Antibacterial Evaluation, In Silico Study and ADMET Properties of Local Lawsonia inermis Leaves Extract

Main Article Content

Zainab R. Abdulhussein
Munther A. Muhammad-Ali
Ekhlas Q. Jasim

Abstract

Plant extracts are important in the treatment of many bacterial infections, including henna extracts. Pharmacognosy have become an alternative to traditional medications because of a synergistic effect in combating bacterial infections and no multiple side effects. This investigation examined the antibacterial efficacy of Lawsonia inermis acetone extract against bacteria isolated from urinary tract infections (UTIs) and wounds, including Pseudomonas aeruginosa, Staphylococcus aureus, Klebsiella pneumonia, and Escherichia coli. To isolate the pathogenic bacteria (P. aeruginosa, S. aureus, K. pneumonia, and E. coli), clinical pathogenic samples were obtained. Acetone extract of Lawsonia inermis leaves was produced using Soxhlet extraction and the solution of solid extract was investigated by the cork borer technique which gave an inhibitory zone of 18 to 22 mm against the four species of bacteria. 16 phytocompounds (1a–1p) were identified in the extract using gas chromatography-mass spectrophotometry (GC–MS) peak area percentage (10.66-1.72%). The analysis of phytochemicals using molecular docking simulations of their antibacterial potential revealed binding affinities of – 4.38 to – 7.83 kcal/mol, – 4.67 to – 7.47 kcal/mol, – 5.06 to – 9.07 and – 4.41 to – 7.30 kcal/mol against the dihydropteroate synthase and gyrase B 24kDa proteins of E. coli, and TyrRS and gyrase B proteins of S. aureus, respectively. The extract phytochemicals were subjected to physicochemical parameters evaluation: ADMET predictions. Pharmacokinetic prediction indicates fewer adverse effects. The extract has potential antimicrobial activity, with higher levels of clinical safety based on ADMET predictions.

Downloads

Download data is not yet available.

Article Details

How to Cite
Abdulhussein, Z. R., Muhammad-Ali, M. A., & Jasim, E. Q. (2025). Antibacterial Evaluation, In Silico Study and ADMET Properties of Local Lawsonia inermis Leaves Extract. Tropical Journal of Natural Product Research (TJNPR), 9(4), 1599 – 1609. https://doi.org/10.26538/tjnpr/v9i4.32
Section
Articles

References

1. Rabizadeh F, Mirian MS, Doosti R, Kiani-Anbouhi R, Eftekhari E. Phytochemical classification of medicinal plants used in the treatment of kidney disease based on traditional Persian medicine. Evid. Comp. Alter. Med. 2022; 2022(1):8022599. https://doi.org/10.1155/2022/8022599

2. Kumar A, P N, Kumar M, Jose A, Tomer V, Oz E, Proestos C, Zeng M, Elobeid T, K S, Oz F. Major phytochemicals: recent advances in health benefits and extraction method. Molecules. 2023; 28(2):887. https://doi.org/10.3390/molecules28020887

3. Iriti M, Faoro F. Chemical diversity and defence metabolism: how plants cope with pathogens and ozone pollution. Inter. J. Mol. Sci. 2009; 10(8):3371-3399. https://doi.org/10.3390/ijms10083371

4. Rodríguez-Negrete EV, Morales-González Á, Madrigal-Santillán EO, Sánchez-Reyes K, Álvarez-González I, Madrigal-Bujaidar E, Valadez-Vega C, Chamorro-Cevallos G, Garcia-Melo LF, Morales-González JA. Phytochemicals and Their Usefulness in the Maintenance of Health. Plants. 2024; 13(4):523. https://doi.org/10.3390/plants13040523

5. Goswami C, Pawase PA, Shams R, Pandey VK, Tripathi A, Rustagi S, Darshan G. A Conceptual Review on Classification, Extraction, Bioactive Potential and Role of Phytochemicals in Human Health. Future Foods. 2024; 9:100313. https://doi.org/10.1016/j.fufo.2024.100313

6. Ekor M. The growing use of herbal medicines: issues relating to adverse reactions and challenges in monitoring safety. Front Pharm. 2014; 4:177. https://doi.org/10.3389/fphar.2013.00177

