Chemical Components, Antioxidant and Antihyperglycemic Activities of a Folklore Recipe from Thai Traditional Medicine

Main Article Content

Ampa Konsue
Ladachart Taepongsorat

Abstract

Traditional Thai medicine uses a seven-herb formula to manage diabetes, though scientific validation is still lacking. This study evaluated the chemical composition, antioxidant properties, and antihyperglycemic effects using different extraction methods. Aqueous, 50% ethanol, and 95% ethanol extracts were prepared from the seven-herb formula and analyzed for phenolic and flavonoid content, bioactive compounds (HPLC), antioxidant activity (DPPH, ABTS, FRAP), and antihyperglycemic potential (α-glucosidase and α-amylase inhibition). The 95% ethanol extract showed the highest total phenolic content at 501.98 mg GAE/g extract and flavonoid content at 110.18 mg QE/g extract. Syringic acid was identified as the dominant phenolic acid, while myricetin was the main flavonoid. The ethanol extracts exhibited significantly higher antioxidant activity compared to the aqueous extract. All extracts showed better α-glucosidase inhibition than acarbose, with the aqueous extract demonstrating the highest potency (IC₅₀=0.024 mg/mL). Ethanol extracts also showed better α-amylase inhibition than both acarbose and the aqueous extract. This study provides empirical evidence supporting the traditional use of this herbal formula in diabetes management. While water-based preparations have cultural significance, ethanol extraction notably enhances therapeutic efficacy. Further research, including the isolation of bioactive compounds and in vivo studies, is needed to further explore the potential of this formula as a complementary treatment for diabetes.


 

Downloads

Download data is not yet available.

Article Details

How to Cite
Konsue, A., & Taepongsorat, L. (2025). Chemical Components, Antioxidant and Antihyperglycemic Activities of a Folklore Recipe from Thai Traditional Medicine. Tropical Journal of Natural Product Research (TJNPR), 9(4), 1592 – 1598. https://doi.org/10.26538/tjnpr/v9i4.31
Section
Articles

References

1. Iheanacho CM, Akubuiro PC, Oseghale IO, Imieje VO, Erharuyi O, Ogbeide KO, Jideonwo AJ, Falodun A. Evaluation of the antioxidant activity of the stem bark extracts of Anacardium occidentale (Linn) Anacardiaceae. Trop J Phytochem Pharm Sci. 2023; 2(2):65-69. Doi.org/10.26538/tjpps/v2i2.4

2. Dirir AM, Daou M, Yousef AF, Yousef LF. A review of alpha-glucosidase inhibitors from plants as potential candidates for the treatment of type-2 diabetes. Phytochem Rev. 2022; 21:1049-1079. Doi.org/10.1007/s11101-021-09773-1

3. Li Y, Kong D, Fu Y, Sussman MR, Wu H. The effect of developmental and environmental factors on secondary metabolites in medicinal plants. Plant Physiol Biochem. 2020; 148:80-89. DOI 10.1016/j.plaphy.2020.01.006

4. Kumar S, Korra T, Thakur R, Arutselvan R, Kashyap AS, Nehela Y, Chaplygin V, Minkina T, Keswani C. Role of plant secondary metabolites in defence and transcriptional regulation in response to biotic stress. Plant Stress. 2023; 8:100154. Doi.org/10.1016/j.stress.2023.100154

5. Assefa ST, Yang EY, Chae SY, Song M, Lee J, Cho MC, Jang S. Alpha glucosidase inhibitory activities of plants with focus on common vegetables. Plants. 2020; 9(1):2. DOI 10.3390/plants9010002

6. Kumar P, Kumar D, Pal S, Singh S. Plant secondary metabolites in defense against phytopathogens: Mechanisms, biosynthesis, and applications. Physiol Mol Plant Pathol. 2025; 138:102639. Doi.org/10.1016/j.pmpp.2025.102639

