Anti-inflammatory Potential of Vernonia amygdalina Delile Extract: In Vitro Studies

Main Article Content

Irene P. Dewi
Dachriyanus
Yufri Aldi
Nor H Ismail
Fatma S. Wahyuni

Abstract

Vernonia amygdalina, commonly known as bitter leaf, widely used in traditional medicine across Africa and Asia, and is characterized by its bitter taste due to the presence of bioactive compounds such as flavonoids, alkaloids, saponins, and terpenoids. The study aimed to evaluate the effectiveness of Bitter Leaf (Vernonia amygdalina Delile) extract in suppressing pro-inflammatory cytokines and reducing phagocytic activity in cell-based assays. The Bitter leaf extract was prepared through a maceration process with ethanol solvent. To assess the anti-inflammatory potential of the extract, RAW 264.7 macrophage cells were employed. Cytotoxicity and the safe concentration of the extract in the cells were established using the MTT assay. The cells were treated with different amounts of extract, and then lipopolysaccharide (LPS) was added to cause inflammation. ELISA was used to assess the extract's capacity to decrease the release of pro-inflammatory cytokines, Tumor Necrosis Factor-alpha (TNF-α) and Interleukin-6 (IL-6), while phagocytic activity was evaluated using the neutral red uptake assay. The extract derived from Bitter leaves has been shown to enhance the proliferation of RAW 264.7 macrophage cells. This indicates its potential to stimulate cellular growth in the immune system. Despite this, the extract significantly decreases the phagocytic activity of these macrophage cells. Additionally, it suppresses the secretion of pro-inflammatory cytokines, IL-6 and TNF-α. The Bitter leaf extract shows anti-inflammatory properties and could be prepared in the form of an anti-inflammatory drug.

Downloads

Download data is not yet available.

Article Details

How to Cite
Dewi, I. P., Dachriyanus, Aldi, Y., Ismail, N. H., & Wahyuni, F. S. (2025). Anti-inflammatory Potential of Vernonia amygdalina Delile Extract: In Vitro Studies. Tropical Journal of Natural Product Research (TJNPR), 9(4), 1381 – 1384. https://doi.org/10.26538/tjnpr/v9i4.3
Section
Articles
Author Biography

Nor H Ismail, Atta-ur-Rahman Institute for Natural Product Discovery, Universiti Teknologi MARA, Cawangan Selangor, Kampus Puncak Alam, 42300 Bandar Puncak Alam, Selangor, Malaysia

Faculty of Applied Sciences, Universiti Teknologi MARA, 40450 Shah Alam, Selangor, Malaysia

References

1. Medzhitov R. Origin and physiological roles of inflammation. Nature. 2008; 454(7203):428–435.

2. Ambriz-Pérez DL, Leyva-López N, Gutierrez-Grijalva EP, Heredia JB. Phenolic compounds: Natural alternative in inflammation treatment. A Review. Cogent Food Agric. 2016;2(1):1-14. Doi: http://dx.doi.org/10.1080/23311932.2015.1131412

3. Turner MD, Nedjai B, Hurst T, Pennington DJ. Cytokines and chemokines: At the crossroads of cell signalling and inflammatory disease.

Biochim Biophys Acta - Mol Cell Res. 2014;1843(11):2563–2582.

4. Masclee G. Anti-inflammatory and antipyretic analgesics and drugs used in gout. Side Eff Drugs Annu. 2014;36:119–137.

5. Sukmawaty, Musfiroh I, Muchtaridi M, Fristiohady A, Ikram NKK. Anti-Inflammatory Activity of Qutsh Al Hindi ( Saussurea lappa ) Root Fractions : In Vitro Assay and Characterization of its Active Compound. Trop J Nat Prod Res. 2024;8(11):9219–9223. Doi: https://doi.org/10.26538/tjnpr/v8i11.35

6. Alozieuwa UB, Inagbor ME, Ozoude TO, Nwaechefu OO. Antinociceptive and Anti-inflammatory Activities of Jatropha tanjorensis Leaf Extract in Mice. Trop J Nat Prod Res. 2024;8(11):9287–9291. Doi: https://doi.org/10.26538/tjnpr/v8i11.44

7. Ijeh II, Ejike CECC. Current perspectives on the medicinal potentials of Vernonia amygdalina Del. J Med Plants Res. 2011;5(7):1051–1061.

8. Erasto P, Grierson DS, Afolayan AJ. Bioactive sesquiterpene lactones from the leaves of Vernonia amygdalina. J Ethnopharmacol. 2006;106(1):117–120.

9. Ugbogu EA, Emmanuel O, Dike ED, Agi GO, Ugbogu OC, Ibe C, Iweala EJ. The Phytochemistry, Ethnobotanical, and Pharmacological Potentials of the Medicinal Plant-Vernonia amygdalina L. (bitter Leaf). Clin Complement Med Pharmacol. 2021;1(1):1-15. Doi:

https://doi.org/10.1016/j.ccmp.2021.100006

10. Barakat M, Syed NK, Hasen E, Abdulrazzaq SB, Thiab S, Al-Najjar MAA, Omar A, Lucy TT, Mamun-Or-Rashid M, Yagi M, Yonei Y. The effect of natural products on inflammatory cytokines production and secretion. Phytomed Plus. 2023;3(4):1-23. Doi: https://doi.org/10.1016/j.phyplu.2023.100488

11. Georgewill OA, Georgewill UO. Evaluation of the anti-inflammatory activity of extract of Vernonia Amygdalina. Asian Pac J Trop Med. 2010;3(2):150–151.

