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Introduction  

Feed makes up around 60-70% of total costs in intensive broiler 

farming.1 As a result, nutrient optimization plays an important part in 

maximizing broiler productivity. One such strategy to optimize nutrient 

uptake in broilers is the use of in-feed antibiotics.2 However, the 

association of in-feed antibiotics with the development of resistant 

strains of bacteria has burdened researchers in developing countries to 

search for alternatives. Among the alternatives usually available in the 

study region are yeast, organic acids, ginger, turmeric, and tamarind 

bark.3-5 Specifically, tamarind (Dialium guineense) belongs to the 

family Leguminosae and subfamily Caesalpinioideae, and the bark is 

not used as food by humans and is little known in poultry nutrition. A 

recent study in our station5 showed that tamarind bark is high in 

important phytochemicals such as total phenols (2.02%) and flavonoids 

(0.34%). The authors also noticed that tamarind bark is moderate in 

trypsin inhibitors (0.05%), and low in saponins (0.004%), cyanogenic 

glycosides (0.009%), and alkaloids (0.006%). Trypsin inhibitor reduces 

protein digestion by hindering the activity of trypsin activity.6 
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Recent feeding experiments in our station5,7 revealed that diets 

supplemented with unfermented tamarind bark at 1.0-1.5 g/kg 

negatively impacted Ross 308 broiler performance, resulting in 

decreased growth, blood values, carcass yield, cut-part weights, and 

intestinal characteristics. These deleterious impacts were partly caused 

by its high lignocellulosic biomass (>25%), and the existence of trypsin 

inhibitors5,8 demonstrated to limit nutrient digestibility and availability 

in poultry.7 The ability of enzymes such as cellulases, hemicellulases, 

and ligninases to degrade cell wall components of fibrous materials into 

their monomers has been demonstrated.9 However, most poultry species 

cannot produce cellulases, hemicellulases, and ligninases in their 

gastrointestinal tract, and as a result, their potential ability to digest 

tamarind bark is hindered. To maximize the adoption of tamarind bark 

as an additive source, strategies are required to degrade its 

lignocellulosic biomass and antinutrients while improving their nutrient 

and phytochemical content to increase their supplementation levels in 

broiler diets. Studies have revealed that Solid-state fermentation (SSF) 

can be used to improve nutrient and decrease antinutrient content of 

lignocellulosic biomass.10-11 

Yeast (Saccharomyces cerevisiae) was chosen in this experiment trial 

for its production of hydrolytic enzymes, including invertase, lactase, 

lipase, raffinase, pectinases, amylases, cellulases, ligninase, and 

xylanase12 and its established use in feed applications.3 These enzymes 

break down lignocellulosic biomass, thereby improving nutrient and 

additive values. Presently, no study has examined the impact of yeast-

mediated SSF on the additive value of tamarind bark and its 

supplementation effect on broiler growth. Therefore, the impacts of 

FTB supplementation on the growth characteristics of broilers aged 

from 1 to 21 days were also studied.  

 

Materials and Methods  
This experiment was done at the Poultry Unit of FUTO, Nigeria, and 

was approved by the University Animal Ethics committee with ethics 

number: FUTO/2024/24. FUTO lies between latitudes 5°20'N - 5°25'N 

and longitudes 7°00'E - 7°05'E with 2400 mm mean rainfall. The mean 
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The stem bark of Tamarind is a rich source of fibre and phytochemicals, making it a potential feed 

additive for chickens. The study assessed the effect of yeast-mediated solid-state fermentation 

(SSF) on the chemical composition of tamarind stem bark and the impact of fermented tamarind 

bark (FTB) on the growth performance of broilers aged from 1 to 21 days. Two hundred broilers 

were partitioned into four groups (T0, T0.5, T1.0, and T1.5) of 50 chicks, and each group was 

replicated five times. Birds on T0 received a diet without FTB supplementation and served as the 

control, while birds on T0.5, T1.0, and T1.5 received the same control diet but supplemented with 