7. Franco GA, Interdonato L, Cordaro M, Cuzzocrea S, Di Paola R. Bioactive compounds of the Mediterranean diet as nutritional support to fight neurodegenerative disease. Inter. J. Mol. Sci. 2023; 24(8):7318. https://doi.org/10.3390/ijms24087318

8. He WJ, Lv CH, Chen Z, Shi M, Zeng CX, Hou DX, Qin S. The regulatory effect of phytochemicals on chronic diseases by targeting Nrf2-ARE signaling pathway. Antioxidants. 2023; 12(2):236. https://doi.org/10.3390/antiox12020236

9. Ceramella J, De Maio AC, Basile G, Facente A, Scali E, Andreu I, Sinicropi MS, Iacopetta D, Catalano A. Phytochemicals involved in mitigating silent toxicity induced by heavy metals. Foods. 2024; 13(7):978. https://doi.org/10.3390/foods13070978

10. Siddiqui SA, Azmy Harahap I, Suthar P, Wu YS, Ghosh N, Castro-Muñoz R. A comprehensive review of phytonutrients as a dietary therapy for obesity. Foods. 2023; 12(19):3610. https://doi.org/10.3390/foods12193610

11. Habbal O, Hasson SS, El-Hag AH, Al-Mahrooqi Z, Al-Hashmi N, Al-Bimani Z, Al-Balushi MS, Al-Jabri AA. Antibacterial activity of Lawsonia inermis Linn (Henna) against Pseudomonas aeruginosa. Asia. Paci. J. Trop. Biomed. 2011; 1(3):173-176. https://doi.org/10.1016/S2221-1691(11)60021-X

12. Moutawalli A, Benkhouili FZ, Doukkali A, Benzeid H, Zahidi A. The biological and pharmacologic actions of Lawsonia inermis L. Phytomed. Plus. 2023; 3(3):100468. https://doi.org/10.1016/j.phyplu.2023.100468

13. Batiha GE, Teibo JO, Shaheen HM, Babalola BA, Teibo TK, Al-Kuraishy HM, Al-Garbeeb AI, Alexiou A, Papadakis M. Therapeutic potential of Lawsonia inermis Linn: a comprehensive overview. Naunyn-schmiedeberg's Arch. Pharm. 2024; 397(6):3525-3540. https://doi.org/10.1007/s00210-023-02735-8

14. Kumar M, Kaur P, Chandel M, Singh AP, Jain A, Kaur S. Antioxidant and hepatoprotective potential of Lawsonia inermis L. leaves against 2-acetylaminofluorene induced hepatic damage in male Wistar rats. BMC Comp. Alter. Med. 2017; 17:1-11. https://doi.org/10.1186/s12906-017-1567-9

15. Zibanejad S, Miraj S, Kopaei MR. Healing effect of Quercus persica and Lawsonia inermis ointment on episiotomy wounds in primiparous women. J. Res. Med. Sci. 2020; 25(1):11. https://doi.org/10.4103/jrms.JRMS_251_18

16. Talab TA, Alfuraiji N, Al-Snafi AE. The analgesic and anti-inflammatory effect of Lawsone isolated from Lawsonia inermis. ScienceRise: Pharm. Sci. 2022; 1(35):77-84. https://doi.org/10.15587/2519-4852.2022.253555

17. Balaei-Kahnamoei M, Saeedi M, Rastegari A, Shams Ardekani MR, Akbarzadeh T, Khanavi M. Phytochemical analysis and evaluation of biological activity of Lawsonia inermis Seeds related to Alzheimer’s disease. Evid. Comp. Alter. Med. 2021; 2021(1):5965061. https://doi.org/10.1155/2021/5965061

18. Batiha GE, Teibo JO, Shaheen HM, Babalola BA, Teibo TK, Al-Kuraishy HM, Al-Garbeeb AI, Alexiou A, Papadakis M. Therapeutic potential of Lawsonia inermis Linn: a comprehensive overview. Naunyn-schmiedeberg's Arch. Pharm. 2024; 397(6):3525-3540. https://doi.org/10.1007/s00210-023-02735-8

