Insecticidal Potential of Juniperus phoenicea Essential Oil against Callosobruchus maculatus: Chemical Composition, Biological Evaluation, and Molecular Docking Analysis

Main Article Content

Samara Y. Khalil
El Abdali Youness
Beniaich Ghada
Mohamed Chebaibi
Taibi Mohamed
Amine Elbouzidi
Flouchi Rachid
Aimad Allali
Aouane El mahjoub

Abstract

Currently, biopesticides derived from essential oils (EOs) are gaining attention as eco-friendly alternatives to synthetic pesticides. This study aimed to investigate the chemical composition and insecticidal properties of Juniperus phoenicea EO. Essential oil was obtained from Juniperus phoenicea leaves by hydrodidtillation. The chemical constituents of the EO was identified by Gas chromatography-mass spectrometric (GC-MS) analysis The insecticidal activity of the EO was evaluated by contact and inhalation tests against the chickpea weevil Callosobruchus maculatus. The potential mechanisms of the insecticidal activity of the EO was elucidated by in silico molecular docking study. Juniperus phoenicea EO was obtained at a yield of 1.10%. GC-MS analysis identified 30 compounds, with α-pinene (43.61%) and manoyl oxide (11.50%) as the major components. In vivo tests on Callosobruchus maculatus showed significant insecticidal effects of the EO, with lethal doses (LC50) of 24.11 μL/L and 26.79 μL/L for inhalation and contact exposure, respectively, after 96 hours. The EO also reduced oviposition and adult emergence by 23.65% and 27.16%, respectively at 20 μL/L. In silico molecular docking identified caryophyllene oxide as the most active compound against acetylcholinesterase (PDB: 6ARY) with a glide score of -7.209 kcal/mol. Myrtenal showed the highest efficacy against juvenile hormone (PDB: 5V13) with a glide score of -7.116 kcal/mol, while rosifoliol demonstrated notable activity against chitin synthase 2 (PDB: 7STM) with a glide score of -5.848 kcal/mol.
These findings highlight the potential of J. phoenicea EO as a sustainable, natural bioinsecticide to control C. maculatus, offering an environmentally friendly alternative to synthetic pesticides.

Downloads

Download data is not yet available.

Article Details

How to Cite
Khalil, S. Y., Youness, E. A., Ghada, B., Chebaibi, M., Mohamed, T., Elbouzidi , A., Rachid, F., Allali , A., & El mahjoub, A. (2025). Insecticidal Potential of Juniperus phoenicea Essential Oil against Callosobruchus maculatus: Chemical Composition, Biological Evaluation, and Molecular Docking Analysis. Tropical Journal of Natural Product Research (TJNPR), 9(4), 1496 – 1505. https://doi.org/10.26538/tjnpr/v9i4.18
Section
Articles
Author Biographies

Flouchi Rachid, Microbial Biotechnology and Bioactive Molecules Laboratory, Sciences and Technologies Faculty, Sidi Mohamed Ben Abdellah University, Fez, Morocco

Ministry of Health and Social Protection, High Institute of Nursing Professions and Health Techniques annex Taza, Fez, Morocco

Aimad Allali , Laboratory of Plant, Animal and Agro-industry Productions, Faculty of Sciences, University of Ibn Tofail, Kenitra, Morocco

Ministry of Health and Social Protection, High Institute of Nursing Professions and Health Techniques annex Taza, Fez, Morocco

References

1. Jallow MF, Awadh DG, Albaho MS, Devi VY, Ahmad N. Monitoring of pesticide residues in commonly used fruits and vegetables in Kuwait. Int J Environ Res Public Health. 2017; 14(8):833.

2. de Araújo Ribeiro IAT, da Silva R, da Silva AG, Milet-Pinheiro P, Paiva PMG, Navarro DM do AF, da Silva MV, Napoleao TH, dos Santos Correia MT. Chemical characterization and insecticidal effect against Sitophilus zeamais (maize weevil) of essential oil from Croton rudolphianus leaves. Crop Prot. 2020; 129:105043.

3. El Abdali Y, Agour A, Allali A, Bourhia M, El Moussaoui A, Eloutassi N, Salamatullah AM, Alzahrani A, Ouahmane L, Aboul-Soud MAM, Giesy JP, Bouia A. Lavandula dentata L.: Phytochemical analysis, antioxidant, antifungal, and insecticidal activities of its essential oil. Plants. 2022; 11(3):311.