7. Andres CMC, Perez de la Lastra JM, Andres Juan C, Plou FJ, Pérez-Lebeña, E. Superoxide Anion Chemistry-Its Role at the Core of the Innate Immunity. Int J Mol Sci. 2023; 24(3):1841. doi.org/10.3390/ijms24031841

8. Liu Y, Shi J. Antioxidative nanomaterials and biomedical applications. Nano Today. 2019; 27:146-177. DOI 10.1016/j.nantod.2019.05.008

9. Kang Q, Yang C. Oxidative stress and diabetic retinopathy: Molecular mechanisms, pathogenetic role and therapeutic implications. Redox Biol. 2020; 37:101799. Doi.org/10.1016/j.redox.2020.101799

10. Poudel PB, Poudel MR. Heat stress effects and tolerance in wheat: A review. J Biol Today’s World. 2020; 9(3):217.

11. Centko RM, Ratnaweera PB, Tysoe C, Withers SG, De Silva ED, Andersen RJ. Alpha

glucosidase and α-amylase inhibiting thiodiketopiperazines from the endophytic fungus Setosphaeria rostrata isolated from the medicinal plant Costus speciosus in Sri Lanka. Phytochem Lett. 2017; 22:76-80. Doi: 10.1016/j.phytol.2017.09.004

12. Macabeo APG, Pilapil LAE, Garcia KYM, Quimque MT, Phukhamsakda C, Cruz AJC, Hyde KD, Stadler M. Alpha glucosidase and lipase inhibitory phenalenones from a new species of Pseudolophiostoma originating from Thailand. Molecules. 2020; 25(4):965. Doi:

10.3390/molecules25040965

13. Yang CY, Yen YY, Hung KC, Hsu SW, Lan S, Lin HC. Inhibitory effects of pu-erh tea on alpha glucosidase and alpha amylase: a systemic review. Nutr Diabetes. 2019; 9(1):23. Doi: 10.1038/s41387-019-0092-y

14. Dahlen AD, Dashi G, Maslov I, Attwood MM, Jonsson J, Trukhan V, Schioth HB. Trends in antidiabetic drug discovery: FDA approved drugs, new drugs in clinical trials and global sales. Front Pharmacol. 2022; 12:807548. https://doi.org/10.3389/fphar.2021.807548

15. Hedrington MS, Davis SN. Considerations when using alpha-glucosidase inhibitors in the treatment of type 2 diabetes. Expert Opin Pharmacother. 2019; 20(18):2229-2235. Doi: 10.1080/14656566.2019.1672660

16. Magaji UF, Sacan O, Yanardag R. Alpha amylase, alpha glucosidase and glycation inhibitory activity of Moringa oleifera extracts. South African J Bot. 2020; 128:225-230. Doi: 10.1016/j.sajb.2019.11.024

17. Namwong A, Thongkrajai P, Konsue A. Effect of a Thai folk recipe on phytochemical screening, antioxidant activities, and α-Glucosidase inhibition by different solvent extracts. Pharmacogn Res. 2020; 12:225-229.

18. Katisart T, Butkhup L, Sumalee A, Taepongsorat L, Konsue A. Antidiabetic potential of seven-herb Thai formula: Effect on blood glucose, lipid profile, and pancreatic islet restoration in diabetic rats. Trop J Pharm Res. 2025; 24(2):203-212.

19. Trerattanathawan S, Katisart T, Konsue A. In vitro antioxidation, α-glucosidase, and α-amylase inhibitory activities of different solvent extracts of Thai traditional diabetic medicine. Trop J Nat Prod Res. 2023; 7(10):4146-4151. Doi.org/10.26538/tjnpr/v7i10.5

20. Chumroenphat T, Somboonwatthanakul I, Saensouk S, Siriamornpun, S. Changes in curcuminoids and chemical components of turmeric (Curcuma longa L.) under freeze-drying and low-temperature drying methods. Food Chem. 2021; 339:128121.

