

Tropical Journal of Natural Product Research

Available online at <https://www.tjnpr.org>

Review Article

***Goniothalamus macrophyllus*: A Comprehensive Review of Its Phytochemistry, Pharmacological Activities, and Therapeutic Potential**

Rollando Rollando^{1,3*}, Eva Monica^{2,3}, Dodi Iskandar⁴, Viol Dhea Kharisma^{5,6}, Arif Nur Muhammad Ansori^{6,7,8}¹Pharmacy Study Program, Faculty of Health Sciences, Ma Chung University, Malang, East Java, Indonesia²Pharmacist Professional Education Study Program, Faculty of Health Sciences, Ma Chung University, Malang, East Java, Indonesia³Drug Discovery and Design Research Group, Faculty of Health Sciences, Ma Chung University, Malang, East Java, Indonesia⁴Polytechnic State Pontianak, Pontianak, West Kalimantan, Indonesia⁵Department of Biology, Faculty of Science and Technology, Universitas Airlangga, Surabaya, East Java, Indonesia⁶Postgraduate School, Universitas Airlangga, Surabaya, East Java, Indonesia⁷Uttaranchal Institute of Pharmaceutical Sciences, Uttarakhand University, Dehradun, Uttarakhand, India⁸Drug and Vaccine Innovation Research Group, Virtual Research Center for Bioinformatics and Biotechnology, Surabaya, East Java, Indonesia

ARTICLE INFO

ABSTRACT

Article history:

Received 03 May 2025

Revised 01 June 2025

Accepted 05 June 2025

Published online 01 August 2025

Goniothalamus macrophyllus, a tropical species belonging to the Annonaceae family, has long been utilized in traditional Southeast Asian medicine for treating fevers, infections, and various other health conditions. This review provides a thorough examination of the plant's ethnomedicinal significance, phytochemical constituents, and pharmacological potential. A systematic review of the literature was conducted to collect data on its bioactive components, such as styryl-lactones, flavonoids, alkaloids, and acetogenins. Among these, gonithalamin, a major styryl-lactone, has been notably investigated for its cytotoxic effects, primarily through mechanisms like cell cycle arrest and apoptosis induction. Pharmacological investigations have highlighted the plant's notable anticancer, antimicrobial, antioxidant, anti-inflammatory, and antiparasitic activities. In vitro experiments have shown that both extracts and isolated constituents possess potent cytotoxic effects against various cancer cell lines, including those of breast, cervical, and hepatic origin. Moreover, antimicrobial assays have confirmed efficacy against both Gram-positive and Gram-negative bacterial strains. Antioxidant and anti-inflammatory activities further support its potential therapeutic versatility. However, its pharmacological promise is tempered by the scarcity of comprehensive toxicological studies and limited clinical data. Most findings are restricted to in vitro or preliminary in vivo models, and there is a lack of standardized protocols for extract formulation and compound isolation. In summary, *G. macrophyllus* represents a valuable natural resource for bioactive compounds with therapeutic potential, yet more extensive in vivo research and mechanistic studies are essential to substantiate its clinical applicability and safety.

Keywords: *Goniothalamus macrophyllus*, ethnomedicine, phytochemical constituents, pharmacological activities, natural product drug discovery

Introduction

Medicinal plants continue to serve as an essential foundation for drug discovery and the development of new therapeutic agents. According to the World Health Organization, approximately 80% of the world's population relies on traditional medicine, which is largely based on plant-derived remedies.¹ The increasing global interest in natural products is driven by their chemical diversity, structural complexity, and broad spectrum of pharmacological effects. Southeast Asia, known for its rich floristic diversity, remains a promising region for the exploration of medicinal plants with untapped therapeutic potential.^{2,3}

Corresponding author; Email: ro.llando@machung.ac.id

Tel: +6282220379864

Citation: Rollando R, Monica E, Iskandar D, Kharisma D V, Ansori M N A

Goniothalamus macrophyllus: A Comprehensive Review of its Phytochemistry, Pharmacological Activities, and Therapeutic Potential. Trop J Nat Prod Res. 2025; 9(7): 2964 – 2972
<https://doi.org/10.26538/tjnpr/v9i7.3>

Official Journal of Natural Product Research Group, Faculty of Pharmacy, University of Benin, Benin City, Nigeria.

Among the diverse plant families with documented ethnomedicinal uses, the Annonaceae family is noteworthy for its bioactive constituents, particularly styryl-lactones, acetogenins, alkaloids, and flavonoids. Species within this family, such as *Annona muricata*, *Polyalthia longifolia*, and *Goniothalamus spp.*, have been traditionally used for treating infections, inflammation, and even cancer.⁴⁻⁶ *G. macrophyllus*, commonly found in Indonesia, Malaysia, and Thailand, is one such plant with a long history of traditional use in treating fever, menstrual disorders, postpartum care, and tumor-like conditions.^{7,8} Despite its longstanding ethnomedicinal use, this species has not been comprehensively reviewed from a pharmacological and phytochemical perspective.

Phytochemical investigations of *G. macrophyllus* have identified a range of bioactive secondary metabolites, with styryl-lactones being the most prominent.^{9,10} Among these, gonithalamin has garnered attention for its cytotoxic effects against various cancer cell lines, acting primarily through apoptosis induction and cell cycle arrest.¹¹⁻¹³ In addition to its anticancer potential, extracts and compounds from *G. macrophyllus* have demonstrated antimicrobial, antioxidant, anti-inflammatory, and antiparasitic activities in preliminary studies.¹⁴

These pharmacological findings suggest that *G. macrophyllus* could be developed as a source of bioactive agents for drug discovery. Nevertheless, existing data on *G. macrophyllus* remain scattered, predominantly comprising studies limited to isolated compounds or individual pharmacological assays. Comprehensive information on its complete phytochemical profile, underlying mechanisms of action, toxicological safety, and structure-activity relationships is notably lacking. Furthermore, few *in vivo* experiments or clinical assessments have been conducted to substantiate its traditional medicinal uses or to evaluate its therapeutic efficacy rigorously. This fragmented body of evidence significantly impedes the advancement and scientific validation of *G. macrophyllus* as a credible medicinal plant candidate. Hence, the objective of this review is to systematically synthesize and critically appraise the existing literature concerning *G. macrophyllus*, with particular emphasis on its ethnomedicinal applications, botanical attributes, phytochemical composition, and pharmacological properties. By delineating bioactive compounds and exploring their potential mechanisms of action, this review seeks to establish a robust scientific foundation that supports further investigation and development of *G. macrophyllus* as a valuable natural resource for therapeutic agents.

Materials and Methods

The present review was designed in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines.^{15,16} The workflow included the formulation of research objectives, identification and screening of relevant literature, application of inclusion and exclusion criteria, and synthesis of the collected data.¹⁷ A flow diagram summarizing the literature selection process is presented in Figure 2. Relevant scientific literature was obtained through comprehensive searches of major online databases, including ScienceDirect, PubMed, SpringerLink, and Wiley Online Library. Additional sources such as Google Scholar, academic books, dissertations, and ethnobotanical reports were also used to enrich the context. The scientific name *G. macrophyllus* was validated using The Plant List (www.theplantlist.org) and Plants of the World Online (POWO). The search strategy involved combinations of the following keywords: “*Goniothalamus macrophyllus*”, “*Annonaceae*”, “ethnomedicine”, “styryl-lactone”, “*goniothalamin*”, “phytochemical constituents”, “cytotoxic activity”, “traditional uses”, “antioxidant”, “anticancer”, and “natural product”. The retrieved articles were screened for content specifically related to traditional medicinal applications, phytochemical composition, pharmacological effects, mechanisms of action, and toxicological data. Only peer-reviewed journal articles, original research papers, and high-quality review articles published in English were included.

Studies that lacked clear data on *G. macrophyllus*, focused on unrelated species, or did not report original pharmacological or phytochemical findings were excluded. Inclusion and exclusion criteria were strictly applied during the screening of titles, abstracts, and full texts, as summarized in Table 1. The final selection was based on relevance to the review's objectives and data quality.