19. Al-Rubiay KK, Jaber NN, Al-Mhaawe BH, Alrubaiy LK. Antimicrobial efficacy of henna extracts. Oman Med. J. 2008; 23(4):253-256. https://pmc.ncbi.nlm.nih.gov/articles/PMC3273913/

20. Jasim EQ, Muhammad-Ali MA, Almakki A. Synthesis, characterization, and antibacterial activity of some mesalazine derivatives. Sci. Tech. Ind. 2023; 8(3):338-343. https://doi.org/10.26554/sti.2023.8.3.338-343

21. Hayat J, Akodad M, Moumen A, Baghour M, Skalli A, Ezrari S, Belmalha S. Phytochemical screening, polyphenols, flavonoids and tannin content, antioxidant activities and FTIR characterization of Marrubium vulgare L. from 2 different localities of Northeast of Morocco. Heliyon. 2020; 6(11). https://doi.org/10.1016/j.heliyon.2020.e05609

22. Kancherla N, Dhakshinamoothi A, Chitra K, Komaram RB. Preliminary analysis of phytoconstituents and evaluation of anthelminthic property of Cayratia auriculata (in vitro). Maedica. 2019; 14(4):350. https://pmc.ncbi.nlm.nih.gov/articles/PMC7035446/

23. Utami YP, Yulianty R, Djabir YY, Alam G. Antioxidant Activity, Total Phenolic and Total Flavonoid Contents of Etlingera elatior (Jack) RM Smith from North Luwu, Indonesia. Trop. J. Nat. Prod. Res. 2024; 8(1):5955-5961. http://www.doi.org/10.26538/tjnpr/v8i1.34

24. Okafor CE, Ijoma IK, Igboamalu CA, Ezebalu CE, Eze CF, Osita-Chikeze JC, Uzor CE, Ekwuekwe AL. Secondary metabolites, spectra characterization, and antioxidant correlation analysis of the polar and nonpolar extracts of Bryophyllum pinnatum (Lam) Oken. BioTechnologia. 2024; 105(2):121-136. https://doi.org/10.5114/bta.2024.139752

25. Jasim EQ, Muhammad-Ali MA, Al-Abdullah AA. In Vitro Studies of Biosynthesized Nanoparticles of Dysphania Aqueous Leaves Extract Against Some Isolated Bacteria from Wounds and Burns and In Silico Evaluations of Compounds Identified in its GC-MS Spectra. Trop. J. Nat. Prod. Res. 2024; 8(11):9155 – 9165. https://doi.org/10.26538/tjnpr/v8i11.26

26. Mendie LE, Hemalatha S. Molecular docking of phytochemicals targeting GFRs as therapeutic sites for cancer: an in silico study. Appl. Biochem. Biotechnol. 2022; 194(1):215-231. https://doi.org/10.1007/s12010-021-03791-7

27. Asha RN, Nayagam BR, Bhuvanesh N. Synthesis, molecular docking, and in silico ADMET studies of 4-benzyl-1-(2, 4, 6-trimethyl-benzyl)-piperidine: Potential Inhibitor of SARS-CoV2. Bioorg. Chem. 2021; 112:104967. https://doi.org/10.1016/j.bioorg.2021.104967

28. Uzzaman M, Hasan MK, Mahmud S, Fatema K, Matin MM. Structure-based design of new diclofenac: Physicochemical, spectral, molecular docking, dynamics simulation, and ADMET studies. Inform. Med. Unlocked. 2021; 25:100677. https://doi.org/10.1016/j.imu.2021.100677

29. Sartori SK, Diaz MA, Diaz-Muñoz G. Lactones: Classification, synthesis, biological activities, and industrial applications. Tetrahedron. 2021; 84:132001. https://doi.org/10.1016/j.tet.2021.132001

30. Edan DJ, Muhammad-Ali MA, Jaafar RS. Combined Efficacy of Lawsonia inermis and Myrtus communis Extract as a Potential Factor in Bacterial Treatment to Hospital Wastewater, Iraq. InIOP Conf. Ser.: Ear. Envi. Sci. 2023; 1215(1):012008. https://doi.org/10.1088/1755-1315/1215/1/012008

