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Introduction  

Southeast Sulawesi Province, Indonesia, is an archipelago comprising 

approximately 651 small islands. Around 74.25% of its area is oceans,1 

thus contributing to the abundance of marine resources in this region. 

Several marine biota of Southeast Sulawesi have been studied for their 

potential in medicine development, such as sponges and corals. Recent 

reports include the discovery of a novel compound, Clathruhoate, 

extracted from Chlatria sp.,2 while other similar studies on sponges 

have also conducted chemical screening,3 evaluating its biological 

activities for anti-hyperlipidemia potential,4 anti-inflammatory 

property,5 antioxidant capabilities, and acute toxicity.6 Studies on corals 

have contributed other important discoveries through chemical and 

medicinal characteristics, such as the study of Lobophytum sp. and 

Nepthea sp7-9 
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The abundance of diverse coral species in the region presents 

opportunities for exploration, including the Sea Bamboo (Isis hippuris). 

The population of I. hippuris in Southeast Sulawesi, as represented by 

the population on Bukori Island, is approximately 142 individuals per 

500 m2 with most of the commodities being exported10. Indonesia 

exported around 420 tons of dry sea bamboo in 2013, which is generally 

used as jewellery, ornaments, and building materials.11 To increase the 

benefits and economic value of I. hippuris, various aspects need to be 

studied, including chemical and pharmaceutical aspects, which will 

enrich the ongoing research in the aforementioned theme of exploration 

study of marine resources of this area. Sea bamboo sourced from other 

locations has been previously studied, such as a discovery in 1977 

reported various secondary metabolites from Australian I. hippuris, 

such as Hippurin-1,12 polyoxygenated steroids, hydrocarbons, phenols, 

alkaloids, and fatty acids.13-16 All previously mentioned metabolites 

have potential in pharmacological activities as antioxidants,17 

anticancer,18-19 and antiviral agents.20 Moreover, 17,20-epoxisteroids 

were recently found in I. hippuris from Taiwan, and the discovery of 

24-Dehydrohippuristanol was reported to be active against DLD-1 and 

NoVo cancer cells.21 Hippuristanol is a polyoxygenated steroid, similar 

to hippuristeron and hipposterol, which have demonstrated biological 

activities as anticancer agents, notably in treating leukaemia.22 Other 

steroid compounds also exhibit cytotoxic activity against P-388, A549, 

HT29, and MEL28 cells.23  

The chemical content of I. hippuris is closely affected by its 

environment (location) and its conservation status.24,25 Therefore, to 

expand this knowledge gap, this study aims to explore the chemical 

compounds of I. hippuris from Southeast Sulawesi through extraction 

and fractionation techniques, Liquid Chromatography Mass 

Spectrometer (LC-MS/MS) analysis, evaluation of antimicrobial 
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Isis hippuris is a marine species and is abundant in Southeast Sulawesi. However, studies on its 

potential, particularly for medicinal development, are still limited. This research aims to explore 

the chemical contents and biological activities of I. hippuris from the waters of Bukori Island. 

Ethylacetate extract of I. hippuris (EAE) was fractionated by vacuum liquid chromatography 

(VLC) and analyzed through phytochemical screening and LC-MS/MS. The antimicrobial 

potential was evaluated against Escherichia coli, Staphylococcus aureus, and Candida albicans 

using the microdilution method and in silico analysis. The results showed that fractionation of 

EAE produced five fractions (A–E). Fraction E showed the highest antibacterial activity against 

S. aureus and E. coli, with MIC values of 2 μg/mL, thus categorized as susceptible. At the same 
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ketoacyl-ACP synthase, tyrosyl-tRNA synthetase, and sterol-14α-demethylase, respectively. In 

conclusion, I. hippuris from Southeast Sulawesi shows promising potential as an antibiotic agent 
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potential (bacteria and fungi), and in silico studies. The antimicrobial 

mechanism of the identified chemical compounds provides new 

information that can support the future utilization of I. hippuris in the 

pharmaceutical industry. 

 

 

Materials and Methods  
 

Materials 

A Waters Acquity UPLC I-Class was used in conjunction with a Xevo 

G2–X2 Quadrupole Time-of-Flight (QToF) mass spectrometer to 

perform the LC-MS/MS study. Methanol, ethyl acetate, and n-hexane 

are among the chemicals used, as well as analytical-grade distilled 

water. The chromatography study uses TLC plate 60 F254 0.25 mm 

(Merck®), silica gel 60 GF254 p.a (Merck®), and silica 60 G (Merck®). 

The other materials used for the study and testing were cerium sulfate 

(CeSO4) (Merck®), Escherichia coli, Staphylococcus aureus, Candida 

albicans, Mueller Hinton Broth (MHB), Sabouraud Dextrose Broth 

(SDB), NaCl 0,9%, dimethyl sulfoxide (DMSO), chloramphenicol and 

nystatin. 