Vernacular Names

G. macrophyllus is referred to by a range of vernacular names across its native distribution in Southeast Asia. These names reflect its widespread traditional use and local familiarity. In Indonesia, the species is known as “keremuntingan”, “merawan”, or “ki selasih”, especially in Java and Kalimantan.^{7,18} In Malaysia, common names include “selasih hutan”, “selasih jantan”, and “pokok langir”.¹⁹ In Thailand, the plant is locally called “khanun ta pa”, which translates to “forest jackfruit,” due to the resemblance of its leaves to those of *Artocarpus heterophyllus*.²⁰ These vernacular names not only assist in field identification but also signify the plant's cultural and medicinal roles. However, due to the overlapping use of some names across different *Annonaceae* species, proper botanical identification is essential to ensure pharmacological accuracy.

Morphology

G. macrophyllus is an understorey shrub or small tree that typically grows up to 5-8 meters in height, occasionally reaching 10 meters

under optimal conditions. The trunk is slender and unbuttressed with smooth grey-brown bark bearing small pale lenticels.²¹ The leaves are large, oblong-lanceolate, leathery, and alternate, measuring 22-30 cm in

Table 1: Inclusion and exclusion criteria for papers.

Inclusion criteria	Exclusion criteria
Journal articles, conference papers, and book chapters written between 1960 and 2025	Papers written in languages other than English
Articles focused specifically on <i>G. macrophyllus</i>	Articles discussing other species of <i>Goniothalamus</i> without comparative context
Papers published with title, abstract and full text	Papers with no available full text
Papers about traditional uses, phytochemistry and pharmacological properties of <i>G. macrophyllus</i>	Abstract-only publications, conference posters, or editorials

length and 6-11 cm in width (Figure 1). They are glabrous on both surfaces, with a distinctive granular texture beneath due to immersed tertiary veins.²² Venation is pinnate, with 12-23 pairs of lateral veins. The petioles are short and stout, about 1-3 cm long. Flowers are solitary, bisexual, and fragrant, usually borne on older branches (cauliflorous). Each flower has three ovate sepals and six petals in two whorls.²³ The outer petals are oblong and creamy-white (up to 3 cm long), while the smaller inner petals are rhomboid, densely pubescent on the inside, and often enclose the reproductive organs. Numerous stamens and free carpels are present, with each carpel containing a single ovule.²⁴

The fruit is an aggregate of 12-18 (sometimes more) sessile, ovoid monocarps, each about 1-2 cm long, turning red or orange-red when ripe. These fleshy, indehiscent fruits typically contain one ellipsoid seed each. The plant lacks specialized root structures, although it develops a lateral root system typical of tropical understorey trees. The roots and bark emit a spicy aroma when crushed, a trait linked to the presence of bioactive compounds. Morphological variation across regions is minimal, and diagnostic features such as leaf texture, floral structure, and fruit coloration help differentiate *G. macrophyllus* from other *Goniothalamus* species.²⁴

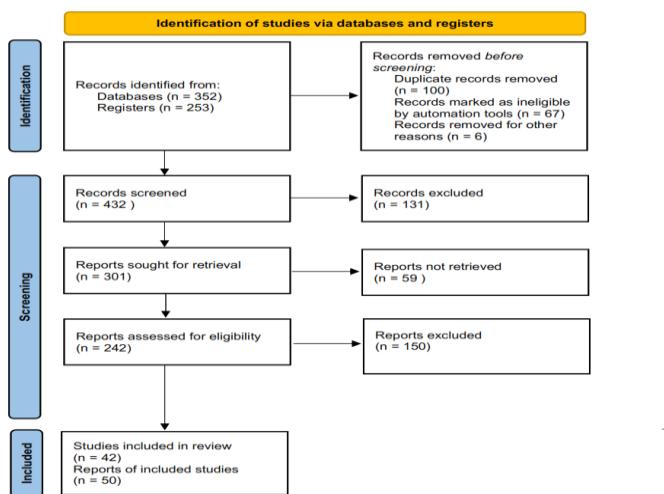


Figure 1: Parts of the *G. macrophyllus* plant. (a) Leaves, (b) Stems, (c) Flowers, (d) Fruits

Traditional Uses

G. macrophyllus has been widely used in traditional medicine across Southeast Asia, particularly in Indonesia, Malaysia, and Thailand. In Indonesia, especially among communities in Kalimantan and Java, decoctions made from the leaves, roots, and bark have been used to

treat fevers, headaches, rheumatism, and as a postpartum remedy for women to restore uterine health.^{18,25} In Kalimantan, grated root preparations are sometimes applied externally to relieve muscular pain or inflammation, while infusions of the bark are consumed to alleviate symptoms of fatigue and chills.⁷ The plant is also regarded as a general “tonic herb” and is often combined with other medicinal plants in traditional jamu formulations. Among the Dayak communities, parts of the plant are also used for postnatal bathing rituals and believed to protect against spiritual ailments. In Malaysia, traditional practitioners use *G. macrophyllus* under the names “selasih hutan” or “pokok langir.” The root and bark are used in herbal mixtures for detoxification, menstrual regulation, and skin conditions, often administered as decoctions or pastes.²⁶ The plant is also used to promote sweating (diaphoretic effect) in cases of fever or to stimulate circulation after childbirth. In Thailand, particularly in the southern provinces, it is used as a traditional remedy for digestive disorders, snakebite, and to promote blood flow.²⁷ Despite the widespread traditional use of the species, standardized dosage forms and controlled pharmacological validations remain limited.

Figure 2: Diagram of search strategy

These ethnomedicinal applications highlight the cultural significance of *G. macrophyllus* and support further scientific investigation into its therapeutic potential.

Phytochemistry

Phytochemical analyses of *G. macrophyllus* have revealed a chemically diverse profile consisting of several major classes of secondary metabolites. These include styryl-lactones (notably goniothalamin and its analogues), which are characteristic of the genus and possess strong cytotoxic properties; alkaloids, such as anonaine, liriodenine, and oxostephanine, which exhibit antimicrobial and antiparasitic activities; and flavonoids, including quercetin, kaempferol, and their glycosides, known for their antioxidant and anti-inflammatory effects.²⁸ In addition, the plant contains phenolic compounds and phenolic acids, which contribute to radical-scavenging activity, as well as acetogenins, which are polyketide-derived compounds associated with mitochondrial inhibition and anticancer effects. Minor constituents such as triterpenes (e.g., lupeol) and phytosterols (e.g., β -sitosterol and stigmasterol) have also been identified, supporting traditional applications related to inflammation and tissue recovery.²⁹ This rich chemical diversity underpins the wide range of pharmacological effects reported for the species and forms the basis for more detailed investigation into each compound group (Table 2).

Polyketide-Derived Compounds (Styryl-Lactones)

The most extensively studied group of compounds in *G. macrophyllus* is the styryl-lactones, which are biosynthetically derived from the polyketide pathway.³⁰ The principal compound in this class is goniothalamin, isolated from the roots of the plant.³¹ Goniothalamin is

an α,β -unsaturated γ -lactone bearing a styryl side chain, known for its potent cytotoxic and pro-apoptotic activities against various cancer cell lines.^{10,32} Additionally, two novel compounds, goniolandrene A and goniolandrene B, have been isolated and structurally characterized from the root extracts.³³ These compounds represent new analogs within the styryl-lactone framework and were characterized using spectroscopic and circular dichroism analysis.^{34,35} The presence of these compounds underscores the importance of the root as the richest source of polyketide-derived metabolites in *G. macrophyllus*.

Flavonoids and Phenolic Compounds

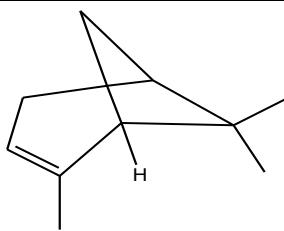
Flavonoids and related phenolic compounds are also present in *G. macrophyllus*, with (2S)-pinocembrin being the most notable compound reported.³⁶ Pinocembrin is a flavanone-type flavonoid that was isolated from the stem or root extracts, and it has been shown to possess anti-inflammatory activity, specifically by inhibiting prostaglandin E2 production in lipopolysaccharide (LPS)-stimulated macrophages.²⁸ This compound is widely known in other medicinal plants for its antioxidant, anti-inflammatory, and neuroprotective properties, and its identification in *G. macrophyllus* provides strong support for the presence of flavonoid-based bioactivity in the species.³⁷ While other flavonoids or phenolic acids have not been fully characterized from this plant, the isolation of pinocembrin confirms the relevance of this class within its phytochemical profile.

