Molecular Mechanism of Avicennia marina (Forssk.) Vierh. in Inhibiting Hepatitis C Virus Based on Network Pharmacology and Molecular Docking
Main Article Content
Abstract
Hepatitis C virus (HCV) infection is a significant threat to human health, with a high prevalence in various countries around the world. To reduce its prevalence, natural resources have been reported to provide diverse structures and fewer side effects for developing anti-HCV treatments. Therefore, this study aims to assess the potential of Avicennia Marina (Forssk.) Vierh. (AM) to inhibit HCV infection using network pharmacology and molecular docking methods. The results identified the presence of 12 compounds and 11 core targets, including SRC, AKT1, tumor necrosis factor-α (TNF-α), HSP90AA1, EGFR, BCL2, JUN, PI3KCA, ESR1, CASP3, and HIF1A. In addition, 5 key targets, SRC, AKT1, TNF, HSP90AA1, and ESR1, met the criteria for Degree, Closeness, and Centrality. Molecular docking revealed that several compounds had lower binding energy than native ligands when bound to AKT1, TNF-α, and HSP90AA1. Avicennone D effectively inhibited AKT1 (binding energy of -7.074 kcal/mol) and TNF-α (binding energy of -5.282 kcal/mol), while Avicenol C and Avicennone F showed strong potentials against TNF-α (binding energy of each -6.151 kcal/mol and -5.622 kcal/mol, respectively) and HSP90AA1 (binding energy of each -10.369 kcal/mol and -9.525 kcal/mol, respectively). The inhibition results showed that Stenorpoquinone B had the potential to inhibit TNF-α (binding energy of -6.030 kcal/mol). A total of 10 compounds, including Avicenol A, Avicenol C, Avicequinone A, Avicequinone C, and Avicennone A-G, demonstrated comparable or superior binding energy to the native ligand for HSP90AA1. This study provided insights into molecular mechanisms through which AM could treat HCV infections by targeting key proteins.
Downloads
Article Details

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
References
1. Hanafiah MK, Groeger J, Flaxman AD, Wiersma ST. Global epidemiology of hepatitis C virus infection: New estimates of age-specific antibody to HCV seroprevalence. Hepatology. 2013;57(4):1333-1342.
2. Mitra S, Naskar N, Lahiri S, Chaudhuri P. A study on phytochemical profiling of Avicennia marina mangrove leaves collected from Indian Sundarbans. Sustain. Chem. Environ. 2023;4:100041.
3. Wahyuni TS, Utsubo CA, Hotta H. Promising anti-hepatitis C virus compounds from natural resources. Nat. Prod. Commun. 2016;11(8):1193-1200.
4. Zandi K, Taherzadeh M, Tajbakhsh S, Yaghoubi R, Rastian Z, Sartavi K. Antiviral activity of Avicennia marina leaf extract on HSV-1 and vaccine strain of Polio virus in vero cells. Int. J. Infect. Dis. 2008;12:e298.
5. Lin C-K, Tseng C-K, Chen K-H, Wu S-H, Liaw C-C, Lee J-C. Betulinic acid exerts anti-hepatitis C virus activity via the suppression of NF-κB- and MAPK-ERK1/2-mediated COX-2 expression. Br. J. Pharmacol. 2015;172(18):4481-4492.
6. Devi AS, Rajkumar J, Beenish TK. Detection of antibacterial compound of Avicennia marina against pathogens isolated from urinary tract infected patients. Asian J. Chem. 2014;26(2):458-460.
7. Behbahani M, Zadeh MS, Mohabatkar H. Evaluation of antiherpetic activity of crude extract and fractions of Avicenna marina, in vitro. Antiviral Res. 2013;97(3):376-380.
8. Beula JM, Gnanadesigan M, Rajkumar PB, Ravikumar S, Anand M. Antiviral, antioxidant and toxicological evaluation of mangrove plant from South East coast of India. Asian Pac. J. Trop. Biomed. 2012;2(1, Supplement):S352-S357.
9. Kathiresan K. Chapter 8 - Bioprospecting potential of mangrove resources. In: Patra JK, Mishra RR, Thatoi H, editors. Biotechnological Utilization of Mangrove Resources: Academic Press; 2020. p. 225-241.
10. Premnathan M, Chandra K, Bajpai SK, Kathiresan K. A survey of some Indian marine plants for antiviral activity. Bot. Mar. 1992;35(4):321-324.