FTB at 0.5, 1.0. and 1.5 g/kg feed, respectively, in a completely randomized design. A quadratic 

optimisation model was used to determine the FTB supplementation levels for optimal growth 

performance. Results revealed that yeast-mediated SSF improved (p<0.05) dry matter, crude 

protein, ether extract, ash, flavonoids, phenol content, and DPPH activity in tamarind bark. In 

contrast, fermentation decreased (p<0.05) the fibre, oxalate, phytate, alkaloids, and saponins 

content in tamarind bark. Broilers on T0.5, T1.0, and T1.5 had higher (p < 0.05) final live weight 

(FLW), average daily gain (ADG), and average daily feed intake (ADFI) than the T0, and were 

optimised at 3.05 and 3.03 g FTB/kg feed, respectively. In conclusion, yeast-mediated SSF 

improved the feed additive quality of tamarind bark, and FTB should be supplemented in the 

starter broiler diet at 3.05 and 3.03 kg feed for the best FLW, ADG, and ADFI. 
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daily temperature ranges from 19-24°C (minimum) to 28-35°C 

(maximum).13 Proximate and phytochemical composition of 

unfermented VB and fermented BV (FVB) were conducted at the 

Precision Food and Feed Analysis Laboratory, Ibadan, Nigeria.  

 

Production of unfermented  and fermented tamarind bark 

The tamarind bark was harvested in FUTO, Nigeria, cut into bits, 

sundried, and milled as described by Ogbuewu and Mbajiorgu.5 A 

portion was mixed with dried baker's yeast (STK Royal®) at a 10 kg:1g 

ratio.5 Thereafter, the sample was fermented for 8 days14 and sun-dried 

for 3 days to 14% moisture content.15 The other portion, unfermented 

and without yeast, served as a control. Fermented and unfermented 

tamarind bark were analysed for proximate, fibre, and phytochemical 

composition. 

 

Proximate composition and fibre fractions 

Dry matter (DM) (method no 930.15), crude protein (CP) (method 

990.03), crude fibre (CF) (method 962.09), ether extract (EE) (method 

960.39), and crude ash (method no 924.05) of fermented and 

unfermented tamarind bark were determined in triplicates and recorded 

in percentages according to the methods of AOAC.16 The fibre fractions 

assessed were neutral detergent fibre (NDF), acid detergent fibre 

(ADF), acid detergent lignin (ADL), cellulose, and hemicellulose. 

Samples were oven-dried at 105°C to determine moisture content. EE 

content was extracted using a Soxhlet Extractor (DW-MSZF-M06C; 

Houston, Texas, USA) with petroleum ether. Ash content was 

determined by incinerating samples at 550°C in a muffle furnace. The 

samples were heated in a furnace at 550°C to quantify the ash value. 

Total organic nitrogen (TON) was assessed via the macro-Kjeldahl 

technique, and CP was derived as TON × 6.25. NDF and ADF values 

were assessed by serial reflux with neutral and acid detergent 

solutions.17 The fibre fractions in the samples were measured via an 

ANKOM200 Fibre Analyzer (Model: ANKOM200 Fibre Analyzer, 

New York, USA). Fibre fractions were determined as follows: ADL 

content = ADF - cellulose; hemicellulose = NDF - ADF; Cellulose = 

ADF – ADL. 

 

Determination of phytochemical contents  

The phytochemical components analysed included DPPH, tannins, 

phenols, flavonoids, alkaloids, phytate, saponins, and oxalate. The 

tannins and saponins were measured using the standard methods.18-19 

Phytate concentration was evaluated using a modified colorimetric 

method20, while total phenol, flavonoid, and antioxidant activity content 

were determined as described by others.21-22 Alkaloid content was 

measured using Wagner’s reagent test as described by Amaza23, while 

the total oxalate was quantified using the method of Ruan et al.24 

 

Animal management and experimental design 

One day, 200 Ross 308 were distributed equally into four groups, with 

five birds per replication. Birds in the T0 group received a diet (Table 

1) without FTB supplementation, which served as the control, while 

birds on T0.5, T1.0, and T1.5 groups received a control diet with FTB 

at 0.5, 1.0. and 1.5 g/kg feed, respectively. Broilers in each group were 

allotted to one of the diets in a completely randomised design. Each 

replicate was housed in a pen with dimensions of 1×2 m, in a dwarfed 

walled poultry house with an open side covered with wire mesh. The 

pens were cleaned and disinfected with Polidine® (Animal Care 

Nigeria) and thereafter covered with wood shavings to a depth of 2 cm. 

