Combating Hypertension with the Dual Power of Oleic and Alpha-Linolenic Acids in Lipopolysaccharide–Induced Hypertensive Male Wistar Rats
Main Article Content
Abstract
Hypertension, a persistent blood pressure above 140/90 mmHg, is one of the most prevalent cardiovascular diseases and a public health concern. Consumption of omega-3 polyunsaturated fatty acids (ω-3 PUFAs) and monounsaturated fatty acids (MUFAs) has been linked to anti-inflammatory characteristics and a rise in high-density lipoprotein (HDL). Therefore, this study examined the combined impact of oleic and alpha-linoleic acids post-treatment on lipopolysaccharide (LPS) induced hypertension in Wistar rats. Forty-two male Wistar rats were used in the study (n=7 per group): control (normal saline), negative control (LPS, 0.001 µg/kg), LPS + oleic + alpha-linoleic acid, oleic + alpha-linoleic acid (10 mg/kg), oleic acid (10 mg/kg) only, and alpha-linoleic acid (10 mg/kg) only. After induction of hypertension with LPS, the rats received treatment orally for three (3) weeks. Hypertension was measured using a CONTEC 08A VET sphygmomanometer via the tail vein. Colourimetric and enzyme-linked immunosorbent assay (ELISA) techniques were used to determine the biochemical parameters. The results showed that the oleic and alpha-linoleic acids increased plasma endothelial nitric oxide synthase (eNOS) levels, reduced blood pressure, plasma IL-6, angiotensin-converting enzyme 2, angiotensin II, induced nitric oxide, troponin T, and kidney uric acid levels compared to the LPS group. This study suggests that the combination of oleic and alpha-linoleic acids has a synergistic effect in reducing LPS-induced hypertension in Wistar rats by lowering blood pressure, plasma inflammatory markers, kidney uric acid levels, and by increasing plasma eNOS levels.
Downloads
Article Details

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
References
1. Tang N, Ma J, Tao R, Chen Z, Yang Y, He Q, Lv Y, Lan Z, Zhou J. The effects of the interaction between BMI and dyslipidemia on
hypertension in adults. Sci. Rep. 2022;12(1):927.
2. Mach F, Baigent C, Catapano AL, Koskinas KC, Casula M, Badimon L, Chapman MJ, De Backer GG, Delgado V, Ference BA, Graham IM. 2019 ESC/EAS Guidelines for the management of dyslipidaemias: lipid modification to reduce cardiovascular risk. Eur. Heart J. 2020; 41(1), 111–188. https://doi.org/10.1093/eurheartj/ehz455
3. Benjamin EJ, Blaha MJ, Chiuve SE, Cushman M, Das SR, Deo R, de Ferranti SD, Floyd J, Fornage M, Gillespie C, Isasi CR, Jiménez MC, Jordan LC, Judd SE, Lackland D, Lichtman JH, Lisabeth L, Liu S, Longenecker CT, American Heart Association Statistics Committee and Stroke Statistics Subcommittee. Heart Disease and Stroke Statistics-2017 Update: A Report From the American Heart Association. Circulation. 2017;135(10):e146-e603. doi: 10.1161/CIR.0000000000000485.
4. Williams B, Mancia G, Spiering W, Agabiti Rosei E, Azizi M, Burnier M, Clement DL, Coca A, de Simone G, Dominiczak A, Kahan T, Mahfoud F, Redon J, Ruilope L, Zanchetti A, Kerins M, Kjeldsen SE, Kreutz R, Laurent S, Lip GYH, McManus. ESC/ESH Guidelines for the management of arterial hypertension. Eur Heart J. 2018;39(33):3021-3104. doi: 10.1093/eurheartj/ehy339. Erratum in: Eur Heart J. 2019;40(5):475. doi: 10.1093/eurheartj/ehy686.
5. Adeloye D, Basquill C, Aderemi AV, Thompson JY, Obi FA. An estimate of the prevalence of hypertension in Nigeria: a systematic review and meta-analysis. J. Hypertens. 2015;33(2):230-42.
6. Geng C, Guo Y, Wang C, Cui C, Han W, Liao D, Jiang P. Comprehensive evaluation of lipopolysaccharide-induced changes in rats based on metabolomics. J. Inflamm. Res.2020:477-86.
7. Oliveira J, Reygaert WC. Gram-Negative Bacteria. In: StatPearls. StatPearls Publishing, Treasure Island (FL); 2023. PMID: 30855801.
