Potential of Garlic (Allium sativum L.) Compounds as Anti breast cancer Candidates: Computational Study

Main Article Content

Rindi Silalahi
Anindita T. K. Pratita
Ruswanto Ruswanto

Abstract

Garlic (Allium sativum L.) and its derivatives have shown potential in controlling breast cancer, reducing the undesirable side effects of anticancer agents, and increasing their anticancer effectiveness. Computational research was conducted using various methods such as molecular docking using PyRx and molecular dynamic using Desmond, Drug Scan using Lipinski's Rule of Five, and toxicity analysis using the pkCSM website on garlic compound derivatives. The results of molecular docking of 106 compounds showed that Ergosterol exhibited lower free energy at the progesterone (1SQN) (-12.05 kcal/mol) and estrogen receptors (6PSJ) (-10.76 kcal/mol) than tamoxifen (1SQN = -10.00 kcal/mol and 6PSJ = -10.42 kcal/mol). Furthermore, the results of the 100 ns molecular dynamic simulation revealed that Naringenin, which binds to the progesterone receptor (1SQN), and Quercetin O-rhamnoside, which binds to the estrogen receptor (6PSJ), were the most stable. Based on the toxicity test results, only the Ergosterol compound was found to be hepatotoxic, while hyperin was toxic according to AMES parameters. Based on the study results, Naringenin and Quercetin O-rhamnoside demonstrated the highest stability, making them potential candidates as breast anticancer agents derived from garlic (Allium sativum L.)

Downloads

Download data is not yet available.

Article Details

How to Cite
Silalahi, R., Pratita, A. T. K., & Ruswanto, R. (2025). Potential of Garlic (Allium sativum L.) Compounds as Anti breast cancer Candidates: Computational Study. Tropical Journal of Natural Product Research (TJNPR), 9(4), 1519 – 1532. https://doi.org/10.26538/tjnpr/v9i4.21
Section
Articles

References

1. Lei S, Zheng R, Zhang S, Wang S, Chen R, Sun K, Zeng H, Zhou J, Wei W. Global patterns of breast cancer incidence and mortality: A population-based cancer registry data analysis from 2000 to 2020. Cancer Commun. 2021;41(11):1183–1194.

2. Globocan. Cancer in Indonesia. JAMA J Am Med Assoc. 2020;247(22):3087–3088.

3. Nguyen BK, Nguyen TT, Phan HM, Dang KT, Bui TT. Screening bioactive compounds from allium sativum as HER2 inhibitors targeting breast cancer by docking methods. VNU J Sci Med Pharm Sci. 2021;37(1).

4. Choudhary S, Noor MU, Hussain MS. Pharmacological properties and phytoconstituents of garlic (Allium sativum L.): A review. Biol Sci. 2022;02(04).

5. Morris GM, Huey R, Lindstrom W, Sanner MF, Belew RK, Goodsell DS, Olson AJ. AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. J Comput Chem. 2009;30(16):2785–2791.

6. Jejurikar BL, Rohane SH. Drug designing in discovery studio. 2021; 135-138.

7. Agrwal A, Juneja S, Dwivedi S, Kasana V. Molecular docking and antimicrobial analyses of synthesized imidazole derivatives in solvent less condition, adjacent to human pathogenic bacterial strains. Mater Today Proc. 2022;57:2250–2254.

8. Ohaekenyem EC, Onyema CT, Atawodi SE. Activity profiling of natural and synthetic SARS-Cov-2 inhibitors using molecular docking analysis. Pure Appl Chem. 2024;(0).

9. Kondapuram SK, Sarvagalla S, Coumar MS. Docking-based virtual screening using PyRx Tool: autophagy target Vps34 as a case study. In: Molecular Docking for Computer-Aided Drug Design. Elsevier; 2021. p. 463–477.

10. Panwar U, Singh SK. Identification of novel pancreatic lipase inhibitors using in silico studies. Endocrine, Metab & immune Disord targets (formerly Curr drug targets-immune, Endocr & Metab Disord. 2019;19(4):449–457.

11. Renadi S, Pratita AT, Mardianingrum R, Ruswanto R. The Potency of Alkaloid Derivates as Anti-Breast Cancer Candidates: In Silico Study. J Kim Val. 2023;9(1):89–108.

