In Silico Screening of New Derivatives as Inhibitors of Enoyl-[Acyl-Carrier-Protein] Reductase From Staphylococcus Aureus Via 2D-QSAR Analysis, Molecular Docking and ADME/Tox Prediction
Main Article Content
Abstract
Staphylococcus aureus is the most dangerous of all staphylococci and can be potentially fatal if it enters the bloodstream, lungs or heart. In order to develop natural inhibitors of Staphylococcus aureus, a quantitative structure-activity relationship (2D-QSAR) study was carried out on a series of chrysin derivatives. 2D-QSAR models were developed using multiple linear regression (MLR) and artificial neural networks (ANN). Descriptors were selected using principal component analysis (PCA). Molecular docking was performed using Autodock Tools, Autodock vina and discovery studio, and the structure of Enoyl-[acyl carrier protein] reductase (FabI) from Staphylococcus aureus (4FS3) was extracted from the Protein Data Bank (PDB). The predicted of absorption, distribution, metabolism, excretion and toxicity (ADME/Tox properties) were determined using pkCSM and SwissADME and compared with those of the most active molecule in the original database. This study showed that there is a significant correlation between activity and three descriptors (atomic contribution to logP (GCUT_SLOGP_2), number of hydrogen bond acceptor atoms (a_acc) and value of diameter - radius / radius (petitjeanSC)). The RLM model has a correlation coefficient of R2 =0.78, root mean square error (RMSE=0.07) and R2test=0.85 and R2=0.96 for the ANN model. We then designed new derivatives with improved in silico activity. Molecular docking showed that they fit perfectly into the active pocket of the receptor with low binding energy (-10.3 Kcal/mol). The predicted ADME/Tox properties of the compounds show that they have satisfactory predicted properties (non-toxic and have no carcinogenic potential), which confirms that the new derivatives have interesting anti-Staphylococcus aureus activity.
Downloads
Article Details

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
References
1. Montanari. E, Mancini. P, Galli. F, Varani. M, Santino. I, Coviello. T, Mosca. L, Matricardi. P, Rancan. F, Di Meo. C. Biodistribution and intracellular localization of hyaluronan and its nanogels. A strategy to target intracellular S. aureus in persistent skin infections. J Control Release. 2020; 326: 1-12. Doi: 10.1016/j.jconrel.2020.06.007
2. Wang Z. C, Wei. B, Pei. F. Ning, Yang. T, Tang. J, Yang. S, Yu. L. F, Yang. C. G, Yang. F. Capsaicin derivatives with nitrothiophene substituents: Design, synthesis and antibacterial activity against multidrug-resistant S. aureus. Eur. J. Med. Chem. 2020; 198: 112352-112363.
Doi: 10.1016/j.ejmech.2020.112352
3. Arumugam P, Kielian T. Metabolism shapes immune responses to Staphylococcus aureus. J. Innate Immun. 2024; 16(1): 12-30. Doi: 10.1159/000535482
4. Yogiara. Y, Mordukhova. E. A, Kim. D, Kim. W. G, Hwan. J. K, Pan J. G. The Food Grade Antimicrobial Xanthorrhizol Targets the Enoyl-ACP Reductase (FabI) in Escherichia coli. Bioorg. Med. Chem. Lett. 2020; 10: 1-36.
Doi: 10.1016/j.bmcl.2020.127651
5. Zhang L, Yang J, Xu X, Zhang J, Qiu Z, Ju Y, Baozhu L, Yan L, Xupeng G, Jing S, Baoyi C, Yanmei W, Tao T, Lei H, Tao Y, Luo, Y. Discovery and Optimization of Novel SaFabI Inhibitors as Specific Therapeutic Agents for MRSA Infection. J. Med. Chem. 2024; 67(12): 1-4. Doi: 10.1021/acs.jmedchem.4c00320
6. Yan Y, Xia X, Fatima A, Zhang L, Yuan G, Lian F, Wang Y. Antibacterial activity and mechanisms of plant flavonoids against gram-negative bacteria based on the antibacterial statistical model. Pharmaceuticals. 2024; 17(3):1-15.