 

Sample Collection 

Samples were collected from Bokori Islands, Southeast Sulawesi, on 

November 6, 2023, at depths between 4-10 m (3°56'12.7"S 

122°39'53.2"E). The collected samples were stored in separate ice 

containers and analyzed by the Indonesian Marine Ecosystem Specialist 

at the laboratory of the Faculty of Fisheries and Marine Science, Halu 

Oleo University, as Isis hippuris with number 

5871/UN29.18.1.1/PP/2023. 

 

Extraction and Fractionation 

Fresh I. hippuris (1 kg) was chopped into small pieces and extracted in 

ethyl acetate (3 x 10 L, 24 hours each time) at room temperature. The 

filtrate was concentrated with a rotary evaporator (Buchi RII, 

Switzerland) at 4°C to obtain a thick ethyl acetate extract of I. hippuris 

(EAE). A total of 21.4 g of EAE was fractionated using Vacuum Liquid 

Chromatography (KVC), resulting in five fractions (A-E).  

 

Antibacterial and Antifungal Potencies 

The microbes were prepared using standard procedure. Antimicrobial 

potencies and minimum inhibition concentration (MIC) were evaluated 

using the microdilution method with positive control chloramphenicol 

for antibacterial and nystatin for antifungal.26 Staphylococcus aureus 

and Escherichia coli were cultured on MHB at 37°C for 24 hours, while 

Candida albicans was grown on SDB at the same temperature for 72 

hours. The resulting microbial cultures were suspended in sterile 0.9% 

NaCl, and 100 μL of each suspension was added to a 96-well plate. 

These suspensions were then combined with test samples at 

concentrations ranging from 0.5 to 256 μg/mL, reaching a total volume 

of 200 μL per well. Chloramphenicol and nystatin served as positive 

controls, respectively, whereas dimethyl sulfoxide (DMSO) was used 

as a negative control. The microbial suspensions were adjusted to match 

a 0.5 McFarland turbidity standard. Incubation was carried out at 37°C 

for 20 hours. The minimum inhibitory concentration (MIC) was 

assessed using a spectrophotometric method to measure turbidity.27 

 

Phytochemical screening and LC-MS/MS Analysis 

Phytochemical Screening 

The presence of alkaloids, flavonoids, tannins, terpenoids, steroids, and 

saponins in this study is referred to a previous study in sponges, which 

was determined using phytochemical screening methods.8  

LC-MS/MS Analysis 

Secondary metabolites from fraction A were analyzed using a Liquid 

Chromatography Mass Spectrometer (LC-MS/MS) (Waters, USA) with 

an HSS T3 C18 column at 40°C. The mobile phases used were 0.1% 

formic acid in water (A) and acetonitrile (B), with a gradient elution of 

0.300 mL/min. Mass spectrometry was performed in positive ESI mode, 

scanning 50-1200 m/z, capillary voltage 1.5 kV, cone voltage 30 V, and 

desolvation temperature 500°C. Data analysis was performed using 

UNIFI software, with further interpretation via mzCloud, ChemSpider, 

and PubChem.28 

In-silico study for Mechanisms of Anti-bacteria and Antifungal 

Potencies 

The three-dimensional structures of the target proteins in this study, β-

ketoacyl-acyl carrier protein synthase (β-ketoacyl-ACP synthase) from 

E. coli (PDB 1FJ4),29 tyrosyl-tRNA synthetase (TyrRS) from S. aureus 

(PDB 1JIJ),30 and sterol 14α-demethylase from C. albicans (PDB 

5FSA),31 were obtained from the Protein Data Bank. The three-

dimensional structures of the compounds from Fractions C and E of I. 

hippuris were retrieved from the PubChem database. Both target and 

compound structures preparation were performed using 

AutoDockTools v1.5.6 (The Scripps Research Institute, USA, released 

in 2011), following standard protocols.32 The preparation of the target 

structures involved the removal of water molecules and bound residues, 

protonation, and adding Kollman charges.33,34 The docking process was 

conducted using AutoDock Vina v1.1.2 software (The Scripps Research 

Institute, USA, released in 2011).32 Docking simulations were 

performed at the binding sites of β-ketoacyl-ACP synthase (docked site 

coordinates: x = 4.302, y = -19.867, z = 0.617), TyrRS (x = -11.273, y 

= 13.817, z = 86.08), sterol 14α-demethylase (x = 191.537, y = 3.197, z 

= 37.951). Finally, the interactions between these target proteins and 

test ligands were visualized using Discovery Studio Visualizer 

v17.2.0.16349 (Dassault Systèmes, France, released in 2017). The best 

compound from each fraction was determined based on its highest 

affinity toward the targets β-ketoacyl-ACP synthase from E. coli, 

tyrosyl-tRNA synthetase from S. aureus, and sterol-14α-demethylase 

from C. albicans. 