4. Matos LF, Barbosa DR, Lima EC, Dutra KA, Navarro DMAF, Alves JLR, Silva GN. Chemical composition and insecticidal effect of essential oils from Illicium verum and Eugenia caryophyllus on Callosobruchus maculatus in cowpea. Ind Crops Prod. 2020; 145:112088.

5. Allali A, Rezouki S, Louasté B, Bouchelta Y, El Kamli T, Eloutassi N, Fadli M. Study of the nutritional quality and germination capacity of Cicer arietinum infested by Callosobruchus maculatus (Fab.). Plant Cell Biotechnol Mol Biol. 2020; 21(15-16):44-56.

6. Wagner LS, Sequin CJ, Foti N, Campos-Soldini MP. Insecticidal, fungicidal, phytotoxic activity and chemical composition of Lavandula dentata essential oil. Biocatal Agric Biotechnol. 2021; 35:102092.

7. Meloni M, Perini D, Filigheddu R, Binelli G. Genetic variation in five Mediterranean populations of Juniperus phoenicea as revealed by

inter-simple sequence repeat (ISSR) markers. Ann Bot. 2006; 97(2):299-304.

8. Nedjimi B, Beladel B, Guit B. Multi-element determination in medicinal Juniper tree (Juniperus phoenicea) by instrumental neutron activation analysis. J Radiat Res Appl Sci. 2015; 8(2):243-246.

9. Akrout A. Study of the essential oils of some pastoral plants from the Matmata region (Tunisia). Cahiers Options Méditerranéennes. 2004; 62:289-292.

10. El abdali Y, Jalte M, Agour A, Allali A, Chebaibi M, Bouia A. Chemical composition, free radicals, pathogenic microbes, α-amylase and α-glucosidase suppressant proprieties of essential oil derived from Moroccan Mentha pulegium: in silico and in vitro approaches. J Biol Biomed Res. 2024; 1(1):46-61.

11. El abdali Y, Beniaich G, Mahraz AM, El Moussaoui A, Bin Jardan YA, Akhazzane M, Chebaibi M, Nafidi HA, Eloutassi N, Bourhia M, Bouia A. Antibacterial, Antioxidant, and in silico NADPH Oxidase Inhibition Studies of Essential Oils of Lavandula dentata against Foodborne Pathogens. Evid-Based Complement Altern Med. 2023; 2023:1-12.

12. Adams RP. Identification of essential oil components by gas chromatography/mass spectrometry. 4th ed. Carol Stream, IL: Allured Pub. Corp; 2007.

13. Allali A, Bourhia M, Hadin H, Rezouki S, Salamatullah AM, Soufan W, Hail ZR, Ouahmane L, El abdali Y, Eloutassi N, Fadli M. Essential oils from Artemisia herba alba Asso., Maticaria recutita L., and Dittrichia viscosa L. (asteraceae): A promising source of eco-friendly agents to control Callosobruchus maculatus fab. Warehouse pest. J Chem. 2022; 2022:1-14.

14. Allali A, El abdali Y, Rezouki S, El moussaoui A, Bourhia M, Salamatullah AM, Alzahrani A, Alyahya HK, Albadr NA, Nafidi HA, Ouahmane L, Fadli M. Chemical composition and antifungal, insecticidal and repellent activity of essential oils from Origanum compactum Benth. Used in the Mediterranean diet. Front Plant Sci. 2022; 13: 798259.

15. Amrati FE-Z, Elmadbouh OHM, Chebaibi M, Soufi B, Conte R, Slighoua M, Saleh A, Al Kamaly O, Drioiche A, Zair T, Edderkaoui M, Bousta D. Evaluation of the toxicity of Caralluma europaea (CE) extracts and their effects on apoptosis and chemoresistance in pancreatic cancer cells. J Biomol Struct Dyn. 2023; 41(17):8517-8534.

16. Rants'o TA, Van der Westhuizen CJ, van Zyl RL. Optimization of covalent docking for organophosphates interaction with Anopheles acetylcholinesterase. J Mol Graphics Modell. 2022; 110:108054.

17. Ramos RS, Macêdo WJC, Costa JS, da Silva CHTP, Rosa JMC, da Cruz JN, de Oliveira MS, de Aguiar Andrade EH, E Silva RBL, Souto RNP, Santos CBR. Potential inhibitors of the enzyme acetylcholinesterase and juvenile hormone with insecticidal activity: Study of the binding mode via docking and molecular dynamics simulations. J Biomol Struct Dyn. 2020; 38(16):4687-4709.