Drinkers and feeders were thoroughly cleaned and assembled a day 

before the commencement of the feeding study. A broiler diet (Table 1) 

was formulated to meet Ross 308 nutrition specifications25. The 

experimental birds were vaccinated following the standard method.26 

Birds were offered feed and clean water without restriction for three 

weeks. Metabolizable energy (ME) value of the ration was computed 

through the formula of Pauzenga27: ME (Kcal/kg) = 37 × %CP + 81.8 

× %EE + 35.5 × %NFE, where NFE (nitrogen free extract) is calculated 

as 100 - %moisture - %CP - %EE - % ash - %CF.  

 

 

 

 

Table 1: Ingredient and nutrient content of experimental diet 

Ingredients  percent 

Maize (9% CP) 55.00 

Soybean meal (44% CP) 31.00 

Wheat offal  2.00 

Palm kernel cake  2.00 

Fish meal  4.00 

Bone meal 3.00 

Oyster shell 2.00 

Common salt  0.25 

Vitamin/mineral premix* 0.25 

Lysine  0.25 

Methionine  0.25 

Total  100 

Calculated nutrient composition (%) 

Crude protein 23.00 

Crude fibre 3.98 

Ether extract 3.39 

Lysine  0.97 

Methionine  0.45 

Calcium 1.63 

Phosphorus 1.14  

Metabolizable energy (Kcal/kg) 2965.10 

*Having the following/ kg feed: Vitamin A (1,200,000 iu), 

cholecalciferol (350,000 iu), tocopherol (4000 mg), thiamine (250 

mg), riboflavin (800 mg), pyridoxine (600 mg), cobalamin (3.2 mg), 

menadione (450 mg), nicotinic acid (4.5 g), calcium pantothenate 

(1.5 g), folic acid (120 mg), biotin (5 mg), choline chloride (55 g), 

iron (3 g), copper (2 g), manganese  (10 g), zinc  (8 g), iodine (120 

mg), selenium (0.3 mg), and cobalt (40 mg). 
 

 

Data collection  

The birds' live weights were recorded at the start and weekly using an 

AG500 electronic scale (±0.5 g precision). Average daily feed intake 

(ADFI) was determined as the amount of feed offered on a particular 

day less the amount in the feeder the next morning. Average daily gain 

(ADG) was determined weekly, while feed conversion ratio (FCR) was 

calculated as ADFI/ADG per replicate. 

 

Statistical analysis 

Results obtained on proximate composition, fibre fraction, 

phytochemical contents, and growth metrics were analysed with IBM 

SPSS28 Version 27. For chemical composition, means were separated 

with Student’s t-test via the equation: Yij = μ + Ti + Ejj. Where Yij is 

proximate, fibre fraction, phytochemical characteristics; μ = population 

mean, Ti = impact of yeast-mediated SSF, and Eij = random error. 

Growth performance was assessed using the general linear models 

(GLM) procedure of the same software. Means were separated using 

Tukey’s test using the model: Yijk = μ + Ti + Eijk, where Yijk is the 

growth performance, μ is the population mean, Ti is the 

supplementation levels of FTB in the diets (i = 4; T0, T0.5, T1.0, and 

T1.5), and Eijk is the random error linked with observation. The dose-

related responses to increasing supplementation levels of FTB for 

significant variables were modeled using the quadratic formula: y = a + 

c1x + c2x2, where y is the FLW, ADG, and ADFI; a is the intercept; x = 

FTB supplementation levels; c1 and c2 = coefficients of the optimisation 

equation; and -c1/2c2 = FVB level for optimum starter broiler 

performance. These models were chosen as they gave the best fit, with 

significance at 5% level. 
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Results and Discussion 
FTB had higher (p < 0.05) CP, EE, and ash, but lower DM than 