21. Gulcin I. Antioxidants and antioxidant methods: an updated overview. Arch Toxicol. 2020; 94:651-715. https://doi.org/10.1007/s00204-020-02689-3

22. Konsue A and Taepongsorat L. Phytochemical Screening and Antioxidant Activity of Longevity Remedy from National Thai Traditional Medicine Scripture (Formulary Special Edition). Trop J Nat Prod Res. 2022; 6(6):868-871. Doi.org/10.26538/tjnpr/v6i6.6

23. Yupparach P, Sumalee A, Konsue A. Phytochemical Screening and Biological Activities of a Remedy from A-thi-sa-ra-wak Scripture as a Folkloric Diabetic Medicine. Trop J Nat Prod Res. 2022; 6(6):863-867. doi.org/10.26538/tjnpr/v6i6.5

24. Puangpronpitag D, Tankitjanon P, Sumalee A, Konsue A. Phytochemical Screening and Antioxidant Activities of the Seedling Extracts from Inca Peanut Plukenetia volubilis. Pharmacogn J. 2021; 13(1):52-58.

25. Bouyahya A, Lagrouh F, El Omari N, Bourais I, El Jemli M, Marmouzi I, Salhi N, Faouzi MEA, Belmehdi O, Dakka N. Essential oils of Mentha viridis rich phenolic compounds show important antioxidant, antidiabetic, dermatoprotective, antidermatophyte and antibacterial properties. Biocatal Agric Biotechnol. 2020; 23:101471

26. Hasan M, Ali M.T, Khan R, Palit P, Islam A, Seidel V, Akter R, Nahar L. Hepatoprotective, antihyperglycemic and antidiabetic effects of Dendrophthoe pentandra leaf extract in rats. Clin Phytosci. 2018; 4:16. Doi: 10.1186/s40816-018-0076-9

27. Rasines-Perea Z, Teissedre PL. Grape polyphenols’ effects in human cardiovascular diseases and diabetes. Molecules. 2017; 22(1):68. https://doi.org/10.3390/molecules22010068

28. Liu F, Ma H, Wang G, Liu W, Seeram NP, Mu Y, Xu Y, Huang X, Li L. Phenolics from Eugenia jambolana seeds with advanced glycation endproduct formation and alpha-glucosidase inhibitory activities. Food and Funct. 2018; 9(8):4246-4254. Doi: 10.1039/c8fo00583d

29. Da Costa Pinaffi AC, Sampaio GR, Soares MJ, Shahidi F, De Camargo AC, Torres EAFS. Insoluble-Bound Polyphenols Released from Guarana Powder: Inhibition of α-Glucosidase and Proanthocyanidin Profile. Molecules. 2020; 25(3): 679. Doi: 10.3390/molecules 25030679

30. De Camargo AC, Regitano-d’Arce MAB, Shahidi F. Phenolic profile of peanut by-products: Antioxidant potential and inhibition of α-glucosidase and lipase activities. J Am Oil Chem' Soc. 2017; 94(7):959-971. Doi: 10.1007/ s11746-017-2996-9

31. Semaan DG, Igoli JO, Young L, Marrero E, Gray AI, Rowan EG. In vitro anti-diabetic activity of flavonoids and pheophytins from Allophylus cominia Sw on PTP1B, DPPIV, α-glucosidase and α-amylase enzymes. J Ethnopharmacol. 2017; 203:9-46. DOI 10.1016/j.jep.2017.03.023

32. Yismairai E, Hemelda NM, Yasman, Handayani W. Antioxidant activity of extract of mistletoe, Dendrophthoe pentandra (L.) Miq., lived in three different host plants, collected from Kampus UI, Depok. Proceedings of the 4th International Symposium on Current Progress in Mathematics and Sciences 2018; 2168(1). Doi: 10.1063/ 1.5132527