12. Ruswanto, Rahayuningsih N, Hidayati NLD, Nuryani GS, Mardianingrum2 R. In Vitro and In Silico Study of N’-Benzoylisonicotinohydrazide as Antituberculosis Candidate. J ILmu Kefarmasian Indones. 2019;17(2):218–226.

13. Rachmania RA, Hariyanti H, Zikriah R, Sultan A. In Silico Study of Alkaloid Compounds of White Lily Herb (Crinum Asiaticum L.) on Cyclooxygenase (COX) Enzyme Inhibition. J Kim Val. 2018;4(2):124–136.

14. Saleem H, Munir S, Mumtaz A, Ali R, Maqbool A, Malik D, Sideeq MA, Shamas F. Identification of Potent Inhibitors against Potential Drug Target for Schizophrenia Trough Virtual Screening Approach. Int J Sci Res Publ. 2019;9(6):p90119.

15. Adeniji SE, Uba S, Uzairu A. Theoretical modeling and molecular docking simulation for investigating and evaluating some active compounds as potent anti-tubercular agents against MTB CYP121 receptor. Futur J Pharm Sci. 2018;4(2):284–95. Available from: https://doi.org/10.1016/j.fjps.2018.10.003

16. Septian AD, Wardani GA, Mardianingrum R, Ruswanto R. The Virtual Screening of Flavonoid Derivatives on Progesterone, Estrogen, and HER-2 Receptor for Breast Cancer Treatment Candidate. J Kim Val. 2023;9(1):163–182.

17. Ruswanto R, Mardianingrum R, Nofianti T, Fizriani R, Siswandono S. Computational Study of Bis-(1-(Benzoyl)-3-Methyl Thiourea) Platinum (II) Complex Derivatives as Anticancer Candidates. Adv Appl Bioinforma Chem. 2023;16:15–36.

18. De Beer TAP, Berka K, Thornton JM, Laskowski RA. PDBsum additions. Nucleic Acids Res. 2014;42(D1):292–296.

19. Laskowski RA, Hutchinson EG, Michie AD, Wallace AC, Jones ML, Thornton JM. PDBsum: a Web-based database of summaries and analyses of all PDB structures. Trends Biochem Sci. 1997;22(12):488–490.

20. Shivanika C, Deepak Kumar S, Ragunathan V, Tiwari P, Sumitha A, Brindha Devi P. Molecular docking, validation, dynamics simulations, and pharmacokinetic prediction of natural compounds against the SARS-CoV-2 main-protease. J Biomol Struct Dyn. 2022;40(2):585–611. Available from: https://doi.org/10.1080/07391102.2020.1815584

21. Hollingsworth SA, Karplus PA. A fresh look at the Ramachandran plot and the occurrence of standard structures in proteins. Biomol Concepts. 2010;1:271–283.

22. Carugo O, Djinovic Carugo K. Half a century of Ramachandran plots. Acta Crystallogr Sect D Biol Crystallogr. 2013;69(8):1333–1341.

23. Gunasekaran K, Ramakrishnan C, Balaram P. Disallowed Ramachandran Conformations of Amino Acid Residues in Protein Structures. J Mol Biol. 996;264(1):191-198.

24. Zhou AQ, Hern CSO, Regan L. Revisiting the Ramachandran plot from a new angle. 2011;20:1166–1171.

25. Tam B, Sinha S, Wang SM. Combining Ramachandran plot and molecular dynamics simulation for structural-based variant classification: Using TP53 variants as model. Comput Struct Biotechnol J. 2020;18:4033–4039.

26. Lüthy R, Bowie JU, Eisenberg D. Assessment of protein models with three-dimensional profiles. Nature. 1992;356(6364):83-85.

27. Numan M, Anwer S, Id B, Rehman M, Mustafa G, Sadia B. Phylogenetic analyses , protein modeling and active site prediction of two pathogenesis related (PR2 and PR3) genes from bread wheat. PloS One. 2021;1–16.

28. Mahgoub EO, Bolad A. Correctness and accuracy of template-based modeled single chain fragment variable (scFv) protein anti-breast cancer cell line (MCF-7). OJGen. 2013;2013(September):183–194.

29. Wallner B, Elofsson A. Identification of correct regions in protein models using structural, alignment, and consensus information. Protein Sci. 2006;15(4):900–913.