11. Luo H, Liu L, Zou J, Zhao J, Sun C, Ou S, Yang J. Network pharmacology study of Seleromitrion diffusa (Willd). R. J. Wang and Scutellaria barbata D. Don in the treatment of chronic atrophic gastritis. Intell. Pharm. 2024;2(1):45-50.
12. Liu T, Xin B, Zhang Q, Li T, Liu Y, Li L, Li Z. Exploring the molecular mechanism of Huangqin-Jinyinhua couplet medicines for the treatment of hand-foot and mouth disease using network pharmacology, molecular docking and bioinformatics databases. Intell. Pharm. 2023;1(2):106-115.
13. Xin B, Liu T, Wu Y, Hu Q, Dong X, Wang H, Li Z. Network pharmacological study of Banxia-Chenpi in the treatment of cough variant asthma in children with phlegm evil accumulation lung syndrome. Intell. Pharm. 2023;1(2):96-105.
14. Fitrianingsih AA, Santosaningsih D, Djajalaksana S, Muti, ah R, Lusida MI, Karyono SS, Prawiro SR. Network Pharmacology and In Silico Investigation on Saussurea lappa for Viral Respiratory Diseases. Trop. J. Nat. Prod. Res. 2024;8(1):5889-5896.
15. Tammu RM, Sitompul LR, Simamora R, Utomo DH, Putri ED. Revealing the Potential of New Immunomodulatory Agents from Katokkon Pepper as a Native Toraja Plant. Trop. J. Nat. Prod. Res. 2025;9(1):240-283.
16. Hadi S, Setiawan D, Komari N, Rahmadi A, Rahman A, Fansuri H, Nastiti K, Nisa K. Network Pharmacology and Docking of Nephrolepis cordifolia as Type-2 Antidiabetic Agent. Trop. J. Nat. Prod. Res. 2024;8(9):8345 – 8835.
17. Karima R, Elya B, Sauriasari R. Mechanism of Action of Glucomannan as a Potential Therapeutic Agent for Type 2 Diabetes Mellitus Based on Network Pharmacology and Molecular Docking Simulation. Trop. J. Nat. Prod. Res. 2023;7(12):5460-5469.
18. Daina A, Michielin O, Zoete V. SwissADME: a free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci. Rep. 2017;7(1):42717.
19. Daina A, Michielin O, Zoete V. SwissTargetPrediction: updated data and new features for efficient prediction of protein targets of small molecules. Nucleic Acids Res. 2019;47(W1):W357-W364.
20. Keiser MJ, Roth BL, Armbruster BN, Ernsberger P, Irwin JJ, Shoichet BK. Relating protein pharmacology by ligand chemistry. Nat. Biotechnol. 2007;25(2):197-206.
21. Rebhan M, Chalifa-Caspi V, Prilusky J, Lancet D. GeneCards: a novel functional genomics compendium with automated data mining and query reformulation support. Bioinformatics. 1998;14(8):656-664.
22. Amberger JS, Bocchini CA, Schiettecatte F, Scott AF, Hamosh A. OMIM.org: Online Mendelian Inheritance in Man (OMIM®), an online catalog of human genes and genetic disorders. Nucleic Acids Res. 2015;43(D1):D789-D798.
23. Jiang L-R, Qin Y, Nong J-L, An H. Network pharmacology analysis of pharmacological mechanisms underlying the anti-type 2 diabetes mellitus effect of guava leaf. Arab J. Chem. 2021;14(6):103143.
24. Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, Amin N, Schwikowski B, Ideker T. Cytoscape: A Software Environment for Integrated Models of Biomolecular Interaction Networks. Genome Res. 2003;13(11):2498-2504.
25. Kanehisa M, Furumichi M, Tanabe M, Sato Y, Morishima K. KEGG: new perspectives on genomes, pathways, diseases and drugs. Nucleic Acids Res. 2017;45(D1):D353-D361.
26. Zhou Y, Zhou B, Pache L, Chang M, Khodabakhshi AH, Tanaseichuk O, Benner C, Chanda SK. Metascape provides a biologist-oriented resource for the analysis of systems-level datasets. Nat. Commun. 2019;10(1):1523.
27. Ge SX, Jung D, Yao R. ShinyGO: a graphical gene-set enrichment tool for animals and plants. Bioinformatics. 2020;36(8):2628-2629.
