Tridax Procumbens Leaf Ameliorates Crude Oil-Contaminated Water-Induced Erectile Dysfunction by Mopping Cavernosa Free Radicals and Upregulating Phosphodiesterase 5 and Testosterone
Main Article Content
Abstract
Studies have examined the ameliorative effect of Tridax procumbens leaf (TPL) on erectile dysfunction of several etiologies. However, the role of TPL on crude oil-contaminated water source-induced (CW) erectile dysfunction and the role of phosphodiesterase 5 have not been investigated. This study explores the effect of TPL treatment on CW-induced cavernosa tissue dysfunctions. Twenty adult male Wistar rats were segregated into four groups and treated with distilled water, CW (2.5 ml), CW (2.5 ml) + TPL (100 mg/kg), and TPL only (100 mg/kg), respectively, by oral gavage for five weeks. Cavernosa phosphodiesterase 5, contractile functions, oxidative biomarkers, and serum testosterone were estimated. Body weight, testosterone, cavernosa tissue catalase, superoxide dismutase, and phosphodiesterase 5 were significantly reduced in the CW-only group. The malondialdehyde concentration increased significantly in the CW-only group. The relaxation response (%) of the cavernosa tissue to cumulative doses of acetylcholine after precontraction in phenylephrine was increased considerably in the TPL-only treated group. The group treated with CW-only showed a significant increase (62.2%) in relaxation (%) with incubation in sodium nitroprusside when compared to the control (48.9%), CW+TPL (40.4%), and TPL (46.6%) groups. Acetylcholine-mediated relaxation was significantly increased after incubation with nifedipine in the CW+ TPL (40.6%) group compared to the CW-only (18.3%) treated group. The contraction to the cumulative dose of phenylephrine was significantly inhibited in the TPL-treated groups. Potassium chloride-induced contraction was significantly inhibited in the TPL group. TPL reduces crude oil-contaminated water-induced erectile dysfunctions by mopping cavernosa free radicals, elevating cavernosa phosphodiesterase 5, and serum testosterone.
Downloads
Article Details

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
References
1. Truskewycz A, Gundry TD, Khudur LS, Kolobaric A, Taha M, Aburto-Medina A, Ball AS, Shahsavari E. Petroleum Hydrocarbon Contamination in Terrestrial Ecosystems-Fate and Microbial Responses. Molecul. 2019;24(18),3400 https://doi.org/10.3390/molecules24183400
2. Adedara IA, Ebokiawe AP, Ehwerhemuephia T, Teberen R, Farombi EO. Nigerian Bonny light crude oil induces irreversible reproductive toxicity in adult male rats. Afri. J. Med. Medic. Sci. 2012; 41:65-74.
3. Adesipo AA, Freese D, Nwandinigwe AO. Prospects of in-situ remediation of crude oil contaminated lands in Nigeria. Sci. Afr. 2020; 8 e 00403, https://doi.org/10.1016/j.sciaf.2020.e00403.
4. Ordinioha B, Brisibe S. The human health implications of crude oil spills in the Niger Delta, Nigeria: An interpretation of published studies. Niger. Med. J. 2013;54(1):10-16. doi: 10.4103/0300-1652.108887.
5. Idung AU, Abasiubong F, Ukott IA, Udoh SB, Unadike BC. Prevalence and risk factors of erectile dysfunction in Niger Delta region, Nig. Afr. Health Sci. 2012;12(2):160-165. doi: 10.4314/ahs.v12i2.13.
6. Oyelade BO, Jemilohun AC, Aderibigbe SA. Prevalence of erectile dysfunction and possible risk factors among men of South-Western Nigeria: a population-based study. Pan Afr. Med. J. 2016; 24:124-130. Doi: 10.11604/pamj.2016.24.124.8660.
