing genetically modified crops into the food market. African J Biotechn. 2020;19(7): 426–438. doi: https://doi.org/10.5897/AJB2020.17136.

60. African Agricultural Technology Foundation (AATF). PRESS RELEASE: Nigeria commercializes GM maize varieties. [cited 2025 January 25]. Available: https://www.aatf-africa.org/press-release-nigeria-commercializes-gm-maize-varieties/

61. African Agricultural Technology Foundation (AATF). TELA maize project. [online]. [cited 2023 March 8]. Available: https://www.aatf-africa.org/tela-maize-project/.

62. Sharif SK, Kimani F. Laboratory biosafety and biosecurity policy guidelines. Ministry of Public Health and Sanitation and Ministry of Medical Services. 2019.

63. Siddiqui F, Salam RA, Lassi ZS, Das JK. The intertwined relationship between malnutrition and poverty. Front Public Health. 2020;8. doi: 10.3389/fpubh.2020.00453.

64. Nigeria: IPC Acute Malnutrition Snapshot May 2022 - April 2023. [online]. [cited July 1]. Available: https://www.ipcinfo.org/fileadmin/user_upload/ipcinfo/docs/IPC_Nigeria_Acute_Malnutrition_May22_April23_Snapshot.pdf.

65. UNICEF. Nutrition. [online]. [cited 2023 July 12]. Available: https://www.unicef.org/nigeria/nutrition.

66. Oluwole OO, Olomitutu OE, Paliwal R, Oyatomi OA, Abberton MT, Obembe OO. Preliminary assessment of the association between dart-seq SNP and some nutritional traits in African yam bean. Trop J Nat Prod Res. 2020;4(11): 877–879. doi: https://doi.org/10.26538/tjnpr/v1i4.5.

67. Finkelstein J, Fothergill A, Hackl L, Haas J, Mehta S. Iron biofortification interventions to improve iron status and functional outcomes. Proc Nutr Soc. 2019;78(2): 197–207. doi: 10.1017/S0029665118002847.

68. Food and Agricultural Organization of the United Nations. The State of Food Security and Nutrition in the World 2020. [online]. 2020 [accessed 15 November 2023]. Available: http://www.fao.org/3/ca9692en/online/ca9692en.html.

69. International Institute of Tropical Agriculture. About IITA. [online]. 2022 [accessed 8 March 2023]. Available: https://www.iita.org/research/projects-archive/.

70. Olayinka JY, Olatunji YA, Ololade LA, Oluwatosin OL, Ayanda IF. Farmers’ willingness to cultivate pro-vitamin-A cassava variety in Kwara State, Nigeria. J Agric Ext. 2020;24(3): 72–84. doi: 10.4314/jae.v24i3.7.

71. Egbe NE, Bukar AB, Adebayo AA. Assessment of public awareness, attitudes toward, and acceptance of genetically modified foods in the city of Kaduna, Kaduna State, Northern Nigeria. Niger J Biotechn. 2019;36(1): 103–112. doi: 10.4314/njb.v36i1.14.

72. Ogunode NJ, Jegede D, Adah S, Audu EI, Ajape TS. Administration of research programme in Nigerian public universities: Problems and way forward. Riwayat: Edu J Hist and Hum. 2020;3(2): 21–32.

73. Ohaeri NC, Olayinka OT, Ogunode NJ. Enhancing research institutes’ development through adequate funding in Nigeria. World of Sci: J Mod Res Method. 2023;2(2): 716.

74. Bujor D, Constantin ABE, Șişu JA. Ethical frontiers: Leadership perspectives in the contemporary food industry. In: Geopolitical perspectives and technological challenges for sustainable growth in the 21st century. 2023: 201–215p, Sciendo.

75. Kavhiza NJ, Zargar M, Prikhodko SI, Pakina EN, Murtazova KM-S, Nakhaev MR. Improving crop productivity and ensuring food security through the adoption of genetically modified crops in Sub-Saharan Africa. Agronomy. 2022;12(2): 439. doi: https://doi.org/10.3390/ agronomy12020439.

76. Tang Y, Qiu J. CO2-sequestering ability of lightweight concrete based on reactive magnesia cement and high-dosage biochar aggregate. J Clean Prod. 2024;451: 141922–141922. doi: https://doi.org/10.1016/j.jclepro.2024.141922.

77. Jean FM, Ghorbani M, Zoubek T, Olšan P, Bumbálek R, Strob M, Bartoš P, Umurungi SN, Murindangabo YT, Heřmánek A, Tupý O, Havelka Z, Stehlík R, Černý P, Smutný L. Agricultural waste valorization: Exploring environmentally friendly approaches to bioenergy conversion. Sustainability. 2024;16(9): 3617–3617. doi: https://doi.org/10.3390/su16093617.

