Utilization potential of Pleurotus pulmonarius LAU09 (JF736658) on Crude oil contaminated Substrate
Main Article Content
Abstract
White-rot fungi remain dynamic to an extensive series of materials using their extra-cellular lignin-modifying enzymes that has a low substrate-specificity. This study is aimed at evaluating the ability of Pleurotus pulmonarius LAU09 (JF736658) to biodegrade and utilize crude oil contaminated substrate. Substrates for mushroom cultivation were prepared by mixing sawdust, CaCO3, NPK fertilizer and wheat bran at ratio of 200:1:2:3 for each crude oil concentration (0.4%, 0.8%, 1.2%, 1.6%, and 2%) used. A significant difference was observed in the Total Petroleum Hydrocarbons (TPH) of the substrates at different crude oil concentrations with progressing incubation days. In 0.4% crude oil-supplemented substrate, the residual TPH at day 0 (96.63%) decreased gradually with progressed incubation time, having a TPH value of 75.47% at day 7, 54.83% and 35.27% at days 21 and 60 respectively; with a total TPH loss of 63.5 %; in 2.0 % however, the percentage fruit yield was 0. The pileus diameter of fruits ranged between 5.933 to 8.067cm while the fresh weight of the fruits was between 3.133 and 4.767g. Each heavy metal analysed at different concentration of crude oil in substrates showed varied degradation rate and different bioaccumulation rate was also observed in the fruit bodies. Lead content in the fruiting body harvested increased with increase in crude oil supplementation; P. pulmonarius LAU09 was able to attain a reasonable degree of degradation of oil at lower concentrations. This study shows the potential of P. pulmonarius cultivation to utilize and biodegrade crude oil contaminated soil.
Downloads
Article Details

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
References
1. Van Hamme, J.D., Singh, A. and Ward, O.P. Recent advances in petroleum microbiology. Microbiol. Mol. Biol. Rev. 2003; 67: 503-549.
2. Singh, H. Mycoremediation: fungal bioremediation. John Wiley & Sons inc., Hoboken, 2 New Jersey 2006; 454–532 (592).
3. Gailiūtė, I., Kavaliauskė, M. and Aikaitė-Stanaitienė, J. (2011) Changes in total oil hydrocarbons composition during degradation with sorbent bacterial preparation. Biologjia 2011; 57(2): 70-77.DOI:10.6001/biologita.v5712.1831.
4. Agbasi, N.M. and Odiaka, O.N. The Legal Framework for the Protection of Wetlands in Nigeria. JLPG, 2006; 54, 3240-3259
5. Ekanem, S.A., Ejue, B.J., Amimi, P.B. and Adalikwu, R.A. (2010) “Living with oil: Towards an ethics of the environment in the Niger Delta”. Afr Res Rev. 2010; 4 (3):17-30.
6. FME Niger delta natural resource damage assessment and restoration project: Phase I- scoping report. Federal Ministry of Environment, Nigeria Conservation Foundation, WWF Uk, CEESP-IUCN Commission on Environmental, Economic and Social Policy, Abuja, Nigeria, May 31,
2006.
7. Bank, M.K., Mallede, H. and Rathbone, H. Rehisoshere Microbial Characterization in Petroleum Contaminated Soil. Soil Sediment. Contam. 2003; 12(3): 371-385.
8. Nwilo, C.P. and Badejo, T.O. (2005) Impacts and managements of oil spill pollution along the Nigerian coastal areas. Department of Survey and Geoinformatics, University of Lagos, Lagos Nigeria.
9. Kadafa, A.A. Oil exploration and spillage in the Niger delta of Nigeria. Civil Environ. Res. 2012; 2: 38-51.
10.Khan, A.G. Role of soil microbes in the rhizospheres of plants growing on trace metal contaminated soils in phytoremediation. J. Trace Elem. Med. Biol. 2005; 18: 355-364.
11.Lueprom-Chai, E., Lertthamrongsak, W., Pinphanichakarn, P., Thaniyavarn, S., Pattaragulwanit, K. and Juntongjin, K. Biodegradation of PAHs in petroleum-contaminated soil using tamarind leaves as microbial inoculums. Songklanakarin J. Sci. Technol. 2007; 29: 515-527.
12.Sullia, S.B. Environmental Applications of Biotechnology. Asian J. Microbiol. Biotechnol. Environ. Sci. 2004; 4: 65-68.
13.Margesin, R. and Schinner, F. Biodegradation and bioremediation of hydrocarbons in extreme environments. Appl. Microbiol. Biotechnol. 2001; 56: 650-663.
14.Hamman, S. Bioremediation capabilities of white- rot fungi. Biodegradation 2004; 52: 1-5.