31. Güler Ş, Torul D, Kurt-Bayrakdar S, Tayyarcan EK, Çamsarı Ç, Boyacı İH. Evaluation of antibacterial efficacy of Lawsonia inermis Linn (henna) on periodontal pathogens using agar well diffusion and broth microdilution methods: an in-vitro study. BioMedicine. 2023; 13(3):25. https://doi.org/10.37796/2211-8039.1411

32. Vanlalveni C, Lallianrawna S, Biswas A, Selvaraj M, Changmai B, Rokhum SL. Green synthesis of silver nanoparticles using plant extracts and their antimicrobial activities: A review of recent literature. RSC advances. 2021; 11(5):2804-2837. https://doi.org/10.1039/D0RA09941D

33. Mazur M, Masłowiec D. Antimicrobial activity of lactones. Antibiotics. 2022; 11(10):1327. https://doi.org/10.3390/antibiotics11101327

34. Mundt S, Kreitlow S, Jansen R. Fatty acids with antibacterial activity from the cyanobacterium Oscillatoria redekei HUB 051. J. Appl. Phys. 2003; 15:263-267. https://doi.org/10.1023/A:1023889813697

35. Dahlem Junior MA, Nguema Edzang RW, Catto AL, Raimundo JM. Quinones as an efficient molecular scaffold in the antibacterial/antifungal or antitumoral arsenal. Inter. J. Mol. Sci. 2022; 23(22):14108. https://doi.org/10.3390/ijms232214108

36. Gheidari D, Mehrdad M, Bayat M. Synthesis, docking, MD simulation, ADMET, drug-likeness, and DFT studies of novel furo [2, 3-b] indol-3a-ol as promising Cyclin-dependent kinase 2 inhibitors. Sci. Rep. 2024; 14(1):3084. https://doi.org/10.1038/s41598-024-53514-1

37. Ibrahim ZY, Uzairu A, Shallangwa G, Abechi S. Molecular docking studies, drug-likeness, and in-silico ADMET prediction of some novel β-Amino alcohol grafted 1,4,5-trisubstituted 1,2,3-triazoles derivatives as elevators of p53 protein levels. Sci. Afr. 2020; 10:e00570. https://doi.org/10.1016/j.sciaf.2020.e00570

38. Ononamadu CJ, Ibrahim A. Molecular docking and prediction of ADME/drug-likeness properties of potentially active antidiabetic compounds isolated from aqueous-methanol extracts of Gymnema sylvestre and Combretum micranthum. BioTechnologia. 2021; 102(1):85. https://doi.org/10.5114/bta.2021.103765

39. Yang NJ, Hinner MJ. Getting across the cell membrane: an overview for small molecules, peptides, and proteins. Site-Specific Protein Labeling: Methods and Protocols. 2014; 8:29-53. https://doi.org/10.1007/978-1-4939-2272-7_3

40. Ugariogu SN, Duru IA, Onwumere FC, Igoli JO. Physicochemical Assessment and Drug Potential of Some Phenylpropanoid and Flavonoid Compounds of Ethyl Acetate Eluate from Umudike Propolis. Trop. J. Nat. Prod. Res. 2020; 4(12):1208-1214. https://doi.org/10.26538/tjnpr/v4i12.30

41. Olaokun OO, Zubair MS. Antidiabetic activity, molecular docking, and ADMET properties of compounds isolated from bioactive ethyl acetate fraction of Ficus lutea leaf extract. Molecules. 2023; 28(23):7717. https://doi.org/10.3390/molecules28237717

42. Whitty A, Zhong M, Viarengo L, Beglov D, Hall DR, Vajda S. Quantifying the chameleonic properties of macrocycles and other high-molecular-weight drugs. Drug Disc. Tod. 2016; 21(5):712-717. https://doi.org/10.1016/j.drudis.2016.02.005

43. Jagannathan R. Characterization of drug-like chemical space for cytotoxic marine metabolites using multivariate methods. ACS omega. 2019; 4(3):5402-5411. https://doi.org/10.1021/acsomega.8b01764

