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Introduction 

The plant Ocimum gratissimum L. is a culinary herb of the 

Labiatae family, and is native to India and West Africa, where it is 

called African Basil.
1,2

 It is found in the Savannah and coastal areas in 

Nigeria where it is called “Nchanwu” by the Igbos, “efinrin-nla” by 

the Yorubas, and “Dadoya” by the Hausas.
3,4

 The presence of essential 

oil in the leaves of O. gratissimum impacts the plant with a unique 

fragrance.
5,6

 Characterization of this essential oil has shown the 

presence of phytochemicals like eugenol, thymol, geraniol, β-

caryophyllene, valencene, p-cymene, etc.
7
 In traditional medicine, the 

crude extract from the leaf of this plant has been used to treat different 

ailments and diseases like high fever, cold, fungal infection, epilepsy, 

and diarrhea.
8
 The essential oil has been reported to have pronounced 

antimicrobial activity against different bacteria and fungi.
9
 It has also 

been incorporated in various bases as topical antiseptics in treating 

minor wounds, boils, and pimples.
10

 

The Candidapepsin-1 is a harmful proteolytic enzyme from the 

endophytic polymorphic contagious species Candida albicans, that 

causes superficial Candida diseases like oral and skin infections in 

persons with compromised immune systems.
11,12

 To obtain 

sustenance, the enzyme attacks, and locks onto the host tissue by 

digesting the host cell membrane and other small molecules. It also  
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attacks the haemoglobin through its proteolytic action and releases 

different antimicrobial hemocidins to battle various microorganisms 

of the same niche.
13

 The enzyme contains two chains (A and B) with 

an aggregate of 391 amino acid residues. The active site of the protein 

carries a net negative electrostatic charge because of basic amino 

acids. The active site, which is more extensive at the entry point, is 

situated between ASP82 and ASP267. Hence, molecular docking of 

bioactive compounds on this site can be studied for drug development.  

Information concerning the pharmacological applications of the 

essential oil from O. gratissimum leaves is ubiquitous in literature, 

with these studies focusing on the whole oil extract. However, there is 

little knowledge of the actual compounds responsible for the observed 

activities. In this research, the phytochemical composition of the 

essential oil from the leaves of O. gratissimum was reported. In silico 

approaches were used to investigate the activity of these compounds 

against the enzyme Candidapepsin-1 of C. albicans. 

 

Materials and Methods 

Identification of plant material and extraction of essential oil 

Fresh O. gratissimum leaves were collected in August 2020 from a 

household garden in Owerri, Imo State, Nigeria. The identification of 

the leaf samples was done by a professional taxonomist Prof. F.N. 

Mbagwu of the Department of Plant Science and Biotechnology, Imo 

State University, Owerri, Nigeria. The voucher specimen was 

deposited at the Imo State University Herbarium, with herbarium 

number IMSUH- 471. Thoroughly washed leaf samples (200 g) were 

sliced into small pieces and immersed in 500 mL distilled water in a 1 

L flat bottom. The essential oil was extracted completely from the 

leaves by hydrodistillation, using a Clevenger system for 2 h at 100°C, 

and the collected essential oil was dried over anhydrous Na2SO4. The 

dried oil was separated from the drying agent by filtration and then 

stored in an amber essential oil vial at –20
o
C.

14
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Antibiotic resistance in microorganisms has become a great challenge for pharmacists and 

research scientists. Crude extracts from plants used in traditional medicine could serve as an 

alternative source of resistance modifying agents due to the large number of different secondary 

metabolites contained in them. Literature survey has shown that the essential oil contained in 

Ocimum gratissimum has good antifungal activity against Candida albicans. However, little is 

still known about the bioactive compounds responsible for this activity. In this study, the 

essential oil in the leaf of O. gratissimum was extracted by hydrodistillation, and the compounds 

present in the oil identified using gas chromatography-flame ionization detection. Their 

inhibition potential against the fungal enzyme Candidapepsin-1 from C. albicans was studied 

using in silico methods. The docking results showed that the binding free energy of drimenin (–

6.8 Kcal/mol), α-selinene (–6.6 Kcal/mol), and octamethylhexadecan-1-ol (–6.1 Kcal/mol) were 

close to the control drug Fluconazole (–7.4 Kcal/mol). Drimenin showed good ADME 

properties, making it a potential oral and dermal drug candidate to treat infections by this 

enzyme.  
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GC-FID analysis of essential oil 