28. Arba M, Wahyudi ST, Brunt DJ, Paradis N, Wu C. Mechanistic insight on the remdesivir binding to RNA-Dependent RNA polymerase (RdRp) of SARS-cov-2. Comput. Biol. Med. 2021;129:104156.
29. Sastry GM, Adzhigirey M, Day T, Annabhimoju R, Sherman W. Protein and ligand preparation: parameters, protocols, and influence on virtual screening enrichments. J. Comput. Aided Mol. Des. 2013;27(3):221-234.
30. Dong Q, Ren G, Li Y, Hao D. Network pharmacology analysis and experimental validation to explore the mechanism of kaempferol in the treatment of osteoporosis. Sci. Rep. 2024;14(1):7088.
31. Liu Z, Tian Y, Machida K, Lai MMC, Luo G, Foung SKH, Ou J-hJ. Transient Activation of the PI3K-AKT Pathway by Hepatitis C Virus to Enhance Viral Entry. J. Biol. Chem. 2012;287(50):41922-41930.
32. Lee W-P, Liao S-X, Huang Y-H, Hou M-C, Lan K-H. Akt1 is involved in HCV release by promoting endoplasmic reticulum-to-endosome transition of infectious virions. Life Sci. 2024;338:122412.
33. Han L, Huang X, Dahse H-M, Moellmann U, Fu H, Grabley S, Sattler I, Lin W. Unusual Naphthoquinone Derivatives from the Twigs of Avicennia marina. J. Nat. Prod. 2007;70(6):923-927.
34. Ali FEM, Abdel-Reheim MA, Hassanein EHM, Abd El-Aziz MK, Althagafy HS, Badran KSA. Exploring the potential of drug repurposing for liver diseases: A comprehensive study. Life Sci. 2024;347:122642.
35. Mourtzikou A, Alepaki M, Stamouli M, Pouliakis A, Skliris A, Karakitsos P. Evaluation of serum levels of IL-6, TNF-α, IL-10, IL-2 and IL-4 in patients with chronic hepatitis. Inmunología. 2014;33(2):41-50.
36. Viganò M, Degasperi E, Aghemo A, Lampertico P, Colombo M. Anti-TNF drugs in patients with hepatitis B or C virus infection: safety and clinical management. Expert Opin. Biol. Ther. 2012;12(2):193-207.
37. Lee J, Tian Y, Chan ST, Kim JY, Cho C, Ou J-hJ. TNF-α induced by hepatitis C virus via TLR7 and TLR8 in hepatocytes supports interferon signaling via an autocrine mechanism. PLoS Pathog. 2015;11(5):e1004937.
38. Itoigawa M, Ito C, Tan HTW, Okuda M, Tokuda H, Nishino H, Furukawa H. Cancer chemopreventive activity of naphthoquinones and their analogs from Avicennia plants. Cancer Lett. 2001;174(2):135-139.
39. Karnsomwan W, Netcharoensirisuk P, Rungrotmongkol T, De-Eknamkul W, Chamni S. Synthesis, Biological Evaluation and Molecular Docking of Avicequinone C Analogues as Potential Steroid 5α-Reductase Inhibitors. Chem. Pharm. Bull. (Tokyo). 2017;65(3):253-260.
40. Archana Vasuki K, Jemmy Christy H, Chandramohan V, Anand DA. Study of mangal based naphthoquinone derivatives anticancer
potential towards chemo-resistance related Never in mitosis gene A-related kinase 2-Insilico approach. Mol. Simul. 2021;47(13):1078-1092.
41. Prugsakij W, Numsawat S, Netchareonsirisuk P, Tengamnuay P, De-Eknamkul W. Mechanistic synergy of hair growth promotion by the Avicennia marina extract and its active constituent (avicequinone C) in dermal papilla cells isolated from androgenic alopecia patients. PLoS One. 2023;18(4):e0284853.
42. Toraih EA, Alrefai HG, Hussein MH, Helal GM, Khashana MS, Fawzy MS. Overexpression of heat shock protein HSP90AA1 and translocase of the outer mitochondrial membrane TOM34 in HCV-induced hepatocellular carcinoma: A pilot study. Clin. Biochem. 2019;63:10-17.
43. Wu Z, Wei C, Wang L, He L. Determining the Traditional Chinese Medicine (TCM) Syndrome with the Best Prognosis of HBV-Related HCC and Exploring the Related Mechanism Using Network Pharmacology. Evid. Based Complement. Alternat. Med. 2021;2021(1):9991533.