78. Ghadirnezhad Shiade SR, Fathi A, Minkina T, Wong MH, Rajput VD. Biochar application in agroecosystems: A review of potential benefits and limitations. Environ Dev Sustain. 2023;26: 19231–19255. doi: https://doi.org/10.1007/s10668-023-03470-z.

79. Sher F, Smječanin N, Hrnjić A, Karadža A, Omanović R, Šehović E, Sulejmanović J. Emerging technologies for biogas production: A critical review on recent progress, challenges and perspectives. Process Safety and Environ Protect. 2024;188: 834–859. doi: https://doi.org/10.1016/j.psep.2024.05.138.

80. Mehedi IM, Muhammad Shehzad Hanif, Bilal M, Vellingiri MT, Thangam Palaniswamy. Remote sensing and decision support system applications in precision agriculture: Challenges and possibilities. IEEE Access. 2024;12: 44786–44798. doi: https://doi.org/10.1109/access.2024.3380830.

81. Garg S, Rumjit NP, Roy S. Smart agriculture and nanotechnology: Technology, challenges, and new perspective. Adv Agrochem. 2023;3(2): 115–125. doi: https://doi.org/10.1016/j.aac.2023.11.001.

82. Akinsanola BA, Olawoyin DC, Adebisi OO, Osemwegie OO. Bioremediation of soils contaminated with both petroleum hydrocarbons and heavy metals. Inst Elec and Electron Eng. 2024: 1–9. doi: https://doi.org/10.1109/seb4sdg60871.2024.10630167.

83. Haque SE, Gazi-Khan L. Limitations and challenges of bioremediation approach: Alternative solutions. Elsevier eBooks. 2024: 147–157. doi: https://doi.org/10.1016/b978-0-443-27376-6.00023-2.

84. Olaniyan JO, Isimikalu TO, Raji BA, Affinnih KO, Alasinrin SY, Ajala ON. An investigation of the effect of biochar application rates on CO2 emissions in soils under upland rice production in southern Guinea Savannah of Nigeria. Heliyon. 2020;6(11): e05578. doi: https://doi.org/10.1016/j.heliyon.2020.e05578.

85. Zubairu AM, Michéli E, Ocansey CM, Boros N, Rétháti G, Lehoczky É, Gulyás M. Biochar Improves Soil Fertility and Crop Performance: A Case Study of Nigeria. Soil Systems. 2023;7(4):105. https://doi.org/10.3390/soilsystems7040105

86. Amoah P, Oumarou Mahamane AR, Byiringiro MH, Mahula NJ, Manneh N, Oluwasegun YR, Assfaw AT, Mukiti HM, Garba AD, Chiemeke FK, Bernard Ojuederie O, Olasanmi B. Genome editing in Sub-Saharan Africa: a game-changing strategy for climate change mitigation and sustainable agriculture. GM Crops Food. 2024;15(1):279-302. doi: 10.1080/21645698.2024.

87. Bello A. Genomics and Precision Agriculture: Applications of Genetic Technologies in Farming. J Biochem Biotech 2024; 7(3):208

88. Collard, BC, Mackill, DJ. Marker-assisted selection: An approach for precision plant breeding in the twenty-first century. Phil Trans Royal Society B: Biol Sci, 2007; 363(1491), 557-572. https://doi.org/10.1098/ rstb.2007.2170

89. HarvestPlus. Available: https://www.harvestplus.org/c ountries/nigeria/. 2024 [accessed 15 January 2024]

90. Finkelstein JL, Mehta S, Udipi SA, Ghugre PS, Luna SV, Wenger MJ, Murray-Kolb LE, Przybyszewski EM, Haas JD. A Randomized Trial of Iron-Biofortified Pearl Millet in School Children in India. J Nutr. 2015;145(7):1576-81. doi: 10.3945/jn.114.208009.

91. NBMA. NATIONAL BIOSAFETY MANAGEMENT AGENCY (AMENDMENT) ACT, 2019. Available: https://faolex.fao.org/docs/pdf/nig217463.pdf. 2019 [accessed 20 January 2025]

92. Mustafa AS, Ssenku JE, Nyachwo EB, Ruto GC, Bunani N, Musimami G, Maseruka R, Anywar G. Assessing knowledge and willingness to use genetically modified crops in Uganda. Agriculture & Food Security. 2023;12(1):28. https://doi.org/10.1186/s40066-023-00434-4

93. Noack, F, Engist, D, Gantois, J, Gaur, V, Hyjazie, BF, Larsen, A, Missirian, A, Qaim, M, Sargent, RD., Souza-Rodrigues, E, Kremen, C. Environmental impacts of genetically modified crops. Science, 2024. https://doi.org/ado9340