30. Mazumder L, Hasan R, Fatema K, Islam Z. Structural and Functional Annotation and Molecular Docking Analysis of a Hypothetical Protein from Neisseria gonorrhoeae: An In-Silico Approach. Biomed Res Int. 2022;2022(1):4302625.

31. Colovos C, Yeates TO. Verification of protein structures: Patterns of nonbonded atomic interactions. Protein Sci. 1993;2(9):1511–9.

32. Dutta B, Banerjee A, Chakraborty P, Bandopadhyay R. In silico studies on bacterial xylanase enzyme: Structural and functional insight. J Genet Eng Biotechnol. 2018;16(2):749–756.

33. Goodsell DS, Dutta S, Zardecki C, Voigt M, Berman HM, Burley SK. The RCSB PDB “molecule of the month”: inspiring a molecular view of biology. PLoS Biol. 2015;13(5):e1002140.

34. Burley SK, Bhikadiya C, Bi C, Bittrich S, Chao H, Chen L, Craig PA, Crichlow GV, Dalenberg K, Duarte JM, Dutta S. RCSB Protein Data Bank (RCSB.org): delivery of experimentally-determined PDB structures alongside one million computed structure models of proteins from artificial intelligence/machine learning. Nucleic Acids Res. 2023;51(D1):D488-508.

35. Goodsell DS, Zardecki C, Di Costanzo L, Duarte JM, Hudson BP, Persikova I, Segura J, Shao C, Voigt M, Westbrook JD, Young JY. RCSB Protein Data Bank: Enabling biomedical research and drug discovery. Protein Sci. 2020;29(1):52–65.

36. Mohanty M, Mohanty PS. Molecular docking in organic, inorganic, and hybrid systems: a tutorial review. Monatshefte für Chemie - Chem Mon. 2023;154(7):683–707.

37. Arya N, Kaur A. Molecular Docking: A Review Paper. 2022;(1):140–146.

38. Agu PC, Afiukwa CA, Orji OU, Ezeh EM, Ofoke IH, Ogbu CO, Ugwuja EI, Aja PM. Molecular docking as a tool for the discovery of molecular targets of nutraceuticals in diseases management. Sci Rep. 2023;1–18.

39. Owoloye AJ, Ligali FC, Enejoh OA, Musa AZ, Aina O, Idowu ET, Oyebola KM. Molecular docking, simulation and binding free energy analysis of small molecules as Pf HT1 inhibitors. PloS one. 2022;17(8):e0268269.

40. Hevener KE, Zhao W, Ball DM, Babaoglu K, Qi J, White SW, Lee RE. Validation of molecular docking programs for virtual screening against dihydropteroate synthase. J Chem Inf Model. 2009;49(2):444–460.

41. Ramírez D, Caballero J. Is It Reliable to Take the Molecular Docking Top Scoring Position as the Best Solution without Considering Available Structural Data? Molecules. 2018;23(5):1–17.

42. Castro-Alvarez A, Costa AM, Vilarrasa J. The Performance of several docking programs at reproducing protein-macrolide-like crystal structures. Molecules. 2017;22(1):136.

43. Sargsyan K, Grauffel C, Lim C. How Molecular Size Impacts RMSD Applications in Molecular Dynamics Simulations. J Chem Theory Comput. 2017;13(1):1518–24.

44. Ruswanto R, Nofianti T, Mardianingrum R, Kesuma D. Design, molecular docking, and molecular dynamics of thiourea-iron (III) metal complexes as NUDT5 inhibitors for breast cancer treatment. Heliyon. 2022;8(9).

45. Morris GM, Goodsell DS, Halliday RS, Huey R, Hart WE, Belew RK, Olson AJ. Automated Docking Using a Lamarckian Genetic Algorithm and an Empirical Binding Free Energy Function. J. Comput. Chem. 1998;19(14):1639–1662.

46. Li W, Zi-jun W, Yi L, Yong W, Rui-hua DI. Design and Implementation of Parallel Lamarckian Genetic Algorithm for Automated Docking of Molecules. In 2008 10th IEEE HPCC. 2008;689–694.

47. Muhammed MT, Aki-yalcin E. Molecular Docking: Principles, Advances, and Its Applications in Drug Discovery. Lett Drug Des. Discov. 2024;21(3):480-495.