7. Salami SA, Salahdeen HM, Ugbebor EC, Murtala BA, Raji Y. Effects of aqueous leaf extract of Tridax procumbens on contractile activity of corpus cavernosum in N-nitro-L-arginine methyl ester-induced hypertensive male rats. J Integr. Med. 2018; 16:51–56
8. Salami SA, Salahdeen HM, Rahman OC, Murtala, BA, Raji, Y. Oral administration of Tridax procumbens aqueous leaf extract attenuates reproductive function impairments in L-NAME induced hypertensive male rats. Middle East Fertil. Soc. J. 2017; 22(1):219-225
9. Salami SA, Salahdeen HM, Balogun Z, Murtala BA, Raji Y. Mechanisms in Tridax procumbens leaf extract reversal of paroxetine-induced erectile dysfunction in corpus cavernosum of male Wistar rats. Biomed Res. Ther. 2021; 8:4405–4416.
10. Salami SA, Amasiatu CI, Allen MO, Salahdeen HM, Murtala BA. Tridax procumbens leaf antioxidants and hormonal activity ameliorate variable stress-induced erectile and reproductive impairments in Wistar rats. Biomed. Res. Ther. 2023a; 10(9):5912-5923.
11. Salami SA, Adeniran OM, Allen MO, Oduyemi OA, Salahdeen HM, Murtala BA. Tridax procumbens leaf ameliorates altered corpora cavernosa activity in diabetic Wistar rats via nitric oxide, K-ATP, and receptor-operated calcium channels. Ann. of Clin. Sci. 2023b;8(2):68-78
12. Mancina R, Filippi S, Marini M, Morelli A, Vignozzi L, Salonia A, Montorsi F, Mondaini N, Vannelli GB, Donati S, Lotti F, Forti G, Maggi M. Expression and functional activity of phosphodiesterase type 5 in human and rabbit vas deferens. Mol. Hum. Repro. 2005; 11(2):107–115, https://doi.org/10.1093/molehr/gah143
13. Champion HC, Bivalacqua TJ, Takimoto E, Kass DA, Burnett AL. Phosphodiesterase-5A dysregulation in penile erectile tissue is a mechanism of priapism. Proc Natl. Acad. Sci. U S A. 2005;102(5):1661-1666. doi: 10.1073/pnas.0407183102.
14. Salami SA, Oreagba FO, Salahdeen HM, Olatunji-Bello II, Murtala BA. 2023c Vitamin C supplementation modulates crude oil contaminated water-induced gravid uterine impaired contractile mechanism and foetal outcomes in Wistar rats. J Compl. Integr. Med. 2023c https://doi.org/10.1515/jcim-2023-0081
15. Buege JA, Aust SD. Microsomal lipid peroxidation. Meth. in Enzymol. 1978;52: 302–310. https://doi.org/10.1016/s0076-6879(78)52032-6.
16. Sun M, Zigman S. An improved spectrophotometric assay for superoxide dismutase based on epinephrine autoxidation. Anal Biochem. 1978;90(1):81–89. https://doi.org/10.1016/0003-2697(78)90010- 6.
17. Sinha AK. Colorimetric assay of catalase. Anal Biochem. 1972;47(2):389-394.
18. Ormseth OA, Ben-David M. Ingestion of crude oil: effects on digestion retention times and nutrient uptake in captive river otters. J. Comp. physiol. Biochem. Syst. Envir. physiol. 2000; 170(5-6), 419–428.