Doi: 10.3390/ph17030292
7. Cueto-Escobedoa J, Andrade-Sotoc J, Lima-Maximinod M, Maximinoe C, Hernández- Lópezf F, Rodríguez-Landa JF. Involvement of GABAergic system in the antidepressant-like effects of chrysin (5, 7-dihydroxyflavone) in ovariectomized rats in the forced swim test: Comparison with neurosteroids. Behav Brain Res. 2020; 386: 112590-112597.
Doi: 10.1016/j.bbr.2020.112590
8. Li H. X, Wang Z. C, Qian Y. M, Yan X. Q, Lu Y. D, Zhu H. L. Design, synthesis, and biological evaluation of chrysin derivatives as potential FabH inhibitors. Chem. Biol. Drug Des. 2017; 89(1): 136-140.
Doi: 10.1111/cbdd.12839
9. Cherkasov, A., Muratov, E. N., Fourches, D., Varnek, A., Baskin, I. I., Cronin, M., Dearden J, Gramatica P, Martin Y.C, Todeschini R, Consonni V, Kuz'min V.E, Cramer R, Benigni R, Yang C, Rathman J, Terfloth L, Gasteiger J, Richard A, Tropsha, A. (2014). QSAR modeling: where have you been? Where are you going to?. J. Med. Chem. 2014; 57(12): 4977-5010. Doi: 10.1021/jm4004285
10. Tropsha A, Isayev O, Varnek A, Schneider G, Cherkasov A. Integrating QSAR modelling and deep learning in drug discovery: the emergence of deep QSAR. Rev. Drug Discov. 2024; 23(2): 141-155. DOI: 10.1038/s41573-023-00832-0
11. Available from: https://chemaxon.com/products/marvin. Access December 2024.
12. Available from: http://www.chemcomp.com/. Access September 2024.
13. Bachay. I. A, Naser. N. H. Synthesis and In Silico Study of New Acetazolamide Derivatives Incorporating a 1, 2, 4-Triazole Moiety as Potential Carbonic Anhydrase Inhibitors and Anti-cancer Agents. Trop. J. Nat. Prod. Res. 2024; 8(5): 7207- 7212. Doi: 10.26538/tjnpr/v8i5.23
14. Stitou M, Toufik H, Bouachrine M, Lamchouri F. Quantitative structure–activity relationships analysis, homology modeling, docking and molecular dynamics studies of triterpenoid saponins as Kirsten rat sarcoma inhibitors. J. Biomol. Struct. Dyn. 2021; 39: 152-170.
Doi: 10.1080/07391102.2019.1707122
15. Köse E, Köse ME, Sağdınç SG. Principal component analysis of quantum mechanical descriptors data to reveal the pharmacological activities of oxindole derivatives. Results Chem. 2023; 5: 1-9.
Doi: 10.1016/j.rechem.2023.100905
16. Available from: http://www.xlstat.com. Access December 2024.
17. Akabli T, Toufik H, Yasri A, Bih H, Lamchouri F. Combining ligand-based and structure-based drug design approaches to study the structure-activity relationships of a β-carboline derivative series. Struct. Chem. 2018; 29: 1637-1645. Doi:10.1007/s11224-018-1141-1
18. Available from: https://minitab.informer.com/16.1/. Access December 2024.
19. Badaoui H, Koubi Y, Moukhliss Y, El Khatabi K, Ouabane M, Ajana MA, Sbai A, Lakhlifi T, Bouachrine M. Cytotoxic activity of new thioglycosides against Escherichia coli: 2D QSAR study by Multiple Linear Regression method. Turkish Comp Theo Chem. 2023; 7(1); 51-61.