GC-FID analysis and quantification of phytochemical components in 

the essential oil were carried out using a Buck 530 gas chromatograph 

(GC) fitted with a flame ionization detector (FID). The instrument was 

equipped with an on-column, automatic injector, electron capture 

detector, and HP 88 capillary column (100 m × 0.25 µm film 

thickness). The oven temperature was programmed from 60 
o
C to 

230
o
C with injector temperature at 230 

o
C and detector temperature at 

250
o
C. The identification of compounds was based on the retention 

time, which is determined using the authentic standards. The 

integrated peak area is directly converted to concentrations in a user-

defined unit, such as ppbv or µg/m
3
. The calculations are performed 

by the data acquisition and processing station. All processed data were 

automatically compiled and reported through a data report function 

incorporated in the data station. The reported data includes the 

compound, name, retention time, and concentration.
15,16

 

 

Identification and preparation of ligands 

The 3D structure-data files (SDF) of the bioactive compounds in the 

essential oil were identified and downloaded from the PubChem 

database. They were minimized in PyRx virtual screening tool, using 

Universal Force Field at 200 steps. They were then converted to 

AutoDock ligands (pdbqt) and used for the docking analysis. 

 

Identification and preparation of the molecular target 

The Candidapepsin-1 enzyme (ID: 2QZW) with resolution 2.05 Å was 

identified from literature and used as a drug target in this study. The 

protein was retrieved from the Protein Data Bank (PDB) database and 

consisted of two chains, A and B. Chain A of the protein was selected 

for the docking studies to increase the ligand-binding precision.
17

 The 

interfering crystallographic water molecules and minimization of the 

protein were done using UCSF Chimera 1.14.
18

CASTp (Computed 

Atlas for Surface Topography of Proteins)
19

 was used to view the 

active sites and amino acid residues around the largest active site. 

 

Docking and post-docking studies 

Multiple docking of the ligands on a specified Candidapepsin-1 

protein binding pocket was done with AutodockVina in PyRx 

software 
20

 (version 0.8).  The center grid box sizes were x center     

19.185, y center     17.584, and z center     20.888.  he binding free 

energies of the compounds on the protein target were obtained after 

the docking process. Biovia Discovery studio 4.5 
21

 was used to 

visualize the interactions between the protein-ligand complexes after 

the docking process. 

 

Absorption, Distribution, Metabolism and Elimination (ADME) 

analysis 

The most potent bioactive compound was chosen and sent to the 

SwissADME server to examine its drug-like properties
22

 and 

compared them with those of the control drug.  

 

 

 

Results and Discussion 

The compounds identified in the GC-FID analysis and their 

concentrations are shown in Figure 2 and Table 1, respectively. 

Isobornyl acetate, octamethylhexadecan-1-ol, nonadecanal, decanal, 

undecanal, α-selinene, and drimenin with amounts 64.3 %, 12.2 %, 

11.5 %, 8.7 %, 2.8 %, 0.5 %, and < 0.1 % respectively were the 

identified compounds in the oil.  

The binding affinities of the compounds from the oil on 

Candidapepsin-1 protein were compared with that of Fluconazole the 

control drug and the values are shown in Table 2.  

In the docking studies of components from the essential oil of 

Trachyaspermum ammi aga ins t  Candidapepsin-1 enzyme, it was 

observed that the compound ligustillide had the highest binding 

affinity (–5.8 Kcal/mol) on the most extensive active site of this 

enzyme.
23

 In this study, the binding affinity of drimenin (–6.8 

Kcal/mol), α-selinene (–6.6 Kcal/mol), and octamethylhexadecan-1-ol 

(–6.1 Kcal/mol) were higher than what was reported for ligustillide on 

the same active site of Candidapepsin-1 enzyme. The binding position 

of drimenin and Fluconazole on the target enzyme is shown in Figure 

3. The binding affinity of drimenin was very close to that of the 

control drug (–7.4 Kcal/mol), indicating that it could have similar 

activity as Fluconazole on the enzyme target.
24,25,26,27 

Drimenin is a 

sesquiterpene commonly found in Canelo tree
28

 (Drimys winteri). 

Isolates of this compound from D. winteri have been reported to have 

excellent antifungal activity against Gaeumannomyces graminis var. 

tritici.
29

This fungus that attacks the roots of grass and cereal plants in 

temperate climates.  The interactions of drimenin and Fluconazole 

with the amino acid residues in the enzyme are shown in Figure 4. 