15.Chikere, B.O. and Chijioke-Osuji, C.C. Microbial diversity & physico-chemical properties of a crude oil polluted soil. Nigerian J. Microbiol. 2006; 20(2):1039-1046.
16.Busetti, A., Heitz, M., Cuomo, S., Badderand, P. and Traverse, M. Polycyclic aromatic hydrocarbons in aqueous and solid samples from Italian Wastewater Treatment Plant. J Chromatogr. Chem. 2005; 11(2):104-109.
17.Akpoveta, O.V. and Osakwe, S.A. Determination of heavy metal content in refined petroleum products sold in Agbor metropolis, Delta state, Nigeria. 33rd International Conference of the Chemical Society of Nigeria. Kuto, Abeokuta, Ogun State, Nigeria.2010; 10-16.
18.Strong, P. and Burgess, J. Treatment methods for wine related ad distillery wastewaters: a review. Biorem. J. 2008; 12: 70-87.
19.Owabor, C.N., Ogbeide, S.E. and Susu, A.A. “Degradation of polycyclic aromatic hydrocarbons: Model simulation for bioavailability and biodegradation”. Canadian J. Chem. Eng. 2010; 88 (2): 268-276.
20.Oyetayo, O. V. Medicinal Uses of Mushrooms in Nigeria: Towards Full and Sustainable Exploitation. Afr. J. Tradit. Complement. Altern. Med. 20111; 8(3), 267-274.
21.Thenmozhi, R., Arumugam, K., Nagasathya, A., Thajuddin, N. and Paneerselvam, A. (2013) Studies on Mycoremediation of Used Engine Oil Contaminated Soil Samples. Adv. Appl. Sci. Res. 2013; 42:110-118.
22.Adenipekun, C.O. and Lawal, R. Use of mushrooms in bioremediation: A review. Biotechnol. Mol. Biol. Rev. 2012; 7(3): 62-68.
23.Eggen, T. and Majcherczyk, A. Removal of Polycyclic Aromatic Hydrocarbons (PAH) in contaminated soil by white rot fungus Pleurotus ostreatus. Int. Biodeterior. Biodegrad. 1998; 41: 111-117.
24.Adenipekun, C.O. and Fasidi, I.O. Bioremediation of oil polluted soil by Lentinus subnudus a Nigerian white-rot fungus. Afr. J. Biotechnol. 2005; 4: 796-798.
25. Martens, R., Wetzstein, H.G., Zadrazil, F., Capelari, M., Hoffmann, P. and Schmeer, N. Degradation of the fluoroquinolone enrofloxacin by wood rotting fungi. Appl. Environ. Microbiol. 1996; 62: 4206-4209.
26. Acevedo, F.L., Pizzul, M.D.P, Castillo, R., Cuevas, R. and Diez, M.C. Degradation of polycyclic aromatic hydrocarbon by the Chilean white rot fungus Anthracophyllum discolour. J. Hazard. Mater. 2011; 185:212-219.
27. Tsujiyama S, Muraoka T, Takada N. Biodegradation of 2,4-dichlorophenol by shiitake mushroom (Lentinula edodes) using vanillin as an activator. Biotechnol Lett. 2013; 4:1079–1083.
28. Olusola SA, Anslem EE. Bioremediation of a crude oil polluted soil with Pleurotus pulmonarius and Glomus mosseae using Amaranthus hybridus as a test plant. J Bioremed Biodegrad. 2010; 1:113-119. doi:10.4172/2155-6199.1000113.
29. Eskander SB, Abd El-Aziz SM, El-Sayaad H, Saleh HM. Cementation of bioproducts generated from biodegradation of radioactive cellulosic-based waste simulates by mushroom. ISRN Chem. Eng. 2012; doi:10.5402/2012/329676.
30. Rajput Y, Shit S, Shukla A, Shukla K. Biodegradation of malachite green by wild mushroom of Chhatisgrah. J Exp. Sci. 2011; 4:69–72.
31. Adebayo, E.A., Oloke, J.K., Yadav, A. Barooah, M. and Bora, T. C. Improving yield performance of Pleurotus pulmonarius through hyphal anastomosis fusion of dikaryons. World J Microbiol Biotechnol 2013; 29, 1029–1037 https://doi.org/10.1007/s11274-013-1266-8
32. Eze, E. I., Ishiwu, U. M., Agbo, C. U., Chukwudi, U. P., and Odo, J. O. Substrate Effects on the Yield, Proximate, Phytochemical and Vitamin Attributes of Pleurotus pulmonarius Mushroom. Trop. J. Nat. Prod. Res. (TJNPR), 2024; 8(10), 8819-8825.