unfermented tamarind bark (Table 2), which supports of previous 

results by Ahiwe et al.15 The decreased DM value of FTB is likely 

because yeast enzymes broke down complex compounds in tamarind 

bark into simpler molecules (volatile fatty acids, gases, alcohols) during 

fermentation.29-30 The results showed that FTB had lower CF, NDF, 

ADF, ADL, and hemicellulose compared to unfermented tamarind 

bark. Fibre limits feed digestion by preventing enzyme access to 

nutrients30, making high-fibre feed resources undesirable for poultry. 31 

The activities of yeast during SSF may have reduced the concentrations 

of CF, NDF, ADF, ADL, and hemicellulose in tamarind bark, which 

yeast may use as a carbon source, leading to increased CP level, 

enhanced by microbial mass. Results revealed fermentation didn't 

change cellulose levels in tamarind bark. This finding is at variance with 

the findings of Gbenle et al.14, who found reduced cellulose levels in 

marama beans because of the actions of Aspergillus oryzae during 

fermentation. The EE results support the findings of Gbenle et al.14 that 

fermentation with fungi enhances the EE value of fibre-rich feed 

ingredients. This variation in results may be linked to the type of 

substrate used.20 These results imply that yeast fermentation of tamarind 

bark yields a low-fibre biomass suitable as a poultry feed additive. 

Phytochemical values of unfermented and FTB are displayed in Table 

3. FTB had significantly (p < 0.05) higher levels of phenol, flavonoids, 

and DPPH, but lower levels of tannins, oxalate, phytate, alkaloids, and 

saponins compared to unfermented tamarind bark. These findings 

support the earlier results that fungal-mediated SSF improved the 

feed/food value of marama beans.14 The significantly low levels of 

tannins, alkaloids, and saponins in tamarind bark indicate the ability of 

yeast-mediated SSF to biodegrade tannins, alkaloids, and saponins into 

simpler, less harmful compounds. Yeast decreases the concentrations of 

tannin and saponin in feed during fermentation via enzymatic activity 

and changes in pH.32 In similar research, Arjmand et al.33 revealed that 

yeast strains with β-glucosidase activity can biodegrade saponins, 

whilst fermentation activity creates an acidic medium that aids in 

saponin breakdown. Oxalates, a naturally occurring compound in 

plants, can bind with calcium in feed or feedstuffs to form calcium 

oxalate, an insoluble compound, making minerals less available for 

absorption.34 The reduction in oxalate content of tamarind bark during 

fermentation might be due to the yeast’s ability to synthesize enzymes 

that break down oxalic acid or oxalate-mineral complexes, hence 

reducing the overall oxalate level.35 The decreased phytate level upon 

fermentation is likely due to the yeast producing phytase, an enzyme 

that degrades phytate.36 Phytate binds to proteins, carbohydrates, and 

minerals, making them less available to digestive enzymes.37 Thus, a 

decline in the phytate level can improve the availability of important 

minerals in fibrous biomass such as tamarind bark. This is quite 

important given that poultry does not synthesize phytase in their 

digestive system. 

The significant increase in phenolics upon fermentation of tamarind 

bark could be related to the ability of yeast to produce lignocellulolytic 

enzymes such as cellulases, hemicellulases, and ligninases38 that release 

bound forms of phenols and flavonoids during cell wall breakdown.34 

Phenolic compounds act as antioxidants and can enhance the 

antioxidant activity of functional feed ingredients, as confirmed by the 

DPPH results in this study. This observation confirms that fermentation 

increased the DPPH level in lignocellulosic biomass.5 The higher 

contents of phenolics in FVB could provide a plausible explanation for 

the increased DPPH activity in FTB. 

Table 4 shows the initial live weight (ILW), FLW, ADG, ADFI, FCR. 

and percentage mortality of birds fed FTB supplemented diets are 

shown in Table 4. Birds on T0.5, T1.0, and T1.5 performed better in 

terms of FLW, ADG, and ADFI than birds on T0.5. The enhanced ADG 

may be due to yeast breaking down complex fibre in tamarind bark into 

simpler, more readily absorbable nutrients, lignocellulosic complex 

reduced antinutritional factors in tamarind bark, as confirmed by our 

fibre fraction and phytochemical results. However, this finding was at 

variance with Ogbuewu and Mbajiorgu5, who observed that inclusion 

of unfermented tamarind bark to broiler rations at the rate of 1.0 - 1.5 

g/kg decreased ADG. This discrepancy suggests that fermentation 

improves physicochemical values of fibrous biomass, leading to 

improved nutrient utilization and uptake in poultry.15 The FCR of 

broilers on T0.5, T1.0, and T1.5 was numerically lower (p > 0.05) than 

that on T0, indicating a high ability of broilers to utilize FTB-

supplemented diets, leading to high FLW and ADG. There were no 

differences (P>0.05) in ILW and percentage mortality between broilers 

offered FTB and control diets.  