44. Erickson JA, Jalaie M, Robertson DH, Lewis RA, Vieth M. Lessons in molecular recognition: the effects of ligand and protein flexibility on molecular docking accuracy. J. Med. Chem. 2004; 47(1):45-55. https://doi.org/10.1021/jm030209y

45. Ahmed I, Leach DN, Wohlmuth H, De Voss JJ, Blanchfield JT. Caco-2 cell permeability of flavonoids and saponins from Gynostemma pentaphyllum: the immortal herb. ACS omega. 2020; 5(34):21561-21569. https://doi.org/10.1021/acsomega.0c02180

46. Kirsch V, Bakuradze T, Richling E. Toxicological testing of syringaresinol and enterolignans. Curr. Res. Tox. 2020; 1:104-110. https://doi.org/10.1016/j.crtox.2020.09.002

47. Bultum LE, Tolossa GB, Kim G, Kwon O, Lee D. In silico activity and ADMET profiling of phytochemicals from Ethiopian indigenous aloes using pharmacophore models. Sci. Rep. 2022; 12(1):22221. https://doi.org/10.1038/s41598-022-26446-x

48. Jung W, Goo S, Hwang T, Lee H, Kim YK, Chae JW, Yun HY, Jung S. Absorption Distribution Metabolism Excretion and Toxicity Property Prediction Utilizing a Pre-Trained Natural Language Processing Model and Its Applications in Early-Stage Drug Development. Pharm. 2024; 17(3):382. https://doi.org/10.3390/ph17030382

49. Beaumont C, Young GC, Cavalier T, Young MA. Human absorption, distribution, metabolism and excretion properties of drug molecules: a plethora of approaches. Brit. J. Cli. Pharm. 2014; 78(6):1185-1200. https://doi.org/10.1111/bcp.12468

50. Muehlbacher M, Spitzer GM, Liedl KR, Kornhuber J. Qualitative prediction of blood-brain barrier permeability on a large and refined dataset. J. Comp.-aided Mol. Des. 2011; 25:1095-1106. https://doi.org/10.1007/s10822-011-9478-1

51. Neumaier F, Zlatopolskiy BD, Neumaier B. Drug penetration into the central nervous system: pharmacokinetic concepts and in vitro model systems. Pharm. 2021; 13(10):1542. https://doi.org/10.3390/pharmaceutics13101542

52. Wright SH. Molecular and cellular physiology of organic cation transporter 2. Ame. J. Phys.-Ren. Phys. 2019; 317(6):F1669-F1679. https://doi.org/10.1152/ajprenal.00422.2019

53. Cascaes MM, De Moraes ÂA, Cruz JN, Franco CD, E Silva RC, Nascimento LD, Ferreira OO, Anjos TO, de Oliveira MS, Guilhon GM, Andrade EH. Phytochemical profile, antioxidant potential, and toxicity evaluation of the essential oils from Duguetia and Xylopia species (Annonaceae) from the Brazilian Amazon. Antioxidants. 2022; 11(9):1709. https://doi.org/10.3390/antiox11091709

54. Clemen-Pascual LM, Macahig RA, Rojas NR. Comparative toxicity, phytochemistry, and use of 53 Philippine medicinal plants. Tox. Rep. 2022; 9:22-35. https://doi.org/10.1016/j.toxrep.2021.12.002

55. Durán-Iturbide NA, Díaz-Eufracio BI, Medina-Franco JL. In silico ADME/Tox profiling of natural products: A focus on BIOFACQUIM. ACS omega. 2020; 5(26):16076-16084. https://doi.org/10.1021/acsomega.0c01581

56. Souza HC, Souza MD, Sousa CS, Viana EK, Alves SK, Marques AO, Ribeiro AS, de Sousa do Vale V, Islam MT, de Miranda JA, da Costa Mota M. Molecular Docking and ADME-TOX Profiling of Moringa oleifera Constituents against SARS-CoV-2. Adv. Resp. Med. 2023; 91(6):464-485. https://doi.org/10.3390/arm91060035