Phytosterols

As part of its lipophilic secondary metabolites, *G. macrophyllus* has been reported to contain β -sitosterol, a common phytosterol found in higher plants. This compound was identified from the hexane fraction of the roots, likely during general screening of nonpolar constituents.³⁸ Although β -sitosterol is not unique to *Goniothalamus* species, its presence supports the existence of terpenoid-derived sterols in *G. macrophyllus*.³⁹ β -sitosterol is known for its anti-inflammatory, cholesterol-lowering, and immunomodulatory effects in other medicinal plants, and it may contribute to some of the traditional uses of *G. macrophyllus*, particularly in formulations aimed at postpartum recovery or internal cleansing.⁴⁰

Alkaloids

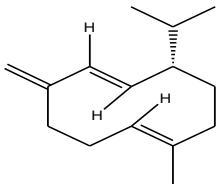
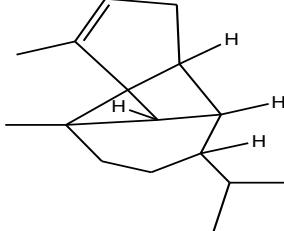
Although many species within the *Goniothalamus* genus are known to produce isoquinoline and aporphine alkaloids (e.g., liriodenine, anonaine, oxostephanine),^{41,42} no specific alkaloid compound has been conclusively isolated or reported from *G. macrophyllus* to date.^{35,43,44} This is in contrast to related species where such alkaloids are commonly detected and attributed with antimicrobial, antiplasmodial, and cytotoxic activities.^{45,46} The absence of alkaloid reports in *G. macrophyllus* may reflect a gap in phytochemical investigation or indicate trace-level presence that has not been prioritized in published studies. Further targeted alkaloid screening would be necessary to confirm or refute their presence in this species.


Biological Activities

Anticancer Activity

Several constituents from *G. macrophyllus* exhibit potent cytotoxic (anticancer) effects, primarily by inducing apoptosis in cancer cells: Goniothalamin (styryl-lactone), a major bioactive compound isolated from *G. macrophyllus*.^{47,48} It has shown strong cytotoxicity against various cancer cell lines (e.g., $IC_{50} \approx 0.42 \mu M$ in P388 murine leukemia cells).⁴⁹ Notably, goniothalamin is relatively selective for tumor cells, concentrations up to 20 μM were non-toxic to normal human blood cells (peripheral blood mononuclear cells) while still impairing cancer cell viability.²⁹ Mechanistic studies indicate goniothalamin triggers mitochondrial-mediated apoptosis (associated with Bax upregulation) and interferes with pro-survival signaling. For example, at sub-apoptotic doses (5-20 μM) it inhibits NF- κ B activation in tumor cells, blocking p50/p65 nuclear translocation and reducing NF- κ B dependent IL-8 expression. This NF- κ B inhibition can sensitize cancer cells to apoptosis and underlies its anti-leukemic activity.

Table 2: Phytochemicals and bioactive compounds isolated from *G. macrophyllus*



Compound Name	Structure	Pharmacological Activity	References
(2S)-Pinocembrin		Anti-inflammatory (suppresses LPS-induced PGE ₂ production via MAPK inhibition); Larvicidal (toxic to <i>Aedes aegypti</i> larvae)	²⁸
(R)-(+)-Goniothalamin		Anti-inflammatory (inhibits TNF-α-induced NF-κB activation, reduces IL-8 expression); Anticancer (cytotoxic to leukemia and other cancer cells at low μM)	²⁹
Goniothalamin epoxide		Anticancer (potent cytotoxicity against human liver cancer (HepG2) and other cancer cell lines; IC ₅₀ ~0.19–0.64 μg/mL)	⁹⁰
Goniolandrene A		Anticancer (cytotoxic to murine leukemia P388 cells, IC ₅₀ ~0.42 μM)	⁴⁹
Goniolandrene B		Anticancer (cytotoxic to murine leukemia P388 cells; IC ₅₀ up to ~160 μM)	⁴⁹
Geranyl acetate		Antimicrobial (major twig/root oil constituent; contributes to antibacterial activity against <i>Staphylococcus</i> and <i>Candida</i> species)	⁵⁸
Geraniol		Antimicrobial (present in active essential oils; inhibits growth of bacteria and yeast)	⁵⁸
Linalool		Antimicrobial (present in active essential oils; broad-spectrum antimicrobial)	⁵⁸

α -Pinene

Antimicrobial (strong activity against Gram- 58

positive bacteria and fungi; e.g.,
Staphylococcus aureus, *Candida albicans*;
MIC as low as 0.3–2.5 mg/mL)

Germacrene D

Antibacterial (broad-spectrum antibacterial 91
properties reported for this common
sesquiterpene) α -CopaeneInsect repellent/larvicidal (strongly repels 92
insects such as the Asian citrus psyllid at very
low doses)

Alholactone (styryl-lactone), another cytotoxic lactone identified in *G. macrophyllus*. Alholactone has been reported to induce apoptosis in human carcinoma cells via the extrinsic (Type II) pathway.⁵⁰ In HeLa cervical cancer cells, it triggers the caspase cascade associated with extrinsic death receptors (Type II apoptosis involves mitochondrial amplification of the death signal), leading to cell death.⁵¹ This compound's pro-apoptotic effect is selective to cancer cells; however, it is also known to generate oxidative stress in tumor cells, which contributes to apoptosis induction in a caspase-dependent manner (as seen in related *Goniothalamus* species).⁵²

G. macrophyllus (Annonaceae) also produces long-chain polyketide acetogenins. Two novel linear acetogenins, goniolandrene A and B, were isolated from *G. macrophyllus* roots and tested for cytotoxicity.⁴⁹ These showed activity against P388 cells, though with higher IC₅₀ values (up to tens of μ M) compared to goniothalamin.⁵³ Goniothalamin itself (a styryl-lactone rather than an acetogenin) was the most potent in the same study (IC₅₀ ~0.42 μ M).⁵⁴ The cytotoxic acetogenins are thought to act by disrupting mitochondrial function in cancer cells, a hallmark mechanism for many Annonaceous acetogenins.^{55,56} In summary, the anticancer efficacy of *G. macrophyllus* is largely attributed to styryl-lactones (like goniothalamin and alholactone) and related compounds that induce apoptosis and inhibit survival pathways in tumor cells.

Antimicrobial Activity

G. macrophyllus has demonstrated broad-spectrum antimicrobial effects, attributable to both its essential oils and solvent-extractable phytochemicals. The plant's essential oils are rich in mono- and sesquiterpenes (e.g., α -pinene, geraniol, linalool, bicyclogermacrene) which show significant antimicrobial activity.⁵⁷ In one study, *G. macrophyllus* root oil exhibited a notable inhibitory effect at ~0.3 mg/mL against vancomycin-intermediate resistant *S. aureus* (VISA), *S. epidermidis*, and the yeast *C. albicans*. Among the isolated oil components, α -pinene was identified as a key antimicrobial agent, it inhibited bacterial growth at 0.3 mg/mL and fungal growth at 2.5 mg/mL, outperforming other constituents like linalool, geraniol, and geranyl acetate.^{19,58} These findings suggest the essential oil's efficacy against Gram-positive bacteria and yeasts, aligning with traditional uses for treating skin infections and wounds.⁵⁹ (Gram-negative bacteria tend to be less susceptible to these terpenes, as is often the case with essential oils.)

Ethanol extracts of *G. macrophyllus* (non-volatile compounds) also show pronounced antimicrobial effects. Recent tests of leaf and root extracts revealed strong growth inhibition of *C. albicans* (yeast), *P.*

acnes (a Gram-positive bacterium implicated in acne), and *S. mutans* (Gram-positive bacterium causing dental caries). The phytochemical profile of these extracts includes alkaloids, flavonoids, saponins, tannins, and triterpenoids,⁶⁰ all of which can contribute to antimicrobial activity. For instance, tannins and flavonoids can disrupt microbial membranes or enzymes, while aporphine alkaloids (common in Annonaceae) may intercalate DNA or inhibit protein synthesis in microbes.⁶¹ The broad inhibition of both fungi and bacteria by *G. macrophyllus* extracts underscores its potential as a source of natural antimicrobial agents. Indeed, local communities use the bark and roots as antiseptics, and these laboratory results validate such traditional applications.