 

 

Table 2: Proximate composition and fibre fractions of unfermented 

and fermented tamarind bark 

Paramete

rs (%) 

Unfermen

ted  

Ferment

ed  

Mea

n  

SD SE

M 

p-

val

ue 

Dry matter 93.47a 

91.51b 

92.4

9 

1.1

4 

0.5

7 

< 

0.00

1 

Crude 

protein 

6.16b 

8.16a 

7.16 1.1

6 

0.5

8 

0.00

1 

Ether 

extract 

0.61b 

0.68a 

0.65 0.0

4 

0.0

2 

0.03

8 

Crude ash 9.91b 

10.60a 

10.2

5 

0.4

0 

0.2

0 

< 

0.00

1 

Crude fibre 30.80a 

20.20b 

25.5

0 

6.1

2 

3.0

6 

0.01

1 

Neutral 

detergent 

fibre 

61.36a 

48.39b 

54.8

7 

7.5

3 

3.7

7 

0.00

6 

Acid 

detergent 

fibre 

50.29a 

46.34b 

48.2

7 

2.4

1 

1.2

0 

0.02

8 

Acid 

detergent 

lignin 

24.04a 

20.47b 

22.2

5 

2.0

6 

1.0

3 

0.00

1 

Cellulose  26.26 

25.77 

26.0

1 

0.5

7 

0.2

9 

0.51

2 

Hemicellul

ose  

11.07a 

2.16b 

6.61 5.3

0 

2.6

5 

0.02

9 

 

 

Table 3: Phytochemical composition of unfermented and 

fermented tamarind bark 

Paramet

ers 

Unfermen

ted  

Ferment

ed  

Mea

n  

SD SE

M 

p-

val

ue 

Tannins 

(mg/ g) 

8.73a 1.73b 

5.23 4.04 2.0

2 

< 

0.00

1 

Phenols 

(mg/g) 
8.22b 15.99a 

12.1

1 

4.51 2.2

5 

0.00

4 

Flavonoi

ds (mg/g) 

1.60b 3.91a 

2.75 1.34 0.6

7 

< 

0.00

1 

Oxalate 

(mg/g) 

0.48a 0.28b 

0.38 0.12 0.0

6 

< 

0.00

1 

Phytate 

(mg/g) 

0.11a 0.09b 

0.10 0.01 0.0

1 

< 

0.00

1 

Alkaloids 

(%) 

24.48a 4.10b 

14.2

9 

11.7

6 

5.8

8 

< 

0.00

1 

Saponins 

(%) 
13.56a 8.04b 

10.8

0 

3.19 1.6

0 

0.00

1 
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DPPH 

(μg/ml) 
35.71b 46.52a 

41.1

1 

6.26 3.1

3 

0.00

3 

a,b Means with common superscripts do not statistically differ (P > 

0.05). DPPH -2,2-Diphenyl-1-picrylhydrazyl; SD- standard 

deviation; SEM – standard error of the mean; p - probability.  
 

 

Table 4: Performance of starter broilers fed diets supplemented 

with fermented tamarind bark 

Paramete

rs 

Dietary fermented tamarind bark Levels 
SE

M 

p 

val 
T0 T0.5 T1.0 T1.5 

ILW 

(g/bird) 

44.15 ± 

0.06 

44.12 ± 

0.01 

44.15 ± 

0.06 

44.15 ± 

0.05 

0.01 0.84

6 

FLW 

(g/bird) 

511.15 ± 

38.72b 

616.08 ± 

35.49a 

614.51 ± 

3.25a 

610.98 ± 

11.61a 

14.9

7 

0.00

3 

ADG 

(g/bird) 