12. Onasanwo SA, Oyebanjo OT, Ajayi AM, Olubori MA. Anti-nociceptive and anti-inflammatory potentials of Vernonia amygdalina leaf extract via reductions of leucocyte migration and lipid peroxidation. J Intercult Ethnopharmacol. 2017;6(2):192–198. Doi:

https://doi.org/10.5455/jice.20170330010610

13. Nguyen TXT, Dang DL, Ngo VQ, Trinh TC, Trinh QN, Do TD, Thanh TTT. Anti-inflammatory activity of a new compound from Vernonia amygdalina. Nat Prod Res. 2021;35(23):5160–165. Doi: https://doi.org/10.1080/14786419.2020.1788556

14 Dewi IP, Dachriyanus, Aldi Y, Ismail NH, Hefni D, Susanti M, Susanti M, Wahyuni FS. Comprehensive studies of the anti-inflammatory effect of tetraprenyltoluquinone, a quinone from Garcinia cowa Roxb. J Ethnopharmacol. 2023; 320(117381): 1-8. Doi: https://linkinghub.elsevier.com/retrieve/pii/S0378874123012515

15. Dewi IP, Wahyuni FS, Aldi Y, Dachriyanus. Garcinia cowa Roxb. ethanol extract inhibits inflammation in LPS-induced Raw 264.7 macrophages. Int J Applied Pharm. 2023;15(1):5–8. Doi: https://dx.doi.org/10.22159/ijap.2023.v15s1.01

16. Cheng X Du, Wu QX, Zhao J, Su T, Lu YM, Zhang WN, Wang Y, Chen Y. Immunomodulatory effect of a polysaccharide fraction on RAW 264.7 macrophages extracted from the wild Lactarius deliciosus. Int J Biol Macromol. 2019;128:732–739. Doi: https://doi.org/10.1016/j.ijbiomac.2019.01.201

17. Li H, Xie W, Sun H, Cao K, Yang X. Effect of the structural characterization of the fungal polysaccharides on their immunomodulatory activity. Int J Biol Macromol. 2020;164:3603–3610. Doi: https://doi.org/10.1016/j.ijbiomac.2020.08.189

18. Wang Y, Tian Y, Shao J, Shu X, Jia J, Ren X, Guan Y. Macrophage immunomodulatory activity of the polysaccharide isolated from Collybia radicata mushroom. Int J Biol Macromol. 2018;108:300–306. Doi: http://dx.doi.org/10.1016/j.ijbiomac.2017.12.025

19. Lee TK, Trinh TA, Lee SR, Kim S, So HM, Moon E, Hwang GS, Kang KS, Kim JH, Yamabe N, Kim KH. Bioactivity-based analysis and chemical characterization of anti-inflammatory compounds from Curcuma zedoaria rhizomes using LPS-stimulated RAW264.7 cells. Bioorganic Chemistry. 2018. 26–32.

20. Riss TL, Moravec RA, Niles AL, Duellman S, Benink HA, Worzella TJ, Minor L. Cell Viability Assays: Assay Guidance Manual. Eli Lilly & Company and the National Center for Advancing Translational Sciences; 2016. 1–25. Doi: http://www.ncbi.nlm.nih.gov/pubmed/23805433

21. Mukherjee PK. Bioassay-Guided Isolation and Evaluation of Herbal Drugs. Qual Control Eval Herb Drugs. 2019;515–537.

22. Zhang K, Huang Q, Deng S, Yang Y, Li J, Wang S. Mechanisms of TLR4-Mediated Autophagy and Nitroxidative Stress. Front Cell Infect Microbiol. 2021;11(10):1–11. Doi: 10.3389/fcimb.2021.766590

23. Sun H, Zhang J, Chen F, Chen X, Zhou Z, Wang H. Activation of RAW264.7 macrophages by the polysaccharide from the roots of Actinidia eriantha and its molecular mechanisms. Carbohydr Polym. 2015;121:388–402. Doi: 10.1016/j.carbpol.2014.12.023

24. Duque GA, Descoteaux A. Macrophage cytokines: Involvement in immunity and infectious diseases. Front Immunol. 2014;5(10):1–12. Doi: 10.3389/fimmu.2014.00491

25. Iwasaki A, Medzhitov R. Regulation of adaptive immunity by the innate immune system. Science. 2010;327(5963):291–295. Doi: 10.1126/science.1183021

26. Lee HS, Kwon YJ, Seo EB, Kim SK, Lee H, Lee JT, Chang PS, Choi YJ, Lee SH, Ye SK. Anti-inflammatory effects of Allium cepa L. peel extracts via inhibition of JAK-STAT pathway in LPS-stimulated RAW264.7 cells. J Ethnopharmacol. 2023;317(4):1–11. Doi: https://doi.org/10.1016/j.jep.2023.116851

27. Ren L, Zhang J, Zhang T. Immunomodulatory activities of polysaccharides from Ganoderma on immune effector cells. Food Chem. 2021;340(2): 1-12. Doi: 10.1016/j.foodchem.2020.127933