Antioxidant Activity

Antioxidant activity in *G. macrophyllus* has not been as extensively characterized as its other activities, but available evidence and its phytochemistry suggest the plant can scavenge free radicals.⁶² *G. macrophyllus* contains significant amounts of phenolic compounds, which are known antioxidants. Phytochemical screening of the leaves and roots shows the presence of flavonoids, tannins, and other phenolics.⁶⁰ These compounds (e.g., flavanones like pinocembrin, and various tannins) can donate hydrogen atoms or electrons to neutralize reactive oxygen species.^{63,64} The mere presence of such constituents implies that extracts of the plant are likely to exhibit free-radical scavenging activity.⁶⁵ For example, flavonoid antioxidants typically inhibit lipid peroxidation and protect against oxidative stress in biological systems.⁶⁶

Direct antioxidant assays specific to *G. macrophyllus* are somewhat limited in the literature. However, studies on related *Goniothalamus* species support its potential. A comparative example is *Goniothalamus velutinus* (another member of the genus), whose bark and leaf extracts showed significant DPPH free radical scavenging activity correlating with high total phenolic content.⁶⁴ By analogy, a methanolic extract of *G. macrophyllus* would be expected to exhibit similar antioxidant effects given its phenolic makeup. In line with this expectation, many *Goniothalamus* species have been noted in reviews to possess antioxidant activity (often mentioned alongside their antimicrobial and anti-inflammatory properties).⁶⁷ In summary, while *G. macrophyllus*' antioxidant capacity needs further quantification (e.g., IC₅₀ in DPPH or ABTS assays), its rich phenolic profile strongly suggests a protective effect against oxidative damage. This could contribute to its traditional use in treating inflammatory conditions and general "health tonic" uses in folk medicine.

Anti-inflammatory Activity

Traditional uses of *G. macrophyllus* (e.g. to alleviate inflammation and swelling) are supported by modern findings that its compounds interfere with key inflammatory pathways. Beyond its cytotoxicity, goniothalamin exerts anti-inflammatory effects by targeting the NF- κ B pathway.²⁸ NF- κ B is a transcription factor that controls the production of many pro-inflammatory cytokines (like TNF- α , IL-1 β , IL-6) and chemokines.⁶⁸ Goniothalamin was shown to suppress TNF- α -induced NF- κ B activation in cell-based assays at low micromolar levels.²⁹ In TNF α -stimulated leukemia cells, it prevented the p50/p65 NF- κ B heterodimer from translocating to the nucleus and binding DNA, which in turn reduced the expression of interleukin-8 (IL-8), a key inflammatory chemokine. This blockade of NF- κ B signaling occurred at non-apoptogenic concentrations (5-10 μ M),²⁹ indicating a direct anti-inflammatory action separate from its cytotoxic effect. By inhibiting NF- κ B, goniothalamin can down-regulate numerous inflammatory mediators and adhesion molecules, thereby exhibiting an anti-inflammatory and potential anti-tumor-promoting effect in the context of chronic inflammation.

(2S)-Pinocembrin isolated from *G. macrophyllus* stem bark, has emerged as a potent anti-inflammatory agent in its own right.^{69,70} In an in vitro study, (2S)-pinocembrin significantly suppressed prostaglandin E₂ (PGE₂) production in activated macrophages.²⁸ Specifically, when RAW 264.7 (mouse) and U937 (human) macrophage cells were stimulated with bacterial lipopolysaccharide (LPS), treatment with (2S)-pinocembrin markedly reduced the levels of PGE₂, a pro-inflammatory eicosanoid involved in fever, pain, and swelling.⁷¹ Mechanistic experiments revealed that (2S)-pinocembrin achieves this by inhibiting MAPK signaling, particularly the p38 and ERK1/2 pathways, which are upstream of cyclooxygenase-2 (COX-2) induction.²⁸ By attenuating p38/ERK activation, the compound likely reduces COX-2 expression or activity, thus lowering PGE₂ synthesis. Docking studies in the same work supported that (2S)-pinocembrin can bind to the kinase sites, corroborating the in vitro findings. This mechanism indicates a COX-2 modulatory effect analogous to NSAIDs, though via upstream kinase inhibition.⁷² The anti-inflammatory efficacy of pinocembrin is noteworthy because excessive PGE₂ is implicated in conditions like rheumatoid arthritis and even cancer progression.⁷³ By curbing PGE₂, (2S)-pinocembrin could help ameliorate inflammation-related symptoms (it has even been suggested as potentially beneficial in preventing septic shock exacerbation).^{74,75} Notably, pinocembrin is already known for its anti-inflammatory and neuroprotective profiles in other contexts, and its presence in *G. macrophyllus* adds to the plant's overall anti-inflammatory arsenal.⁷⁶ In summary, *G. macrophyllus* exhibits anti-inflammatory activity via compounds that modulate key signaling pathways (NF- κ B and MAPK/COX-2). These molecular actions validate the ethnomedicinal use of the plant for swelling, fever, and inflammatory pain.

Antiparasitic Activity

The antiparasitic effects of *G. macrophyllus* are most prominently noted against the malaria parasite (*Plasmodium* spp.), consistent with its use in traditional medicine for treating malarial fevers.⁶² In Malaysia and Indonesia, decoctions of *G. macrophyllus* roots have been used to treat fever and malaria for generations. This folk use suggests the plant contains antipyretic and antiplasmodial constituents. Malaria is caused by *Plasmodium* parasites; thus, a medicinal effect against "malaria" implies the plant might inhibit parasite growth or alleviate symptoms (or both). Indeed, *G. macrophyllus* is locally known as "penawar hitam," reflecting its reputation as a remedy for intermittent fevers like malaria.⁵⁸ Such use set the stage for scientific evaluation of its antiparasitic properties.

A screening study of Malaysian medicinal plants provided experimental evidence for *G. macrophyllus*' antimalarial activity. In an in vitro assay against *P. falciparum* (human malaria parasite, strain D10), the stem extract of *G. macrophyllus* achieved >60% inhibition of parasite growth. This was at the highest test concentration (64 μ g/mL), indicating moderate antiplasmodial potency. While an IC₅₀ was not reached in that initial screening (unlike extracts of some other species, which were more potent), a >60% growth inhibition is a

promising result for a crude extract. It suggests that one or more constituents can affect the parasite's viability or development. This aligns with the traditional use and supports that *G. macrophyllus* indeed has antimalarial principles. It's worth noting that another *Goniothalamus* species (*G. scorchedinii*) showed even higher activity in the same study (90% inhibition at 0.03 μ g/mL),⁷⁷ implying the genus broadly is a rich source of antiplasmodial agents.

Although specific antiprotozoal compounds from *G. macrophyllus* have not been definitively isolated in the context of malaria, the plant's known chemical classes provide clues. *Goniothalamus* species are known to produce acetogenins and styryl-lactones that are cytotoxic,⁵⁶ and some of these have shown antimalarial effects in related studies.⁵⁸ For example, certain Annonaceous acetogenins (like bullatacin and squamocin from other genera) are potently antiplasmodial by disrupting parasite mitochondrial function.⁷⁸ It is conceivable that *G. macrophyllus*' acetogenins (e.g., the goniolandrenes or others) and styryl-lactones contribute to the observed activity by a similar mechanism, attacking parasite mitochondria or inhibiting critical enzymes.^{79,80} Additionally, the presence of flavonoids (like pinocembrin) could add antiparasitic synergy, as some flavonoids inhibit plasmodial proteins or enhance immune response.^{81,82} While more research is needed to pinpoint the exact mechanism in *G. macrophyllus*, the existing data firmly establish it as having antiparasitic (antimalarial) potential. This justifies its traditional usage and highlights it as a candidate for further bioactive compound isolation against malaria. (There are no specific reports on its efficacy against other parasites such as leishmania or trypanosomes yet; current evidence is focused on plasmodial activity.)

