RUNX2 and ALP Expression on the Femur of Rats (Rattus norvegicus) after Implantation of Polymethylmethacrylate-Hydroxyapatite (PMMA-HA) Material
Main Article Content
Abstract
Modification of implant material can affect osseointegration between the implant surface and bone. Polymethylmethacrylate (PMMA) material has potential as an implant material, but has drawbacks such as exothermic properties and the formation of fibrous capsule tissue after implantation. PMMA must be combined with active ingredients like hydroxyapatite (HA) due to its osteoconductive properties. HA can be obtained from animals (xenograft), and from limestone (Alloplast). The presence of osteogenic markers such as Runt-related transcription factor 2 (RUNX2) and Alkaline phosphatase (ALP) indicates the development of new bone tissue following the implantation of a substance. The present study aimed to determine the effects of PMMA-HA obtained from bovine bone following Good Manufacturing Practice (PMMA-HA GMP) and that obtained from limestone through processing at Balai Besar Keramik (PMMA-HA BBK) on the expression of RUNX2 and ALP. PMMA and HA were mixed in a 83.8:16.2 ratio. Wistar rats were divided into six groups (K7, K14, BBK7, BBK14, GMP7, and GMP14) and PMMA-HA GMP or PMMA-HA BBK was implanted into their femurs. Type-1 collagen was used as the control (K). After 7 and 14 days of implantation, the rats were sacrificed, their femurs were collected and processed for immunohistochemical examination. The PMMA-HA BBK and PMMA-HA GMP treatment groups showed notable increase in the expressions of RUNX2 and ALP after implantation for 7 and 14 days compared to the control groups (K7 and K14). Therefore, PMMA-HA BBK and PMMA-HA GMP implants can increase the expression of osteogenic markers RUNX2 and ALP over 7 and 14 days.
Downloads
Article Details

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
References
1. Luke Yeo IS. Modifications of Dental Implant Surfaces at the Micro- and Nano-Level for Enhanced Osseointegration. Materials (Basel). 2019; 13(1):89. doi:10.3390/MA13010089
2. Fernandez de Grado G, Keller L, Idoux-Gillet Y, Wagner Q, Musset AM, Benkirane-Jessel N, Bornert F, Offner D. Bone substitutes: a review of their characteristics, clinical use, and perspectives for large bone defects management. J Tissue Eng. 2018; 9:2041731418776819. doi:10.1177/2041731418776819
3. Hatten HP and Voor MJ. Bone Healing Using a Bi-Phasic Ceramic Bone Substitute Demonstrated in Human Vertebroplasty and with Histology in a Rabbit Cancellous Bone Defect Model. Interv Neuroradiol. 2012; 18(1):105-113. doi:10.1177/159101991201800114
1. 4 O’Hare P, Meenan BJ, Burke GA, Byrne G, Dowling D, Hunt JA. Biological responses to hydroxyapatite surfaces deposited via a co-incident microblasting technique. Biomaterials. 2010; 31(3):515-522. doi:10.1016/j.biomaterials.2009.09.067
4. Kim JM, Son JS, Kang SS, Kim G, Choi SH. Bone regeneration of hydroxyapatite/alumina bilayered scaffold with 3 mm passage-like medullary canal in canine tibia model. BioMed Res Int. 2015; 235108. doi:10.1155/2015/235108
5. Son JS, Appleford M, Ong JL, Wenke JC, Kim JM, Choi SH, Oh DS. Porous hydroxyapatite scaffold with three-dimensional localized drug delivery system using biodegradable microspheres. J Contr Rel. 2011; 153(2):133-140. doi:10.1016/J.JCONREL.2011.03.010