33. Kong D, Wang L, Niu Y, Cheng L, Sang B, Wang D, Tian J, Zhao W, Liu X, Chen Y, Wang F, Zhou H, Jia R. Dendrophthoe falcata (Lf) Ettingsh. and Dendrophthoe pentandra (L.) Miq.: A review of traditional medical uses, phytochemistry, pharmacology, toxicity, and applications. Front Pharmacol. 2023;14:1096379. https://doi.org/10.3389/fphar.2023.1096379

34. Suratno Rizki MI, Pratama MRF. In vitro study of antioxidant activities from ethanol extracts of akar kuning (Arcangelisia flava). J Surya Medika 2019; 4(2):66-71.

35. Ratnadewi AAI, Rahayu LD, Rochman J, Susilowati, Nugraha AS, Siswoyo TA. Revealing anti-diabetic potency of medicinal plants of Meru Betiri National Park, Jember Indonesia. Arab J Chem. 2018; 13(1). Doi: 10.1016/j.arabjc.2018.01.017

36. Setyani W, Setyowati H, Palupi DHS, Rahayunnissa H, Hariono M. Antihyperlipidemia and antihyperglycemic studies of Arcangelisia flava (L.) Merr. phenolic compound: incorporation of in vivo and in silico study at molecular level. Indonesian J Pharm Sci Technol. 2019; 6(2):84-94.

37. Shahira Banu DA, Karpagam S, Amudha P. Anti-diabetic activity of Salacia chinensis Stem extract. World J Pharm Res. 2019; 8(6):1417-1423.

38. Bagnazari M, Saidi M, Chandregowda MM, Prakash HS, Nagaraja G. Phyto-constituents, Pharmacological Properties and Biotechnological Approaches for Conservation of the Anti-diabetic Functional Food Medicinal Plant Salacia: A Review Note. Appl Food Biotechnol. 2017; 4(1):1-10. https://journals.sbmu.ac.ir/afb/article/view/14499

39. Ngo TV, Scarlett CJ, Bowyer MC, Vuong QV. Phytochemical and antioxidant properties from different parts of Salacia chinensis L. J Biol Act Prod Nature. 2017; 7(5):401-410. Doi: 10.1080/22311866.2017.1383186

40. Ghadage DM, Kshirsagar PR, Pai SR, Chavan JJ. Extraction efficiency, phytochemical profiles and antioxidative properties of different parts of Saptarangi (Salacia chinensis L.)-An important underutilized plant. Biochem Biophys Rep. 2017; 12:79-90. doi: 10.1016/j.bbrep.2017.08.012

41. Yamin Y, Sabarudin S, Zubaydah WOS, Sahumena MH, Arba M, Elnawati E, Andriani R, Suryani S. Determination of Antiradical Activity, Total Phenolic and Flavonoid Contents of Kamena-mena (Clerodendrum paniculatum. L) Leaves. Trop J Nat Prod Res. 2021; 5(2):287-293. doi.org/10.26538/tjnpr/v5i2.12

42. Han, M., Yang, F., Zhang, K., Ni, J., Zhao, X., Chen, X., Zhang, Z., Wang, H., Lu, J., and Zhang, Y. Antioxidant, Anti-Inflammatory and Anti-Diabetic Activities of Tectona grandis Methanolic Extracts, Fractions, and Isolated Compounds. Antioxidants. 2023; 12(3), 664. https://doi.org/10.3390/antiox12030664

43. Kushwah AS, Kaur P, Shivanandappa TB. Effect of methanolic extracts of Tectona grandis linn leaves on diabetic neuropathy in streptozotocin-induced diabetic rats. MOJ Drug Des Develop Ther. 2018; 2(4):203-209. Doi:10.15406/mojdd.2018.02.00048

44. Madhiri R, Panda J. A Review on phytochemistry and pharmacological aspects of Derris scandens (Roxb.) Int J Sci Res. 2018; 5(3):1-4.