Antidiabetic

To date, no direct study has evaluated *G. macrophyllus* for glucose-lowering or antidiabetic activity. The plant is not prominently documented in traditional medicine for diabetes. However, its phytochemistry suggests possible antidiabetic effects worth exploring. The bark and leaves contain flavonoids and saponins,⁶⁰ which in other plants have been shown to improve insulin sensitivity or inhibit carbohydrate-digesting enzymes.^{83,84} Notably, some Annonaceae alkaloids can inhibit α -glucosidase,⁸⁵ an enzyme that breaks down sugars; for instance, alkaloids from a related custard-apple family plant (*Polyalthia* sp.) showed potent α -glucosidase inhibition in vitro.⁶⁷ By analogy, any alkaloids in *G. macrophyllus* might exhibit similar activity. Thus, while *antidiabetic effects have not been reported* for this species, it has the chemical repertoire (flavonoids, tannins, etc.) that could confer antihyperglycemic or α -glucosidase inhibitory activity. This remains a potential pharmacological facet for future investigation.

Hepatoprotective Activity

There is no evidence so far that *G. macrophyllus* protects the liver; in fact, available data suggest caution. Traditional usage of this plant does not specifically include liver ailments, and scientific studies have not reported any hepatoprotective assays. On the contrary, some constituents might be hepatotoxic at high doses rather than protective. For example, the styryl-lactone altholactone (discussed above for anticancer) was noted to elevate liver enzymes in an animal study, it significantly increased serum alanine aminotransferase (ALT) levels, a marker of liver injury.⁵² This was associated with its potent bioactivity and suggests it can stress hepatocytes. Thus, *G. macrophyllus* extracts would need careful toxicity evaluation before considering any hepatoprotective claims.⁸⁶ At present, no hepatoprotective effect is reported, and some components like goniothalamin are quite bioactive (potentially harmful to rapidly dividing cells, including hepatocytes at high concentration). Any use of the plant for liver health in folk medicine is not well documented, so hepatoprotection remains an unlikely or at least unproven activity for now.

Antinociceptive/Analgesic Effects

Analgesic (pain-relieving) potential of *G. macrophyllus* has not been formally studied, but folk medicine hints at it. The plant has been used as a post-partum remedy and to treat "body pains" and aches in certain local traditions.⁸⁷ In some regions, concoctions of *G. macrophyllus* (or its relatives) are applied to relieve rheumatism and muscular pain.⁸⁸

These uses suggest the plant may have antinociceptive compounds (perhaps acting as mild sedatives or muscle relaxants). Some Annonaceae plants contain morphine-like alkaloids or central nervous system depressants, though *Goniothalamus* is better known for cytotoxic agents. It is possible that the anti-inflammatory effects (NF- κ B and COX-2 inhibition by goniothalamin and pinocembrin) also contribute to pain relief, since reducing inflammation often alleviates pain. Without direct studies, one can only say *G. macrophyllus* has a potential analgesic effect as evidenced by traditional usage, but this remains to be pharmacologically validated.

Insecticidal and Insect-Repellent Activity

G. macrophyllus is well-known in indigenous practice as a natural insect repellent. The smoke from burning the dried leaves or bark is used to repel mosquitoes and other insects.⁶⁰ In Malaysia, people have observed that the burnt leaves produce a fragrant smoke that is highly effective at keeping mosquitoes away.⁸⁹ This aligns with the presence of volatile terpenoids in the plant's essential oil; many of those (e.g., geraniol, citronellol, α -pinene) are known mosquito repellents. Modern studies confirm this traditional knowledge: ethanol extracts of *G. macrophyllus* have shown mosquitocidal activity. In a laboratory larvicidal assay, the root extract caused up to 88% mortality of *Aedes* mosquito larvae at 15% concentration.⁶⁰ Such efficacy is comparable to some conventional larvicides. The extract likely contains a blend of compounds that are toxic to the larvae (possibly an overlap of antimicrobial terpenes that also disrupt insect physiology). Additionally, earlier reports noted that various parts of *G. macrophyllus* are effective against pests. The fragrance of the leaves deters adult insects and even the planted tree is said to have fewer insect herbivores relative to other species (an observation that prompted chemical analysis of its volatiles). Therefore, *G. macrophyllus* can be considered to have insecticidal properties, especially as a repellent and larvicide. This justifies its local use in preventing mosquito-borne illnesses and as a botanical insect control agent.

Abortifacient (Embryotoxic) Effect

An important traditional use of *G. macrophyllus* (and several *Goniothalamus* spp.) is as an abortifacient to induce miscarriage. The bark or root decoction was given to women post-partum or to terminate unwanted pregnancy. Chemical studies have provided a basis for this effect: goniothalamin and goniothalamin oxide, two styryl-lactones from *G. macrophyllus*, were found to have embryotoxic properties. In laboratory assays (e.g., on embryonic tissues or pregnant animal models), these compounds caused fetal resorption or embryo lethality.⁵⁸ The mechanism is presumably related to their cytotoxicity, they can induce apoptosis in rapidly dividing embryonic cells and possibly cross the placental barrier. Because of this, *G. macrophyllus* is known as "gajah beranak" (literally "elephant giving birth") in Malay, alluding to its use in difficult childbirth and abortion. While this embryotoxic/uterotonic effect is a hazard in terms of toxicity, it was harnessed in folk medicine. Modern users should be cautious, as the same compounds with anticancer activity can harm reproductive cells. Nonetheless, this is a documented pharmacological effect of the plant (albeit a harmful one), and it underscores the potency of *G. macrophyllus*' bioactive constituents on physiological processes.

Conclusion

In conclusion, *G. macrophyllus* exhibits significant therapeutic promise based on its diverse phytochemical profile and extensive pharmacological activities. The ethnomedicinal applications of *G. macrophyllus* across Southeast Asia are well supported by scientific evidence, particularly regarding its cytotoxic, antimicrobial, antioxidant, anti-inflammatory, antiparasitic, and insecticidal properties. The prominent bioactive compounds, notably goniothalamin and related styryl-lactones, along with flavonoids like pinocembrin, underpin these biological effects through mechanisms such as apoptosis induction, NF- κ B inhibition, and MAPK/COX-2 modulation. However, the review also highlights critical gaps, such as the limited in vivo validation, insufficient toxicological data, and lack

of standardized preparation methods. Future research should prioritize comprehensive toxicological studies, clinical validations, and mechanistic explorations to facilitate the translation of *G. macrophyllus* from traditional use into evidence-based therapeutic applications. By addressing these research needs, *G. macrophyllus* could significantly contribute to the development of novel natural product-based therapeutics, thus reinforcing its role in contemporary medicine.

Conflict of Interest

The authors declare no conflict of interest.

Authors' Declaration

The authors hereby declare that the work presented in this article is original and that any liability for claims relating to the content of this article will be borne by them.

Acknowledgments

The authors sincerely thank Prof. Subandi for his valuable corrections and insightful suggestions provided during the manuscript preparation prior to submission. No external funding was received for conducting this review.