18. Abd El FE-ZA, Hifney AF, Mohany M, Al-Rejaie SS, Banach A, Sayed AM. Insecticidal activity of brown seaweed (Sargassum latifolium) extract as potential chitin synthase inhibitors: Toxicokinetic and molecular docking approaches. S Afr J Bot. 2023; 160:645-656.

19. Lafraxo S, El Moussaoui A, Bin Jardan YA, El Barnossi A, Chebaibi M, Baammi S, Ait Akka A, Chebbac K, Akhazzane M, Chelouati T, Nafidi

H, Khallouki F. GC-MS Profiling, In Vitro Antioxidant, Antimicrobial, and In Silico NADPH Oxidase Inhibition Studies of Essential Oil of Juniperus thurifera Bark. Evid-Based Complement Alternat Med. 2022;2022.

20. Keskes H, Mnafgui K, Hamden K, Damak M, El Feki A, Allouche N. In vitro anti-diabetic, anti-obesity and antioxidant properties of Juniperus phoenicea L. leaves from Tunisia. Asian Pac J Trop Biomed. 2014; 4:S649-S655.

21. Ait-Ouazzou A, Lorán S, Arakrak A, Laglaoui A, Rota C, Herrera A, Pagán R, Conchello P. Evaluation of the chemical composition and

antimicrobial activity of Mentha pulegium, Juniperus phoenicea, and Cyperus longus essential oils from Morocco. Food Res Int. 2012; 45:313-319.

22. Mansouri N, Satrani B, Ghanmi M, El Ghadraoui L, Aafi A. Chemical and biological study of Juniperus phoenicea ssp. lycia and Juniperus phoenicea ssp. Turbinata essential oils from Morocco. Biotechnol Agron Soc Environ. 2010;15(3):415-424.

23. Ghouti D, Rached W, Abdallah M, Pires TC, Calhelha RC, Alves MJ, Abderrahmane LH, Barros L, Ferreira IC. Phenolic profile and in vitro

bioactive potential of Saharan Juniperus phoenicea L. and Cotula cinerea (Del) growing in Algeria. Food Funct. 2018; 9:4664-4672.

24. Lüttge U, Kluge M, Bauer G. Botany: basic treatise. Ed. Tec. & doc. Lavoisier, Paris. 1992. 205-218 p.

25. Gruľová D, Baranová B, Sedlák V, De Martino L, Zheljazkov VD, Konečná M, Poráčová J, Caputo L, De Feo V. Juniperus horizontalis Moench: Chemical composition, herbicidal and insecticidal activities of its essential oil and of its main component, sabinene. Molecules. 2022; 27(23):8408.

26. Jemli ME, Khattabi N, Lachqer K, Touati D, Jemli YE, Marmouzi I, Wakrim EM, Cherrah Y, Alaoui K. Antifungal and insecticidal properties of Juniperus thurifera leaves. Nat Prod Commun. 2018;13(8):1934578X1801300831.

27. Guo S, Zhang W, Liang J, You C, Geng Z, Wang C, Du S. Contact and repellent activities of the essential oil from Juniperus formosana against two stored product insects. Molecules. 2016; 21(4):504.

28. El Jilali SB, Ihamdane R, Moubchir T, Beniaich G, Mssillou I, El Abdali Y, Allali A, Khadmaoui A. Lavandula dentata Essential Oils: A Bio-Insecticide for an Agroecological Approach to Protecting Chickpea Seeds against Callosobruchus maculatus. Trop J Nat Prod Res. 2023;

7(11):5123-5127.

29. Chang LC, Cho IK, Li QX. Insecticidal activity of basil oil, trans-anethole, estragole, and linalool to adult fruit flies of Ceratitis capitata, Bactrocera dorsalis, and Bactrocera cucurbitae. J Econ Entomol. 2009; 102(1):203-209.

30. Sun JS, Feng Y, Wang Y, Li J, Zou K, Liu H, Hu Y, Xue Y, Yang L, Du S, Wu Y. α-pinene, caryophyllene and β-myrcene from Peucedanum terebinthaceum essential oil: Insecticidal and repellent effects on three stored-product insects. Rec Nat Prod. 2020; 14(3):189.

31. França LP, Amaral ACF, Ramos AS, Ferreira JLP, Maria ACB, Oliveira KMT, Araujo ES Jr, Branches ADS, Silva JN, Silva NG, Barros GA, Chaves FCM, Tadei WP, Silva JRA. Piper capitarianum essential oil: a promising insecticidal agent for the management of Aedes aegypti and Aedes albopictus. Environ Sci Pollut Res. 2021; 28:9760–9776.