48. Lewis-atwell T, Townsend PA, Grayson MN. Comparing the Performances of Force Fields in Conformational Searching of Hydrogen-Bond-Donating Catalysts. J Org Chem. 2022 27;87(9):5703-5712.

49. Morris GM, Huey R, Lindstrom W, Sanner MF, Belew RK, Goodsell DS, Olson AJ. AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. J Comput Chem. 2009;30(16):2785–2791.

50. Vong ADY, Hwang SS, Chee XW, Sim EUH. Computational ligand–receptor docking simulation of piperine with apoptosis-associated factors. J Appl Biol Biotechnol. 2022;10(1):38–44.

51. Yunta M. Docking and ligand binding affinity: uses and pitfalls. Am J Model Optim. 2016;4(3):74-114.

52. Reich V, Majumdar A, Müller M, Busch S. Comparison of molecular dynamics simulations of water with neutron and X-ray scattering experiments. EPJ Web Conf 272. 2022;01015.

53. Srivastava A, Malik S, Debnath A. Heterogeneity in structure and dynamics of water near bilayers using TIP3P and TIP4P/2005 water models. Chem Phys. 2019;525:110396.

54. Kalibaeva G, Ferrario M, Ciccotti G. Constant pressure-constant temperature molecular dynamics: A correct constrained NPT ensemble using the molecular virial. Mol Phys. 2003;101(6):765–778.

55. Kadoura A, Salama A, Sun S. Switching Between the NVT and NPT Ensembles Using the Reweighting and Reconstruction Scheme. Procedia-Procedia Comput Sci. 2015;51:1259–1268.

56. Al-Karmalawy AA, Dahab MA, Metwaly AM, Elhady SS, Elkaeed EB, Eissa IH, Darwish KM. Molecular Docking and Dynamics Simulation Revealed the Potential Inhibitory Activity of ACEIs Against SARS-CoV-2 Targeting the h ACE2 Receptor. Front Chem. 2021;9.

57. Tomasiak L, Karch R, Schreiner W. Long-Term Molecular Dynamics Simulations Reveal Flexibility Properties of a Free and TCR-Bound pMHC-I System. 2020 IEEE Int Conf Bioinforma Biomed. 2020;1295–1302.

58. Borjian Boroujeni M, Shahbazi Dastjerdeh M, Shokrgozar MA, Rahimi H, Omidinia E. Computational driven molecular dynamics simulation of keratinocyte growth factor behavior at different pH conditions. Informatics Med. 2021;23:100514. Available from: https://doi.org/10.1016/j.imu.2021.100514

59. Singh A, Mishra A. Molecular Dynamics Free Energy Simulation study to Investigate Binding Pattern of Isoliquiritigenin as PPAR???? Agonist. Res Sq. 2022;1–20.

60. Shivanika C, Kumar D, Ragunathan V, Tiwari P, Sumitha A, others. Molecular docking, validation, dynamics simulations, and pharmacokinetic prediction of natural compounds against the SARS-CoV-2 main-protease. J Biomol Struct & Dyn. 2020;1.

61. Hollingsworth SA, Dror RO. Molecular Dynamics Simulation for All. Neuron. 2018;99(6):1129–1143. Available from: https://doi.org/10.1016/j.neuron.2018.08.011

62. Ruswanto R. Molecular docking of four isonicotinohydrazide derivatives on mycobacterium tuberculosis enoyl-acyl carrier protein reductase (InhA). J Kesehat Bakti Tunas Husada. 2015;13(1):135–141.

63. Listyani TA, Fauzi F, Ariyanti A, Wardani TS. In Silico Adme and Toxicity Studies of Derivative Phthalimide Compounds as Non-Nucleoside HIV-1 Reverse Transcriptase Inhibitor. In: Proceedings of the International Conference on Nursing and Health Sciences. 2022. p. 17–26.

64. Muslikh FA, Prasetyawan F, Hesturini RJ, Sari F, Mawarni OK. Physicochemical and Pharmacokinetic Property Prediction of Substances in Centella asiatica using pkCSM: Prospects for the Creation of Therapeutic Formulations from Plant Isolates. Int J Glob Sustain Res. 2023;1(3):485–494.

65. Ruswanto R, Nofianti T, Mardianingrum R, Lestari T. Design and In Silico Study of Kuwanon-H Derivatives as Anti-HIV Drug Candidates. J Kim Val. 2018;4(1):57–66.