References

1. Sharma A, Talimarada D, Dhuri SN, Sundaram VNN, Palanimutu D, Holla H. Isolation, Structure Elucidation and in Vitro Anticancer Activity of Phytochemical Constituents of *Goniothalamus wynaudensis* Bedd. and Identification of α -Tubulin as a Putative Molecular Target by in Silico Study. *Chem Biodivers.* 2023;20(9):e202300371.
2. Phumthum M, Sriithi K, Inta A, Junsongduang A, Tangjitzman K, Pongamornkul W, Trisonthi C, Balslev H. Ethnomedicinal plant diversity in Thailand. *J Ethnopharmacol.* 2018;214:90–8.
3. Wiart C. Ethnopharmacology of Medicinal Plants: Asia and the Pacific. Springer Science & Business Media; 2007. 236 p.
4. Lúcio ASSC, Almeida JRG da S, Da-Cunha EVL, Tavares JF, Barbosa Filho JM. Alkaloids of the Annonaceae: occurrence and a compilation of their biological activities. *Alkaloids Chem Biol.* 2015;74:233–409.
5. Neske A, Ruiz Hidalgo J, Cabedo N, Cortes D. Acetogenins from Annonaceae family. Their potential biological applications. *Phytochemistry.* 2020;174:112332.
6. Sophonithiprasert T, Nilwarangkoon S, Nakamura Y, Watanapokasin R. *Goniothalamin* enhances TRAIL-induced apoptosis in colorectal cancer cells through DR5 upregulation and cFLIP downregulation. *Int J Oncol.* 2015;47(6):2188–96.
7. Burkhill IH, Birtwistle W, Foxworthy FW, Scrivenor JB, Watson JG. A dictionary of the economic products of the Malay peninsula. [2d ed.]. Kuala Lumpur, Malaysia: Published on behalf of the governments of Malaysia and Singapore by the Ministry of Agriculture and cooperatives; 1966. 2 p.
8. Mu Q, Tang WD, Liu RY, Li CM, Lou LG, Sun HD, Hu CQ. Constituents from the stems of *Goniothalamus griffithii*. *Planta Med.* 2003;69(9):826–830.
9. Abd Wahab NZ, Ibrahim N. Styrylpyrone Derivative (SPD) Extracted from *Goniothalamus umbrosus* Binds to Dengue Virus Serotype-2 Envelope Protein and Inhibits Early Stage of Virus Replication. *Mol Basel Switz.* 2022;27(14):4566.
10. Blázquez MA, Bermejo A, Zafra-Polo MC, Cortes D. Styryl-lactones from *Goniothalamus* species— A review. *Phytochem Anal.* 1999;10(4):161–170.
11. Khaw-On P, Pompimon W, Banjerpongchai R. Goniothalamin Induces Necrosis and Anoikis in Human Invasive Breast Cancer MDA-MB-231 Cells. *Int J Mol Sci.* 2019;20(16):3953.
12. Meirelles MA, Braga CB, Ornelas C, Pilli RA. Synthesis of Nitrogen-Containing Goniothalamin Analogues with Higher Cytotoxic Activity and Selectivity against Cancer Cells. *ChemMedChem.* 2019;14(15):1403–1417.
13. Seyed MA, Jantan I, Bukhari SNA. Emerging Anticancer Potentials of Goniothalamin and Its Molecular Mechanisms. *BioMed Res Int.* 2014;2014:536508.
14. Abd El-Kareem SA, Hussein NGA, El-Kholey SM, Elhelbawy AMAEI. Microneedle Combined with Iontophoresis and Electroporation for Assisted Transdermal Delivery of Goniothalamus

Macrophyllus for Enhancement Sonophotodynamic Activated Cancer Therapy. *Sci Rep.* 2024;14(1):7962.

15. Moher D, Liberati A, Tetzlaff J, Altman DG, PRISMA Group. Preferred Reporting Items for Systematic Reviews and Meta-Analyses: The PRISMA Statement. *PLoS Med.* 2009;6(7):e1000097.
16. Page MJ, McKenzie JE, Bossuyt PM, Boutron I, Hoffmann TC, Mulrow CD, Shamseer L, Tetzlaff JM, Akl EA, Brennan SE, Chou R, Glanville J, Grimshaw JM, Hróbjartsson A, Lalu MM, Li T, Loder EW, Mayo-Wilson E, McDonald S, McGuinness LA, Stewart LA, Thomas J, Tricco AC, Welch VA, Whiting P, Moher D. The PRISMA 2020 Statement: an Updated Guideline for Reporting Systematic Reviews. *BMJ.* 2021;372:n71.
17. Siddaway AP, Wood AM, Hedges LV. How to Do a Systematic Review: A Best Practice Guide for Conducting and Reporting Narrative Reviews, Meta-Analyses, and Meta-Syntheses. *Annu Rev Psychol.* 2019;70:747–770.
18. Heyne K. Useful Plants of Indonesia. Yayasan Sarana Wana Jaya: Distributed by the Employee Cooperative, Department of Forestry; 1988. 632 p.
19. Shakri NM, Salleh WMNHW, Khamis S, Ali NAM. Chemical Characterization of *Goniothalamus macrophyllus* and *Goniothalamus malayanus* leaves' essential oils. *Z Für Naturforschung C.* 2020;75(11–12):485–488.
20. Leeratiwong C, Chalermglin P, Saunders RMK. *Goniothalamusroseipetalus* and *G.sukhirinensis* (Annonaceae): Two new species from Peninsular Thailand. *PhytoKeys.* 2021;184:1–17.
21. Saunders R. The genus *Goniothalamus* (Annonaceae) in Sumatra. *Bot J Linn Soc.* 2002;139(3):225–254.
22. Adhya I, Hendrayana Y, Supartono T, Ismail AY, Nurdin. Vegetation Structure and Species Composition of Habitat Types *Goniothalamus macrophyllus* (Blume) Hook.f. and Thomson in Lowland Forest, Kuningan Regency, West Java. *IOP Conf Ser Earth Environ Sci.* 2021;819(1):012063.
23. Bluden G, Kyi A, Jewers K. The Comparative Stem and Root Anatomy of *Goniothalamus andersonii*, *G. macrophyllus*, *G. malayanus* and *G. velutinus* (Annonaceae) from the Peat Swamps of Sarawak. *Bot J Linn Soc.* 1974;68(3):209–225.
24. Saunders R, Chalemgien P. A Synopsis of *Goniothalamus* Species (Annonaceae) in Thailand, with Descriptions of Three New Species. *Bot J Linn Soc.* 2008;156(3):355–384.
25. Evans Schultes R. Medicinal plants of East and Southeast Asia: Attributed properties. *Econ Bot.* 1980;34(4):361–361.
26. Chen PC. Traditional and modern medicine in Malaysia. *Am J Chin Med.* 1979;7(3):259–275.
27. Prakash S, Elavarasan N, Subashini K, Kanaga S, Dhandapani R, Sivanandam M, Kumaradhas P, Thirunavukkarasu C, Sujatha V. Isolation Of Hesperetin - A Flavonoid from *Cordia Sebestena* Flower Extract through Antioxidant Assay Guided Method and Its Antibacterial, Anticancer Effect on Cervical Cancer via In Vitro and In Silico Molecular Docking Studies. *J Mol Struct.* 2020;1207:127751.
28. Teruna HY, Rullah K, Hendra R, Utami R, Islami D, Mohd Faudzi SM, Mohd Aluwi MFF, Lam KW. Inhibitory Effect of (2S)-Pinocembrin From *Goniothalamus macrophyllus* on the Prostaglandin E2 Production in Macrophage Cell Lines: In Vitro and In Silico Studies. *Adv Pharmacol Pharm Sci.* 2024;2024:8811022.
29. Orlíková B, Schumacher M, Juncker T, Yan CC, Inayat-Hussain SH, Hajjouli S, Cerella C, Dicato M, Diederich M. Styryl-lactone goniothalamin inhibits TNF- α -induced NF- κ B activation. *Food Chem Toxicol Int J Publ Br Ind Biol Res Assoc.* 2013;59:572–8.
30. Sangrueng K, Sanyacharernkul S, Nantapap S, Nantasaen N, Pompimon W. Bioactive Goniothalamin from *Goniothalamus tapis* with Cytotoxic Potential. *Am J Appl Sci.* 2015;12(9):650–653.
31. Innajak S, Mahabusrakum W, Watanapokasin R. Goniothalamin Induces Apoptosis Associated with Autophagy Activation through MAPK Signaling in SK-BR-3 Cells. *Oncol Rep.* 2016;35(5):2851–8.
32. Pilli RA, Toledo I de, Meirelles MA, Grigolo TA. Goniothalamin-Related Styryl Lactones: Isolation, Synthesis, Biological Activity and Mode of Action. *Curr Med Chem.* 2019;26(41):7372–7451.
33. de Fátima A, Kohn LK, Antônio MA, de Carvalho JE, Pilli RA. (R)-Goniothalamin: Total Syntheses and Cytotoxic Activity Against Cancer Cell Lines. *Bioorg Med Chem.* 2005;13(8):2927–2933.
34. de Fátima A, Modolo LV, Conegero LS, Pilli RA, Ferreira CV, Kohn LK, de Carvalho JE. Styryl Lactones and Their Derivatives: Biological Activities, Mechanisms of Action and Potential Leads for Drug Design. *Curr Med Chem.* 2006;13(28):3371–3384.
35. Polbuppha I, Teerapongpisan P, Phukhatmuen P, Suthiphasilp V, Maneerat T, Charoensup R, Andersen RJ, Laphookhieo S. Alkaloids and Styryl lactones from *Goniothalamus ridleyi* King and Their α -Glucosidase Inhibitory Activity. *Mol Basel Switz.* 2023;28(3):1158.
36. Shao L, Shao Y, Yuan Y. Pinocembrin flavanone inhibits cell viability in PC-3 human prostate cancer by inducing cellular apoptosis, ROS production and cell cycle arrest. *Acta Pharm Zagreb Croat.* 2021;71(4):669–678.
37. Puranik NV, Swami S, Misra AV, Mamgain R, Gulawani SS, Dhiman null, Sarkar null, Srivastava P. The first synthesis of podocarflavone A and its analogs and evaluation of their antimycobacterial potential against *Mycobacterium tuberculosis* with the support of virtual screening. *Nat Prod Res.* 2022;36(15):3879–3886.
38. Kim C, Le D, Lee M. Diterpenoids Isolated from Podocarpus macrophyllus Inhibited the Inflammatory Mediators in LPS-Induced HT-29 and RAW 264.7 Cells. *Mol Basel Switz.* 2021;26(14):4326.
39. Khan Z, Nath N, Rauf A, Emran TB, Mitra S, Islam F, Chandran D, Barua J, Khandaker MU, Idris AM, Wilairatana P, Thiruvengadam M. Multifunctional roles and pharmacological potential of β -sitosterol: Emerging evidence toward clinical applications. *Chem Biol Interact.* 2022;365:110117.
40. Lailaty IQ, Peniwidiyanti, Ismaili L, Normasiwi S, Fajriah S, Hariri MR, Dewi AP, Martiansyah I, Hutabarat PWK, Munawir A. Ethnopharmacology properties of Medicinal plants used by the community in Gunung Halimun Salak National Park, West Java, Indonesia. *Res J Pharm Technol.* 2024;17(5):2121–2132.
41. Choo CY, Abdullah N, Diederich M. Cytotoxic activity and mechanism of action of metabolites from the *Goniothalamus* genus. *Phytochem Rev.* 2014;13(4):835–851.
42. Lekphrom R, Kanokmedhakul S, Kanokmedhakul K. Bioactive styryllactones and alkaloid from flowers of *Goniothalamus laoticus*. *J Ethnopharmacol.* 2009;125(1):47–50.
43. Fang XP, Anderson JE, Chang CJ, McLaughlin JL, Fanwick PE. Two new styryl lactones, 9-deoxygonyopypyrone and 7-epi-goniofufurone, from *Goniothalamus giganteus*. *J Nat Prod.* 1991;54(4):1034–1043.
44. Nogueira da Silva Avelino Oliveira Rocha G, Dutra LM, Pinheiro Paz WH, Araujo da Silva FM, Costa EV, Guedes da Silva Almeida JR. Chemical constituents from the leaves and branches of *Annona coriacea* Mart. (Annonaceae). *Biochem Syst Ecol.* 2021;97:104297.
45. Mereyala HB, Joe M. Cytotoxic activity of styryl lactones and their derivatives. *Curr Med Chem Anti-Cancer Agents.* 2001;1(3):293–300.
46. Xie F, Zhang ZL, Zheng XQ, Li YM, Wang R, Li WY. A Comprehensive Review of Phytochemistry and Anticancer of the Genus Goniothalamus. *Chem Biodivers.* 2025;e202402461.
47. Li LK, Rola AS, Kaid FA, Ali AM, Alabsi AM. Goniothalamin induces cell cycle arrest and apoptosis in H400 human oral squamous cell carcinoma: A caspase-dependent mitochondrial-mediated pathway with downregulation of NF- κ B. *Arch Oral Biol.* 2016;64:28–38.
48. Vendramini-Costa DB, de Castro IBD, Ruiz ALTG, Marquissolo C, Pilli RA, de Carvalho JE. Effect of goniothalamin on the development of Ehrlich solid tumor in mice. *Bioorg Med Chem.* 2010;18(18):6742–6747.
49. Abdulllah N, Sahibul-Anwar H, Ideris S, Hasuda T, Hitotsuyanagi Y, Takeya K, Diederich M, Choo C. Goniolandrene A and B from *Goniothalamus macrophyllus*. *Fitoterapia.* 2013;88:1–6.
50. de Fátima Á, Zambuzzi WF, Modolo LV, Tarsitano CAB, Gadelha FR, Hyslop S, Carvalho JE de, Salgado I, Ferreira CV, Pilli RA. Cytotoxicity of goniothalamin enantiomers in renal cancer cells: Involvement of nitric oxide, apoptosis and autophagy. *Chem Biol Interact.* 2008;176(2):143–150.
51. Sophonithiprasert T, Mahabusarakam W, Nakamura Y, Watanapokasin R. Goniothalamin induces mitochondria-mediated apoptosis associated with endoplasmic reticulum stress-induced activation of JNK in HeLa cells. *Oncol Lett.* 2017;13(1):119–28.
52. Sharma T, Paidesetty SK. Altholactone: A Natural Lead Scaffold As A Potential Anticancer Agent. *Int J Pharm Sci Res.* 2021;12(6):3010–3018.
53. Fátima A de, Kohn LK, Carvalho JE de, Pilli RA. Cytotoxic activity of (S)-goniothalamin and analogues against human cancer cells. *Bioorg Med Chem.* 2006;14(3):622–631.
54. Yen CY, Chiu CC, Haung RW, Yeh CC, Huang KJ, Chang KF, Hsueh YC, Chang FR, Chang HW, Wu YC. Antiproliferative effects of goniothalamin on Ca9-22 oral cancer cells through apoptosis, DNA damage and ROS induction. *Mutat Res.* 2012;747(2):253–8.