19. Fischer CL, Anibeze AO, Igiri EO, Eyong OE, Mesembe CE, Fischer E. Effects of bonny light crude oil on the morphology of litters of Wistar rats. Glo. J. med. sci. 2006; 5: 51- 53
20. Salami SA, Oyemakinde AJ, Allen MO, Salahdeen HM, Olatunji-Bello II, Murtala BA. Oral vitamin C intake ameliorates crude oil-polluted water-induced jejunal contractile dysfunctions in Wistar rats. J. Appl. Sci. Environ. Manage. 2023d; 27 (11) 2553-2560
21. Welsch, U. Textbook histology, 2nd edition, Urban & Fischer Verlag/Elsevier, 2006: 370-378
22. Nwanjo HU. Aqueous extract of Tridax procumbens leaves: Effect on lipid peroxidative stress and antioxidant status in chloroquine-induced hepatotoxicity in rats. J. Herbs, Spic Medic. Plant. 2008;14:154-165
23. Ikewuchi CC, Ikewuchi JC, Ifeanacho MO. Phytochemical Composition of Tridax procumbens Linn Leaves: Potential as a Functional Food. Food Nutri. Sci. 2015;6:992-1002.
24. Adeshina I, Abdel-Tawwabb M, Tijjania ZA, Tiamiyua LO, Jahanbakhshi A. Dietary Tridax procumbens leaves extract stimulated growth, antioxidants, immunity, and resistance of Nile tilapia, Oreochromis niloticus, to monogenean parasitic infection. Aquacult. 2020;doi.org/10.1016/j. aquaculture.2020.736047
25. Berlin Grace VM, Viswanathan S, Wilson DD, Kumar SJ, Sahana K, Maria Arbin EF, Nayaranan J. Significant action of Tridax procumbens L. leaf extract on reducing the TNF-α and COX-2 gene expressions in induced inflammation site in Swiss albino mice. Inflammopharmacol. 2019; doi.org/10.1007/ s10787-019-00634-0
26. Farombi EO, Adedara IA, Ebokaiwe AP, Teberen R, Ehwerhemuepha T. Nigerian Bonny light crude oil disrupts antioxidant systems in testes and sperm of rats. Arch. Env. Con. Toxicol.2010; 59(1):166-174.
27. Jeje SO, Ukwenya VO, Anita AB, Daramola OM. Maternal exposure to bonny light crude oil altered reproductive indices in male and female offspring of Wistar rats. Niger J. Physiol. Sci. 2021;36:49–55.
28. Salami SA, Omojuwa GT, Allen MO, Salahdeen HM, Murtala BA. Adult erectile functions and prepubertal role of vitamin C supplementation during crude oil-contaminated water ingestion. J. clin. Exp. Inv. 2023e. https://doi.org/10.29333/jcei/13751
29. Salami, SA, Alabi AA, Allen MO, Salahdeen HM, Murtala BA. Moringa oleifera leaf improves crude oil-polluted water-induced altered cavernosa functions by elevating testosterone and phosphodiesterase-5 activity in male Wistar rats. J. Appl. Sci. Environ. Manag. 2023f; 27 (12) 2783-2792 https://dx.doi.org/10.4314/jasem.v27i12.16
30. Chukwu OO, Iyare OC, Emelike UC, Konyefom GN, Okorocha EA, Ekakitie OO, Ibekailo NS, Ezimah CUA. Impact of Gestational Stress and Administration of Moringa oleifera Leaves on Post-Natal Reproductive Development of Male Offspring of Wistar Rats. Trop J Nat Prod Res. 2024; 9(1): 341 –347 https://doi.org/10.26538/tjnpr/v9i1.43
31. Martin LJ, Touaibia M. Improvement of Testicular Steroidogenesis Using Flavonoids and Isoflavonoids for Prevention of Late-Onset Male Hypogonadism. Antioxid. 2020;9(3) 237 https://doi.org/10.3390/antiox9030237