6. Komori T. A Fundamental Transcription Factor for Bone and Cartilage. Biochem Biophys Res Commun. 2000; 276(3):813-816. doi:10.1006/BBRC.2000.3460
7. Bano N, Salwah Jikan S, Basri H, Adzila Abu Bakar SS, Hussain Nuhu A. Natural Hydroxyapatite Extracted From Bovine Bone. J Sci Technol. 2017; 9(2):22-28. https://publisher.uthm.edu.my/js /index.php/JST/article/view/1990
8. Soleymani Eil Bakhtiari S, Bakhsheshi-Rad HR, Karbasi S, Tavakoli M, Hassanzadeh Tabrizi SA, Ismail AF, Seifalian A, Ramakrishna S, Berto F. Poly(methyl methacrylate) bone cement, its rise, growth, downfall and future. Polym Int. 2021; 70(9):1182-1201. doi:10.1002/PI.6136
9. Mohammadi M, Alibolandi M, Abnous K, Salmasi Z, Jaafari MR, Ramezani M. Fabrication of hybrid scaffold based on hydroxyapatite-biodegradable nanofibers incorporated with liposomal formulation of BMP-2 peptide for bone tissue engineering. Nanomed. 2018; 14(7):1987-1997. doi:10.1016/J.NANO.2018.06.001
10. Bose S, Vahabzadeh S, Banerjee D, Ke D. Enhanced osteogenic protein expression on human osteoblast-osteoclast co-culture system using doped hydroxyapatite plasma coatings for orthopedic and dental applications. Mater Today Commun. 2019; 21:100534. doi:10.1016/j.mtcomm.2019.05.010
11. Qin X, Jiang Q, Miyazaki T, Komori T. Runx2 regulates cranial suture closure by inducing hedgehog, Fgf, Wnt and Pthlh signaling pathway gene expressions in suture mesenchymal cells. Hum Mol Genet. 2019; 28(6):896-911. doi:10.1093/HMG/DDY386
12. Sa Y, Yu N, Wolke JGC, Chanchareonsook N, Goh BT, Wang Y, Yang F, Jansen JA. Bone Response to Porous Poly(methyl methacrylate) Cement Loaded with Hydroxyapatite Particles in a Rabbit Mandibular Model. Tissue Eng Part C: Methods. 2017; 23(5):262-273. doi:10.1089/ten.tec.2016.0521
13. Zhang L, Lu T, He F, Zhang W, Yuan X, Wang X, Ye J. Physicochemical and cytological properties of poorly crystalline calcium-deficient hydroxyapatite with different Ca/P ratios. Ceram Int. 2022; 48(17):24765-24776. doi:10.1016/j.ceramint.2022.05.126
14. Wahyudi K, Edwin F, Sofyaningsih N. Synthesis and Characterization of Synthetic Bone Ash from Natural Materials. J Ceram Glass Indones. 2016; 25(2):46-58. doi:10.32537/JKGI.V25I2.2664
15. Darjanki CM, Hananta JS, Prahasanti C, Ulfah N, Kusumawardani B, Wijaksana IKE, Aljunaid M, Nkuba A. Expression of VEGF and BMP-2 in Osteoblast cells exposed to a combination of polymethylmethacrylate (PMMA) and hydroxyapatite (HAp). J Oral Biol Craniofac Res. 2023; 13(2):243-248. doi:10.1016/ j.jobcr.2023.02.006
16. Maté Sánchez de Val JE, Calvo-Guirado JL, Gómez-Moreno G, Pérez-Albacete Martínez C, Mazón P, De Aza PN. Influence of hydroxyapatite granule size, porosity, and crystallinity on tissue reaction in vivo. Part A: synthesis, characterization of the materials, and SEM analysis. Clin Oral Implants Res. 2016; 27(11):1331-1338. doi:10.1111/clr.12722
17. Liu Z, Tang Y, Kang T, Rao M, Li K, Wang Q, Quan C, Zhang C, Jiang Q, Shen H. Synergistic effect of HA and BMP-2 mimicking peptide on the bioactivity of HA/PMMA bone cement. Colloids Surf B: Biointerfaces. 2015; 131:39-46. doi:10.1016/j.colsurfb.2015.04.032
18. Kwon SH, Jeong HJ, Lee BN, Lee HS, Kim HJ, Kim SY, Kim DS, Jang JH. Effects of Various Mineral Trioxide Aggregates on Viability and Mineralization Potential of 3-Dimensional Cultured Dental Pulp Stem Cells. Appl Sci. 2021, 11:11381. 2021;11(23):11381. doi:10.3390/app112311381