Doi: 10.33435/tcandtc.1093987
20. Zuvela P, David J, Wong M. Interpretation of ANN-Based QSAR Models for Prediction of Antioxidant Activity of Flavonoids. J. Comput Chem. 2018; 39: 953-963. Doi: 10.1002/jcc.25168
21. Available from: https://fr.mathworks.com/products/matlab.html. Access November 2024.
22. Ousaa A, Aouidate A, Idrissi Taourati A, chtita S, Bouachrine M, lakhlifi T. Structure-toxicity relationships for phenols and anilines towards Chlorella vulgaris using quantum chemical descriptors and statistical methods. Mor. J. Chem. 2023; 11(04): 1086-1099.
Doi: 10.48317/IMIST.PRSM/morjchem-v11i04.40744
23. Er-rajy M, El Fadili M, Hadni H, Mrabti N.N, Zarougui S, Elhallaoui M. 2D-QSAR modeling, drug-likeness studies, ADMET prediction, and molecular docking for anti-lung cancer activity of 3-substituted-5-(phenylamino) indolone derivatives. Struct. Chem. 2022; 33: 973-986.
Doi: 10.1007/s11224-022-01913-3
24. Chen X, Li H, Tian L, Li Q, Luo J, Zhang Y. Analysis of the physicochemical properties of acaricides based on Lipinski's rule of five. J. Comput. Biol. 2020; 27: 1397-1406.
Doi: 10.1089/cmb.2019.0323
25. Akabli T, Toufik H, Lamchouri F. In silico modeling studies of N 9 -substituted harmine derivatives as potential anticancer agents: combination of ligand-based and structure-based approaches. J. Biomol. Struct. Dyn. 2020; 40(9): 3965-3978. Doi: 10.1080/07391102.2020.1852118
26. Latigui A, Bouzidi N. K, Hassini N, Benmetir S. Exploration of Novel Type 2 Antidiabetic Agents: Molecular Docking and Toxicity Assessment of Polyphenolic Compounds for Improved Therapeutic Potential. Trop. J. Nat. Prod. Res. 2024; 8(7): 7755-7758. Doi : 10.26538/tjnpr/v8i7.19
27. Akabli T, Lamchouri F, Senhaji S, Toufik H. Molecular docking, ADME/Tox prediction, and in vitro study of the cell growth inhibitory activity of five β-carboline alkaloids. J. Struct. Chem. 2019; 30: 1495-1504.
Doi: 10.1007/s11224-019-01308-x
28. Fage C D, Lathouwers T, Vanmeert M, Gao L J, Vrancken K, Lammens E M, Weir. A. N. M, Degroote R, Cuppens. H, Kosol. S, Simpson. T. J, Crump. M. P, Willis. C. L, Herdewijn. P, Lescrinier. E, Lavigne. R, Anné. J, Masschelein. J. The Kalimantacin Polyketide Antibiotics Inhibit Fatty Acid Biosynthesis in Staphylococcus aureus by Targeting the Enoyl‐Acyl Carrier Protein Binding Site of FabI. Angew Chem Int Edit. 2020; 59 (26):10549-10556. Doi: 10.1002/anie.201915407
29. Ijoma I K, Okafor C E, Ajiwe V I E. Computational Studies of 5- methoxypsolaren as Potential Deoxyhemoglobin S Polymerization Inhibitor. Trop J Nat Prod Res. 2024; 8(10): 8835-8841. Doi: 10.26538/tjnpr/v8i10.28
30. Pires D E. V., Blundell T. L, Ascher D. B. pkCSM: Predicting Small-Molecule Pharmacokinetic and Toxicity Properties Using Graph-Based Signatures. J. Med. Chem. 2015; 58 (9): 4066-4072. Doi: 10.1021/acs.jmedchem.5b00104
31. Agahi F, Juan C, Font G, Juan-García A. In silico methods for metabolomic and toxicity prediction of zearalenone, αzearalenone and β- zearalenone. Food Chem Toxicol. 2020; 146- 111818 – 111828. Doi: 10.1016/j.fct.2020.111818
32. Daina A, Zoete V. A boiled‐egg to predict gastrointestinal absorption and brain penetration of small molecules. ChemMedChem. 2016; 11: 1117-1121. Doi: 10.1002/cmdc.201600182
33. El Masaoudy Y, Tabti K, Koubi Y, Maghat H, Lakhlifi T, Bouachrine M. In silico design of new pyrimidine-2, 4-dione derivatives as promising inhibitors for HIV reverse transcriptase-associated RNase H using 2D-QSAR modeling and (ADME/Tox) properties. Mor. J. Chem. 2023; 11(2): 300-317. Doi: 10.48317/IMIST.PRSM/morjchem-v11i2.35455
34. Molecular Operating Environment. Chemical Computing Group MOE 2008.10, QuaSAR-Descriptor https://cadaster.eu/sites/cadaster.eu/files/challenge/descr.htm. Access September 2024.