55. Barcelos RC, Pelizzaro-Rocha KJ, Pastre JC, Dias MP, Ferreira-Halder CV, Pilli RA. A new goniothalamin N-acylated aza-derivative strongly downregulates mediators of signaling transduction associated with pancreatic cancer aggressiveness. *Eur J Med Chem.* 2014;87:745–758.

56. Wiart C. Goniothalamus Species: A Source of Drugs for the Treatment of Cancers and Bacterial Infections? Evid-Based Complement Altern Med ECAM. 2007;4(3):299–311.

57. Mosaddik MA, Haque ME. Cytotoxicity and antimicrobial activity of goniothalamin isolated from *Bryonopsis laciniosa*. *Phytother Res PTR.* 2003;17(10):1155–1157.

58. Humeirah AS, Azah MN, Mastura M, Mailina J, Saiful JA, Muhajir H, Puad AM. Chemical constituents and antimicrobial activity of *Goniothalamus macrophyllus* (Annonaceae) from Pasoh Forest Reserve, Malaysia. *Afr J Biotechnol.* 2010;9(34):234–247.

59. Jantan I bin, Ahmad ,Fasihuddin bin, and Din L bin. Chemical Constituents of the Bark Oil of *Goniothalamus macrophyllus* Hook. f. from Malaysia. *J Essent Oil Res.* 2005;17(2):181–183.

60. Kurniawan D, Kustiawan PM, Pramaningsih V, Yuliawati R, Ismiati R. Antibacterial and biolarvicidal activity of extracts of ethanol of *Goniothalamus macrophyllus* leaves and roots. *IOP Conf Ser Earth Environ Sci.* 2023;1282(1):012005.

61. de Souza LES, Santos KA, Raspe DT, da Silva C, Silva EA da. Application of ultrasound-assisted extraction to obtain antioxidant compounds from leaves of *Echinodorus macrophyllus*. *Sustain Chem Pharm.* 2023;32:101031.

62. Tan WN, Ali R, Tong WY, Leong CR, Khaw KY. Essential Oils from Traditional Medicinal Plants in Malaysia: A Review on Their Traditional Uses, Bioactive Constituents and Therapeutic Potential. *Pharm Chem J.* 2023;57(5):703–711.

63. Halagarda M, Groth S, Popek S, Rohn S, Pedan V. Antioxidant Activity and Phenolic Profile of Selected Organic and Conventional Honeys from Poland. *Antioxid Basel Switz.* 2020;9(1):44.

64. Rasul A, Millimouno FM, Ali Eltayb W, Ali M, Li J, Li X. Pinocembrin: a novel natural compound with versatile pharmacological and biological activities. *BioMed Res Int.* 2013;2013:379850.