32. Zhang XH, Morelli A, Luconi M, Vignozzi L, Filippi S, Marini M, Vannelli GB, Mancina R, Forti G, Maggi M. Testosterone regulates PDE5 expression and in vivo responsiveness to tadalafil in rat corpus cavernosum. Eur. Urol. 2005; 47(3): 409–416. https://doi.org/10.1016/j.eururo.2004.10.021
33. Corbin JD, Beasley A, Blount MA, Francis SH. High lung PDE5: a strong basis for treating pulmonary hypertension with PDE5 inhibitors. Biochem. Biophys. Res. Comm. 2005; 334(3): 930–938. https://doi.org/10.1016/j.bbrc.2005.06.183
34. Uschner FE, Glückert K, Paternostro R, Gnad T, Schierwagen R, Mandorfer M, Magdaleno F, Ortiz C, Schwarzkopf K, Kamath PS, Alessandria C, Boesecke C, Pfeifer A, Reiberger T, Kreisel W, Sauerbruch T, Ferlitsch A, Trebicka J, Klein S. Combination of phosphodiesterase-5-inhibitors and beta-blockers improve experimental portal hypertension and erectile dysfunction. Liv. Internat. 2020; 40(9):2228–2241. https://doi.org/10.1111/liv.14586
35. Ahmed WS, Geethakumari AM, and Biswas KH. Phosphodiesterase 5: structure-function regulation and therapeutic applications of inhibitors. Biomed Pharmacother. 2021; 134: 111128. doi: 10.1016/j. biopha.2020.111128
36. Huang SA, Lie JD. Phosphodiesterase-5 (PDE5) Inhibitors in the Management of Erectile Dysfunction. P & T: J. Formul. manage. 2013; 38(7): 407–419.
37. Roy S, Kloner RA, Salloum FN, Jovin IS. Cardiac effects of phosphodiesterase-5 inhibitors: efficacy and safety. Cardiovasc Drug Ther. 2021: 1–4. doi: 10.1007/s10557-021- 07275-y
38. Shin HJ, Kim HJ, Kwak JH, Chun HO, Kim JH, Park H, Kim DH, Lee YS. A prenylated flavonol, sophoflavescenol: a potent and selective inhibitor of cGMP phosphodiesterase 5. Bioorg. Med. Chem. Lett. 2002;12(17):2313-2316. doi: 10.1016/s0960-894x(02)00401-8.
39. Orallo F, Camina M, Alvarez E, Basaran H, Lugnier C. Implication of cyclic nucleotide phosphodiesterase inhibition in the vasorelaxant activity of the citrus fruits flavonoid (±)-naringenin. Planta Med. 2005;71:99–107
40. Hwang TL, Leu YL, Kao SH, Tang MC, Chang HL. Viscolin, a new chalcone from Viscum coloratum inhibits human neutrophil superoxide anion and elastase release via a cAMP-dependent pathway. Free Radic Biol Med. 2006;41:1433–1441.
41. Rahimi R, Ghiasi S, Azimi H, Fakhari S, Abdollahi M. A review of the herbal phosphodiesterase inhibitors; future perspective of new drugs. Cytok. 2010;49:123–129.
42. Krajnak K, Russ KA, McKinney W, Waugh S, Zheng W, Kan H, Kashon ML, Cumpston J, Fedan JS. Biological effects of crude oil vapor. IV. Cardiovascular effects. Toxicol Appl. Pharmacol.2022; 447:116071. https://doi.org/10.1016/j.taap.2022.116071
43. Salahdeen HM, Idowu GO, Yemitan OK, Murtala BA, Alada ARA. Calcium-dependent mechanisms mediate the vasorelaxant effects of Tridax procumbens (Lin) aqueous leaf extract in rat aortic ring. J Basic Clin Physiol Pharmacol. 2014;25:161-166
44. Salahdeen HM, Adebari AO, Murtala BA, Alada ARA. Potassium channels and prostacylin contribute to vasorelaxant activities of Tridax procumbens crude aqueous leaf extract in rat superior mesenteric arteries. Afr J Med Med Sci. 2015a;44:5–19
45. Salahdeen HM, Idowu GO, Yemitan OK, Murtala BA, Alada ARA. The relaxant actions of ethanolic extract of Tridax procumbens (Linn.) on rat corpus cavernosum smooth muscle contraction. J Basic Clin Physiol Pharmacol. 2015b;26:211–216