32. Enan E. Insecticidal activity of essential oils: octopaminergic sites of action. Comp Biochem Physiol Part C: Toxicol Pharmacol. 2001; 130(3):325-373.

33. Douiri LF, Boughdad A, Alaoui MH, Moumni M. Biological activity of Rosmarinus officinalis essential oils against Callosobruchus maculatus (Coleoptera, Bruchinae). J Biol Agric Healthc. 2014; 4(2):5-14.

34. Moura EDS, Faroni LRDA, Zanuncio JC, Heleno FF, Prates LHF. Insecticidal activity of Vanillosmopsis arborea essential oil and of its major constituent α-bisabolol against Callosobruchus maculatus (Coleoptera: Chrysomelidae). Sci Rep. 2019; 9(1):3723.

35. Tripathi AK, Prajapati V, Aggarwal KK, Kumar S. Insecticidal and ovicidal activity of the essential oil of Anethum sowa Kurz against Callosobruchus maculatus F. (Coleoptera: Bruchidae). Int J Trop Insect Sci. 2001; 21(1):61-66.

36. Wightman JA and Southgate BJ. Egg morphology, host, and probable regions of origin of the bruchids (coleoptera: Bruchidae) that infest stored pulses—an identification aid. New Zeal J Exp Agric. 1982; 10(1):95–99.

37. Nyamador SW, Ketoh GK, Koumaglo HK, Glitho IA. Ovicidal and Larvicidal activities of the Essential Oils of Cymbopogon giganteus Chiov. and of Cymbopogon nardus L. Rendle on the immature stages of Callosobruchus maculatus F. and of Callosobruschus subinnotatus Pic. (Coleoptera: Bruchidae). J Soc Ouest-Afr Chim. 2010; 29:67–79.

38. Tong F, Coats JR. Effects of monoterpenoid insecticides on [3H]-TBOB binding in house fly GABA receptor and 36Cl− uptake in American cockroach ventral nerve cord. Pestic Biochem Physiol. 2010; 98:317–324.

39. Chebaibi M, Mssillou I, Allali A, Bourhia M, Bousta D, Boschi Gonçalves RF, Hoummani H, Aboul-Soud MAM, Augustyniak M, Giesy JP, Achour S. Antiviral Activities of Compounds Derived from Medicinal Plants against SARS-CoV-2 Based on Molecular Docking of Proteases. J Biol Biomed Res. 2024; 1(1):10-30.

40. Shahriari M, Zibaee A, Sahebzadeh N, Shamakhi L. Effects of α-pinene, trans-anethole, and thymol as the essential oil constituents on antioxidant system and acetylcholine esterase of Ephestia kuehniella Zeller (Lepidoptera: Pyralidae). Pestic Biochem Physiol. 2018; 150:40–47.

41. Castillo-Morales RM, Serrano SO, Villamizar ALR, Mendez-Sanchez SC, Duque JE. Impact of Cymbopogon flexuosus (Poaceae) essential oil and primary components on the eclosion and larval development of Aedes aegypti. Sci Rep. 2021; 11(1): 24291.

42. Herrera-Calderon O, Chavez H, Enciso-Roca EC, Común-Ventura PW, Hañari-Quispe RD, Figueroa-Salvador L, Loyola-Gonzales E, Pari-Olarte JB, Aljarba NH, Alkahtani S, Batiha GE-S. GC-MS Profile, Antioxidant Activity, and In Silico Study of the Essential Oil from Schinus molle L. Leaves in the Presence of Mosquito Juvenile Hormone-Binding Protein (mJHBP) from Aedes aegypti. BioMed Res Int. 2022; 2022:5601531.

43. Shah S, Ma M, Ali A, Kaya M, Li XG, Wu G, Yang FL. Effects of diallyl trisulfide, an active substance from garlic essential oil, on structural chemistry of chitin in Sitotroga cerealella (Lepidoptera: Gelechiidae). Pest Biochem Physiol. 2021; 172:104765.

44. Shah S, Hafeez M, Wu MY, Zhang SS, Ilyas M, Wu G, Yang FL. Downregulation of chitin synthase A gene by diallyl trisulfide, an active substance from garlic essential oil, inhibits oviposition and alters the morphology of adult Sitotroga cerealella. J Pest Sci. 2020; 93:1097-1106.