65. Li X, Zhai Y, Xi B, Ma W, Zhang J, Ma X, Miao Y, Zhao Y, Ning W, Zhou H, Yang C. Pinocembrin Ameliorates Skin Fibrosis via Inhibiting TGF- β 1 Signaling Pathway. *Biomolecules.* 2021;11(8):1240.

66. Yang X, Wang X, Chen XY, Ji HY, Zhang Y, Liu AJ. Pinocembrin-Lecithin Complex: Characterization, Solubilization, and Antioxidant Activities. *Biomolecules.* 2018;8(2):41.

67. Anatachadwanit A, Promnart P, Deachathai S, Maneerat T, Charoensup R, Duangyod T, Laphookhieo S. Chemical Composition of the Essential Oils from *Goniothalamus tortilipetalus* M.R.Hend. and Their Antioxidant and Antibacterial Activities. *Chemistry.* 2024;6(2):264–271.

68. Vendramini-Costa DB, Francescone R, Posocco D, Hou V, Dmitrieva O, Hensley H, de Carvalho JE, Pilli RA, Grivennikov SI. Anti-inflammatory natural product goniothalamin reduces colitis-associated and sporadic colorectal tumorigenesis. *Carcinogenesis.* 2017;38(1):51–63.

69. Qian J, Xue M. Pinocembrin Relieves *Mycoplasma pneumoniae* Infection-Induced Pneumonia in Mice Through the Inhibition of Oxidative Stress and Inflammatory Response. *Appl Biochem Biotechnol.* 2022;194(12):6335–6348.

70. Wu YL, Hu T, Zheng H, Feng J, Huang C, Zhou X, Wang W, Jiang CL. Pinocembrin alleviates LPS-induced depressive-like behavior in mice via the NLRP3/DCC signaling pathway. *Biochem Biophys Res Commun.* 2024;736:150870.

71. Zhou LT, Wang KJ, Li L, Li H, Geng M. Pinocembrin inhibits lipopolysaccharide-induced inflammatory mediators production in BV2 microglial cells through suppression of PI3K/Akt/NF- κ B pathway. *Eur J Pharmacol.* 2015;761:211–216.

72. Soromou LW, Jiang L, Wei M, Chen N, Huo M, Chu X, Zhong W, Wu Q, Baldé A, Deng X, Feng H. Protection of mice against lipopolysaccharide-induced endotoxic shock by pinocembrin is correlated with regulation of cytokine secretion. *J Immunotoxicol.* 2014;11(1):56–61.

73. Gu X, Zhang Q, Du Q, Shen H, Zhu Z. Pinocembrin attenuates allergic airway inflammation via inhibition of NF- κ B pathway in mice. *Int Immunopharmacol.* 2017;53:90–95.

74. Duque C, Vizoto NL, Nunes GP, Peres GR, Feiria SNB, Hofling JF, Regasini LO. Metabolic regulation and oxidative stress attenuation in LPS-stimulated macrophages by flavonoids. *Odontology.* 2025;63:80–89.

75. Soromou LW, Chu X, Jiang L, Wei M, Huo M, Chen N, Guan S, Yang X, Chen C, Feng H, Deng X. In vitro and in vivo protection provided by pinocembrin against lipopolysaccharide-induced inflammatory responses. *Int Immunopharmacol.* 2012;14(1):66–74.

76. Rullah K, Mohd Aluwi MFF, Yamin BM, Abdul Bahari MN, Wei LS, Ahmad S, Abas F, Ismail NH, Jantan I, Wai LK. Inhibition of prostaglandin E(2) production by synthetic minor prenylated chalcones and flavonoids: synthesis, biological activity, crystal structure, and in silico evaluation. *Bioorg Med Chem Lett.* 2014;24(16):3826–3834.

77. Noor Rain A, Khozirah S, Mohd Ridzuan M a, R, Ong BK, Rohaya C, Rosilawati M, Hamdino I, Badrul A, Zakiah I. Antiplasmodial properties of some Malaysian medicinal plants. *Trop Biomed.* 2007;24(1):29–35.

78. Caballero-George C, Gupta MP. A quarter century of pharmacognostic research on Panamanian flora: a review. *Planta Med.* 2011;77(11):1189–1202.

79. Boyom FF, Kemgne EM, Tepongning R, Ngouana V, Mbacham WF, Tsamo E, Zollo PHA, Gut J, Rosenthal PJ. Antiplasmodial activity of extracts from seven medicinal plants used in malaria treatment in Cameroon. *J Ethnopharmacol.* 2009;123(3):483–88.

80. Rakotomanga M, Razakantaoanina V, Raynaud S, Loiseau PM, Hocquemiller R, Jaureguiberry G. Antiplasmodial activity of acetogenins and inhibitory effect on *Plasmodium falciparum* adenylate translocase. *J Chemother Florence Italy.* 2004;16(4):350–356.

81. Melaku Y, Worku T, Tadesse Y, Mekonnen Y, Schmidt J, Arnold N, Dagne E. Antiplasmodial Compounds from Leaves of *Dodonaea angustifolia*. *Curr Bioact Compd.* 2017;13(3):268–273.

82. Melaku Y, Solomon M, Eswaramoorthy R, Beifuss U, Ondrus V, Mekonnen Y. Synthesis, antiplasmodial activity and in silico molecular docking study of pinocembrin and its analogs. *BMC Chem.* 2022;16(1):36.

83. AL-Ishaq RK, Abotaleb M, Kubatka P, Kajo K, Büsselberg D. Flavonoids and Their Anti-Diabetic Effects: Cellular Mechanisms and Effects to Improve Blood Sugar Levels. *Biomolecules.* 2019;9(9):430.

84. Sarian MN, Ahmed QU, Mat So'ad SZ, Alhassan AM, Murugesu S, Perumal V, Syed Mohamad SNA, Khatib A, Latip J. Antioxidant and Antidiabetic Effects of Flavonoids: A Structure-Activity Relationship Based Study. *BioMed Res Int.* 2017;2017:8386065.

85. Teerapongpisan P, Suthiphasilp V, Kumboonma P, Maneerat T, Duangyod T, Charoensup R, Promnart P, Laphookhieo S. Aporphine alkaloids and a naphthoquinone derivative from the leaves of *Phaeanthus lucidus* Oliv. and their α -glucosidase inhibitory activity. *Phytochemistry.* 2024;220:114020.

86. Antunes C, Arbo MD, Konrath EL. Hepatoprotective Native Plants Documented in Brazilian Traditional Medicine Literature: Current Knowledge and Prospects. *Chem Biodivers.* 2022;19(6):e202100933.

87. Tran LTT, Pham LHD, Dang NYT, Nguyen Le NT, Nguyen HB, Nguyen TK. Phytochemicals Derived from *Goniothalamus elegans* Ast Exhibit Anticancer Activity by Inhibiting Epidermal Growth Factor Receptor. *Nat Prod Commun.* 2022;17(11):1934578X221138435.

88. Alkofahi A, Rupprecht JK, Smith DL, Chang CJ, McLaughlin JL. Goniothalamicin and annonacin: bioactive acetogenins from *Goniothalamus giganteus* (Annonaceae). *Experientia.* 1988;44(1):83–85.

89. Tip-pyang S, Limpipatwattana Y, Khumkratok S, Siripong P, Sichaem J. A new cytotoxic 1-azaanthraquinone from the stems of *Goniothalamus laoticus*. *Fitoterapia.* 2010;81(7):894–896.

90. Lan YH, Chang FR, Liaw CC, Wu CC, Chiang MY, Wu YC. Digoniadiol, Deoxygoniopyrone A, and Goniofupyrone A: Three New Styryllactones from *Goniothalamus amuyon*. *Planta Med.* 2005;71(2):153–159.

91. Pérez Zamora CM, Torres CA, Nuñez MB. Antimicrobial Activity and Chemical Composition of Essential Oils from Verbenaceae Species Growing in South America. *Mol J Synth Chem Nat Prod Chem.* 2018;23(3):544.

92. Magnani RF, Volpe HXL, Luvizotto RAG, Mulinari TA, Agostini TT, Bastos JK, Ribeiro VP, Carmo-Sousa M, Wulff NA, Peña L, Leal WS. α -Copaene is a potent repellent against the Asian Citrus *Psyllid* *Diaphorina citri*. *Sci Rep.* 2025;15(1):3564.