24.34 ± 

1.84b 

29.34 ± 

1.69a 

29.26 ± 

0.15a 

29.09 ± 

0.55a 

0.71 0.00

3 

ADFI 

(g/bird) 

38.04 ± 

2.17b 

44.86 ± 

1.65a 

44.77 ± 

0.46a 

44.41 ± 

0.73a 

0.94 0.00

1 

FCR 1.56 ± 

0.04 

1.53 ± 

0.05 

1.53 ± 

0.01 

1.53 ± 

0.02 

0.01 0.50

1 

Mortality 

(%) 

1.00 0.00 0.00 1.00 - - 

a,b Means ± SD in the same row with the same superscript are 

significant at p < 0.05. FTB fermented tamarind bark; T0 = 0 g 

FTB/kg feed; T0.5 = 0.5 g FTB/kg feed; T1.0 = 1.0 g FTB/kg feed; 

T1.5 = 1.5 g FTB/kg feed; ILW initial live weight; FLW final live 

weight; ADG average daily gain; ADFI average daily feed intake; 

FCR feed conversion ratio; SD standard deviation;  SEM standard 

error of the mean 
 

Results of the impact of FTB supplementation level on optimal FLW, 

ADG, and ADFI of starter broilers are presented in Figures 1 to 3 and 

Table 5. The results indicated that growth performance had high (74.8–

80.2%) coefficients of determination (r2). Not many studies have used 

quadratic regression to find the best tamarind bark levels that support 

broiler performance and health5,7 Presently, there's a gap in research on 

using regression analysis to determine the optimal FTB levels for starter 

broiler growth. FLW and ADG were optimised at 3.05 g FTB/kg feed 

(Figures 1 and 2). This is expected since live weight and ADG are 

indirectly related. In addition, result indicates that ADFI was optimized 

at a level of 3.03 g/kg feed (Figure 3), indicating that the response of 

broilers to dietary FTB supplementation may depend on the production 

variable in question. The high r2 levels for growth parameters suggest a 

strong relationship between FTB and improved growth variables. These 

results have implications for formulating broiler feed with FTB to 

improve growth parameters, thereby reducing additive wastage. The 

high r2 values of FLW, ADFI, and ADG on FTB diets indicate that these 

results could be predicted at a given amount of FTB supplemented to 

the diets of starter broilers. 

 

Table 5: Fermented tamarind bark levels for optimal performance 

characteristics of starter broilers 

Parameter

s 

Equation X  Y r2 pval 

FLW 

(g/bird) 

Y=378.118 

+165.370x -

27.115x2 

3.0

5 

630.2

6 

0.74

8 

0.00

3 

ADG 

(g/bird) 

Y = 18.006 

+7.875x -1.291x2 

3.0

5 

30.02 0.74

8 

0.00

3 

ADFI 

(g/bird) 

Y=29.287+10.884

x -1.797x2 

3.0

3 

45.77 0.80

2 

0.00

1 

X level optimal FTB level; Y value optimal growth metric; r2 

coefficient of determination; pval probability. 
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 Figure 1:  Relationship between dietary fermented 

tamarind bark supplementation level and FLW in starter 

broilers 
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 Figure 2:  Relationship between dietary fermented 

tamarind bark supplementation level and ADG in starter 

broilers 
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 Figure 3: Relationship between dietary fermented 

tamarind bark supplementation level and ADFI in starter 

broilers  
 

Conclusion 
In conclusion, yeast-mediated SSF improved proximate composition, 

fibre fractions, beneficial phytochemicals (flavonoids and phenols), 

DPPH activity, and decreased antinutrient content in tamarind. Results 

also indicated that FTB supplementation at 0.5, 1.0, and 1.5 g/kg feed 

enhanced FLW, ADG, and ADFI in broilers without negatively 

impacting FCR and percentage mortality. The quadratic optimization 

results suggested that FTB should be supplemented in the starter broiler 

diet at 3.05 and 3.03 g kg feed for the best FLW, ADG, and ADFI. 

Blood characteristics, plasma antioxidative status, gut histology, and 

microbiota composition of starter broilers fed FTB-supplemented diets 

are recommended, as such published data is lacking in the literature. 
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