33. Stoleru E, Vasile C, Oprică L, Yilmaz O. Influence of the Chitosan and Rosemary Extract on Fungal Biodegradation of Some Plasticized PLA-Based Materials. Polymers (Basel). 2020 18;12(2):469
34. Reimers, C. Determination of the Total Petroleum Hydrocarbon Content in Soils by Gas-Chromatography. In: Stegmann, R., Brunner, G., Calmano, W., Matz, G. (eds) Treatment of Contaminated Soil. Springer, Berlin, Heidelberg. 2001 https://doi.org/10.1007/978-3-662-04643-2_40
35. Sarker, N.C., Hossain, M.M., Sultana, N., Mian, I.H., Karim, A.J.M.S. and Amin, S.M.R. Performance of different substrates on the growth and yield of Pleurotus ostreatus (Jacquin Fr). Kumm. Bangl. J. Mushroom. 2007; 1(2): 9-20.
36. A.O.A.C (1999) Official Method of Analysis. Association of Official Analytical Chemists 17th Edition, Washington DC.
37. Ataikiru, T.L., Okerentugba, P.O. and Iheanacho, C.C. Bioremediation of Bonny light crude oil polluted soil by bioaugmentation using yeast isolates (Candida adriatica ZIM 2468 and Candida taoyuanica MYA-4700). Int. Res. J. Public Environ. Health. 2018; 5 (4): 52-61. DOL: https://doi.org/10.15739/irjpeh.18.009.
38. Njoku, K. I., Yussuf, A., Akinola, M. O., Adesuyi, A. A., Jolaoso, A. O. Adedokun, A. H. Mycoremediation of Petroleum Hydrocarbon Polluted Soil by Pleurotus pulmonarius. Ethiop. J. Environ. Stud. Manag. 2016; 9(1): 865 – 875.
39. Madhavi, T., Ashish, S., Shrivastava, M. Comparative In Vitro Assessment of Hydrocarbon Degradation Potential of Pleurotus ostreatus MP 5 and Pleurotus ostreatus MTCC 1804. Nature Environ. Pollut. Technol. 2020; 19(1): 41 – 56.
40. Kortei, N.I., Odamtten, G.T., Obodai, M., Wiafe-Kwagyan, M. and Mensah, D.L.N. Correlations of cap diameter (pileus width), stipe length and biological efficiency of Pleurotus ostreatus (Ex.Fr.) Kummer cultivated on gamma-irradiated and steam-sterilized composted sawdust as an index of quality for pricing. Agric. Food Secur. 2018; 7(35): 1-8.
41. Nurudeen, T.A., Ekpo, E.N., Olasupo, O.O. and Haastrup, N.O. Yield and Proximate Composition of Oyster Mushroom (Pleurotus Sajor - caju) Cultivated on Different Agricultural Wastes. Sci. J. Biotechnol. 2013; ID sjbt-189: 1-5. Doi:10.7237/sjbt/189.
42. Muthu, N. and Shanmugasundaram, K. Proximate and mineral compositions of edible mushroom Agrocybe aegerita. Sci. J. Biotechnol. 2016; 5(1): 116-119.
43. Familoni, T.V., Ogidi, C.O., Akinyele, B.J. and Onifade, A.K. Evaluation of yield, biological efficiency and proximate composition of Pleurotus species cultivated on different wood dusts. Czech Mycol. 2018; 70(1): 33–45.
44. Adenipekun, C.O. and Isikhuemhen, O.S. Bioremediation of Engine Oil Polluted Soil by the Tropical White-Rot Fungus, Lentinus squarrosulus Mont. (Singer). Pak. J. Biol. Sci. 2008; 11: 1634–1637.
45. Alonso, J., Garcia, M.A., Perez-Lopez, M. and Melgar, M.J. The concentrations and bioconcentration factors of copper and zinc in edible mushrooms. Arch. Environ. Contam. Toxicol. 2003; 44: 180–188.
46. Kalac, P. Trace element contents in European species of wild growing edible mushrooms: A review for the period 2000–2009. Food Chem. 2010; 122: 2–15.
47. Garcia, M.A., Alonso, J. and Melgar, M.J. Bioconcentration of chromium in edible mushrooms: Influence of environmental and genetic factors. Food Chem. Toxicol. 2013; 58: 249–254
48. García, M.A., Alonso, J. and Melgar, M.J. Lead in edible mushrooms Levels and bioaccumulation factors. J. Hazard. Mater. 2009; 167: 777–783
49. Klimek, B., Sitarz, A., Choczyński, M. and Niklińska, M. The Effects of Heavy Metals and Total Petroleum Hydrocarbons on Soil Bacterial Activity and Functional Diversity in the Upper Silesia Industrial Region (Poland). Water Air Soil Pollut 2016; 227, 265