35. Stitou M, Toufik H, Akabli T, Lamchouri F. Virtual Screening of PEBP1 Inhibitors by Combining 2D/3D-QSAR Analysis, Hologram QSAR, Homology Modeling, Molecular Docking Analysis and Molecular Dynamic Simulations. J Mol Model. 2022; 28(6): 145-185. Doi: 10.1007/s00894-022-05143-6
36. Tian Y, Zhang S, Yin H, Yan A. Quantitative structure-activity relationship (QSAR) models and their applicability domain analysis on HIV-1 protease inhibitors by machine learning methods. Chemometr. Intell. Lab. 2020; 196: 103888-103942. Doi: 10.1016/j.chemolab.2019.103888
37. Madariaga-Mazón A, Osnaya-Hernández A, Chávez-Gómez A, García-Ramos JC, Cortés-Guzmán F, Castillo-Pazos DJ, Martínez-Mayorga K. Distribution of toxicity values across different species and modes of action of pesticides from PESTIMEP and PPDB databases. Toxicol. Res. 2019; 8(2): 146-156. Doi: 10.1039/C8TX00322J
38. Flamandita D, Lischer K, Pratami DK, Aditama R, Sahlan M. Molecular docking analysis of podophyllotoxin derivatives in Sulawesi propolis as potent inhibitors of protein kinases. AIP Conf. Proc. 2020; 2230: 20010-20020. Doi: 10.1063/5.0002596
39. Sudharsan MS, Jose S, Hari S, Ragunathan V, Punniavan S. In Silico Studies of Thiopyridine Compounds as Anti–Bacterial Agents Targeting Enoyl–Acyl Carrier Protein Reductase. Biosci Biotechnol Res Asia. 2021; 14(4): 801-815. Doi: 10.13005/bbra/2962
40. Berenger. F, Kumar. A, Zhang. K Y. J, Yamanishi. Y. Lean-Docking: Exploiting Ligands’ Predicted Docking Scores to Accelerate Molecular Docking. J Chem Inf Model. 2021; 61(5): 2341-2352. Doi : 10.1021/acs.jcim.0c01452
41. Torkamanian-Afshar M, Nematzadeh S, Tabarzad M, Najafi A, Lanjanian H, Masoudi-Nejad A. In silico design of novel aptamers utilizing a hybrid method of machine learning and genetic algorithm. Mol Divers. 2021; 25: 1395-1407. Doi: 10.1007/s11030-021-10192-9
42. Durán-Iturbide NA, Díaz-Eufracio BI, Medina-Franco JL. In Silico ADME/Tox Profiling of Natural Products: A Focus on BIOFACQUIM. ACS omeg. 2020; 5(26): 16076-16084. Doi: 10.1021/acsomega.0c01581
43. Adesina AF, Adewuyi A, Otuechere C.A. Exploratory studies on chrysin via antioxidant, antimicrobial, ADMET, PASS and molecular docking evaluations. Pharmacol. Res. - Mod. Chin. Med. 2024; 11: 100413-100421. Doi: 10.1016/j.prmcm.2024.100413
44. Isyaku Y, Uzairu A, Uba S. Computational studies of a series of 2-substituted phenyl-2-oxo-, 2-hydroxyl- and 2-acylloxyethylsulfonamides as potent anti-fungal agents. Heliyon. 2020; 6(4): 1-6. Doi: 10.1016/j.heliyon.2020.e03724