Pi-Sigma interaction at TYR84 was the only force holding the 

drimenin molecule in the active site of the protein. A similar 

interaction was observed between Fluconazole and TYR84 but of a Pi-

Pi stacked nature. The bond lengths of these interactions (3.94 Å and 

4.81 Å for drimenin and Fluconazole, respectively) suggested that the 

Pi-Sigma was stronger than the Pi-Pi interaction. The presence of two 

hydrogen bonds between Fluconazole and ASP218, and interactions 

between this drug and other protein residues confirmed a higher 

binding affinity to the protein than drimenin.
30,31

 

The pharmacokinetic and pharmacodynamic properties of drimenin 

and Fluconazole revealed by their ADME properties are summarized 

in Table 4. The drug likeliness of drimenin was assessed from 

Lipinski's Rule of Five and the Rule of three. Good drug candidates 

should not violate more than one of the rules.
32

The values were 

compared with those obtained for Fluconazole.  

Drimenin has a molecular weight < 500, and its lypophilicity (Wlog P) 

was less than 3.7, which showed that the compound had good cell 

membrane penetration. The hydrogen bond donor (5 hydrogen) and 

hydrogen bond acceptor (not more than 10 hydrogen) of the 

compound agreed with the rule of five, while the rotatable bonds (not 

more than 3) in the compound were in line with the rule of three. 

These results indicated that drimenin is a potent inhibitor of the 

Candidapepsin-1 enzyme. 

 

 

  
Figure 1: Candidapepsin-1 enzyme (A) Crystal structure (B) Position of the active site  

A B 
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Figure 2: Gas chromatogram of compounds in O. gratissimum essential oil 

 

Table 1: Identified compounds in the essential oil and their concentrations 
 

S/N Compound Elution time Concentration (µg/L) 

1 Isobornyl acetate 3.96 510.31 

2 Decanal 8.82 68.88 

3 Undecanal 12.65 22.51 

4 α-Selinene 18.97 4.17 

5 Drimenin 23.42 0.13 

6 Nonadecanal 30.05 91.30 

7 Octamethylhexadecan-1-ol 37.61 96.76 

 

 

Table 2: Binding free energies of the compounds on the protein target 

Component  Structure  ΔG Energy (Kcal/mol) 

 

 

Isobornyl acetate 

 

 

 

-5.2 

 

Decanal 

 

 

 

-4.2 

 

Undecanal 

 

 

 

-4.4 

 

 

 

α-Selinene 

 

 

 

 

 

-6.6 

 

 

 

Drimenin 

 

 

 

 

 

-6.8 
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Nonadecanal 
 

-5.0 

 

 

Octamethylhexadecan-1-ol 

 

 

 

 

-6.1 

 

 

 

 

 

Fluconazole  (control)  

 

 

 

 

 

 

 

-7.4 

 

 
 

 

Figure 3: Binding positions of (A) drimenin (B) Fluconazole on the enzyme of Candidapepsin-1 

 

 

A   
 

 

B  

 

 

 
 

 

Figure 4: 3D (left) and 2D (right) views of (A) drimenin (B) Fluconazole interacting with protein residues 

A B 
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Table 3: Protein residue interactions with drimenin and Fluconazole 

Compound Hydrogen bond Carbon-Hydrogen bond Pi-Sigma Halogen Pi-Pi stacked Pi-Alkyl 

Drimenin ˗ ˗ TYR84 ˗ ˗ ˗ 

Fluconazole ASP218 ASP32; GLY220 ˗ ASP32 TYR84 ILE123 

 

 

Table 4: ADME properties of Drimenin and Fluconazole 

Properties Drimenin Fluconazole 

Molecular weight 234.33 306.27 

WlogP 3.32 1.74 

H-Bond Acceptor 2 7 

H-Bond Donor – 1 

Rotatable Bonds – 5 

 

 

Conclusion 

The composition and inhibitory properties of secondary metabolites in 

the essential oil from the leaves of O. gratissimum against 

candidapepsin-1 protein from Candida albicans were studied. 

Hydrodistillation was used to obtain the oil from the leaves of the 

plant, and the components were identified by GC-FID method. The 

essential oil extract contained seven different compounds. The in 

silico study of these compounds’ activities against the enzyme 

Candidapepsin-1 showed that drimenin, followed by α-selinene and 

octamethylhexadecan-1-ol, respectively, had an excellent affinity for 

this protein. The ADME analysis of drimenin showed excellent 

pharmacokinetics and pharmacodynamic properties and therefore is a 

promising drug compound for the inhibition of Candidapepsin-1 

enzyme from C. albicans. 
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