8. Al-Qahtani AA, Alhamlan FS, Al-Qahtani AA. Pro-inflammatory and anti-inflammatory interleukins in infectious diseases: A comprehensive review. Trop. Med. Infect. Dis. 2024;9(1):13. https://doi.org/10.3390/tropicalmed9010013
9. Calder PC. Polyunsaturated fatty acids, inflammation, and immunity. Lipids. 2001; 36(9), 1007-1024
10. White B. Dietary fatty acids. Am Fam Physician. 2009; 80(4), 345–350
11. Kapoor B, Kapoor D, Gautam S. Dietary Polyunsaturated Fatty Acids (PUFAs): Uses and Potential Health Benefits. Curr Nutr Rep 2021; 10, 232–242. https://doi.org/10.1007/s13668-021-00363-3
12. Enas EA, Dharmarajan TS. Dietary Fats and Cardiovascular Disease: Current Evidence and Practical. Clinical Handbook of Coronary Artery Disease. 2020; 176.
13. Monfort-Pires M, Delgado-Lista J, Gomez-Delgado F, Lopez-Miranda J, Perez-Martinez P, Ferreira SR. Impact of the content of fatty acids of oral fat tolerance tests on postprandial triglyceridemia: systematic review and meta-analysis. Nutrients. 2016;8(9):580.
14. Oghenerukevwe O, Olalekan OA, Chukwuebuka NB, Hakeem OA, Obumneme EO, Emmanuel AO, Tolulope AN. Bioactive Synergistic
Efficacy And Modulatory Responses Of Combined Oleic And Linoleic Acids Supplementation In Lipopolysaccharide-Induced Pulmonary Hypertensive. J. Pharm. Negat. 2023 Mar 20:3271-83.
15. Kumari S, Deori M, Elancheran R, Kotoky J, Devi R. In vitro and in vivo antioxidant, anti-hyperlipidemic properties and chemical characterization of Centella asiatica (L.) extract. Front. Pharmacol. 2016;7:400.
16. Grylls A, Seidler K, Neil J. Link between microbiota and hypertension: Focus on LPS/TLR4 pathway in endothelial dysfunction and vascular inflammation, and therapeutic implication of probiotics. Biomed. Pharmacother. 2021;137:111334.
17. Yamagata K. Fatty acids act on vascular endothelial cells and influence the development of cardiovascular disease. Prostaglandins Other Lipid Mediat. 2023;165:106704.
18. Li G, Wang X, Yang H, Zhang P, Wu F, Li Y, Zhou Y, Zhang X, Ma H, Zhang W, Li J. α-Linolenic acid but not linolenic acid protects against hypertension: Critical role of SIRT3 and autophagic flux. Cell Death Dis. 2020;11(2):83.
19. Lu X, Li G, Liu Y, Luo G, Ding S, Zhang T, Li N, Geng Q. The role of fatty acid metabolism in acute lung injury: a special focus on immunometabolism. Cell. Mol. Life Sci. 2024;81(1):120.https://doi.org/10.1007/s00018-024-05131-4
20. Kim DC, Park JS, Yoon CS, Kim YC, Oh H. Nardostachin from Nardostachys jatamansi exerts anti‑neuroinflammatory effects through TLR4/MyD88‑related suppression of the NF‑κB and JNK MAPK signaling pathways in lipopolysaccharide‑induced BV2 and primary microglial cells. Mol. Med. Rep. 2021;23(1):1- https://doi.org/10.3892/mmr.2020.11720
21. Fuertes PO. Recent Developments in Antioxidants from Natural Sources In Biochemistry. 2023. https://doi.org/10.5772/intechopen.104365
22. Santa-María C, López-Enríquez S, Montserrat-de la Paz S, Geniz I, Reyes-Quiroz ME, Moreno M, Palomares F, Sobrino F, Alba G. Update on anti-inflammatory molecular mechanisms induced by oleic acid. Nutrients. 2023;15(1):224.. https://doi.org/10.3390/nu15010224.
23. Sarkar C, Mondal M, Torequl Islam M, Martorell M, Docea AO, Maroyi A, Sharifi-Rad J, Calina D. Potential therapeutic options for COVID-19: current status, challenges, and future perspectives. Front. Pharmacol. 2020;11:572870.
24. Zhang X, Ritonja JA, Zhou N, Chen BE, Li X. Omega‐3 polyunsaturated fatty acids intake and blood pressure: a dose‐response meta‐analysis of randomized controlled trials. J. Am. Heart Assoc. 2022: 7;11(11):e025071.