 

 

Results and Discussion 
 

A total of 21.4 g of I. hippuris ethyl acetate extract (EAE) was 

successfully extracted from 1 kg of sample (yield 2.14%). Fractionation 

of EAE produced five fractions (A–E). A visual representation of I. 

hippuris and the Thin Layer Chromatography (TLC) chromatogram of 

fractions A–E, using silica gel as the adsorbent and an n-hexane: ethyl 

acetate (8:2) mixture as the eluent, is shown in Figure 1.  

 

 
 

Figure 1: Isis hippuris (a) and TLC chromatogram of Fractions 

A-E (b) 
 

Antimicrobial the testing result of samples consisting of EAE, fraction 

A–E of I. hippuris against bacteria (E. coli and S. aureus), fungi (C. 

albicans), and positive control (chloramphenicol for bacteria test and 

nystatin for fungi test), showed varying potential. Results of the 

antimicrobial screening showed that fraction E demonstrated the 

highest antibacterial activity with MIC values of 2±0.04 μg/mL and 

2±0.03 μg/mL towards both E. coli and S. aureus, respectively (Figure 

2). It was indicated as susceptible to bacteria because the MIC value 

obtained was 4 μg/mL. Also, Figure 2 shows the antifungal potential of 

EAE I. hippuris and their fractions against C. albicans. The data above 

shows that Fractions C and E significantly have the highest activity 

compared to all samples with MIC values of 4±0.09 μg/mL and 4±0.12 

μg/mL, respectively, which shows the potential as antifungal towards 

C. albicans. Fractions C and E were susceptible to C. albicans with a 

MIC value was ≤ 4 μg/mL. The differences in biological activity are 

closely linked to the chemical content of the sample. 
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Figure 2: Antimicrobial profile of EAE and all Fraction of I. hippuris 
 

 

Results of phytochemical screening in Table 1 indicated that the 

secondary metabolites consisted of alkaloids, phenols/tannins, 

flavonoids, terpenoids, and steroids. Secondary metabolites generally 

have antimicrobial potency. Alkaloids are a broad and structurally 

diverse group of compounds that have been the basis for developing 

important antibacterial and antifungal drugs, such as metronidazoles 

and quinolones.35 Other secondary metabolites with potential 

antimicrobial activity against bacteria or fungi are steroids,36 

terpenoids,37 and phenolic compounds with activity against Gram-

negative and Gram-positive bacteria. Tannins play a crucial role in plant 

defence against pathogens by exhibiting direct antimicrobial properties, 

enhancing immune responses, interacting synergistically with other 

defence compounds, and influencing the plant's microbiome.38 Some 

flavonoids, including sophoraflavone G and (-)-epigallocatechin 

gallate, are known to disrupt cytoplasmic membrane function, while 

licochalcone A and C inhibit energy metabolism.35 

The LC-MS/MS analysis results support the presence of secondary 

metabolites (Table 1). 

 

Table 1: Phytochemical screening of EAE and Fractions of I. hippuris 
Sample(s)  Secondary Metabolite 

Alkaloids Phenols/ Tannins Flavonoids Terpenoids Steroid 

EAE + + + + + 

Fraction A - - - + + 

Fraction B + + + + + 

Fraction C + - + + + 

Fraction D + - - + + 

Fraction E + + - + + 

The Liquid Chromatography (LC) chromatogram in Figure 3 displays 

peaks indicating the presence of compounds in the sample. The height 

or area of the peak reflects the amount of compound detected. High 

intensity indicates a greater concentration of compounds, while low-

intensity peaks may reflect small amounts of compounds or less 

efficient ionization results. In MS/MS mode, the detected compounds 

are broken down into smaller fragment ions. The fragmentation patterns 

are compared with reference spectra to confirm the chemical content 

(Table 2). The confirmed chemical structure is shown in Figure 4. 

Analysis of fractions C and E by LC-MS/MS was conducted to confirm 

their potential activity as antimicrobials through in silico studies. 

 

Table 2: Secondary metabolites of Fraction C and E of I. hippuris based on LC-MS/MS data 

No. Structure 
Rt 

(min) 

Observed 

[M+H]+ (m/z) 

Experimental 

Neutral Mass (Da) 
Formula Component Name Group 

Fraction C 

1 4.10 197.1169 196.10994 C11H16O3 Digiprolactone39 Terpenoid 

2 4.84 187.0868 186.07931 C11H10N2O 1,2,3,4-Tetrahydro-1- oxo-ß- 

carboline40 

Alkaloid 

3 5.17 317.2105 316.20384 C20H28O3 Saurufuran B41 Terpenoid 

4 5.35 301.2156 300.20893 C20H28O2 Sugiol42 Terpenoid 

5 5.92 335.2206 334.21441 C20H30O4 Leoheterin43 Terpenoid 

6 6.36 337.2365 336.23006 C20H32O4 Siegesbeckic acid44 Terpenoid 

7 6.92 351.2168 350.20932 C20H30O5 14-Deoxy-11- hydro- 

xyandrographolide45 

Terpenoid 

8 7.12 431.3151 430.30831 C27H42O4 25(S)-Ruscogenin46 Steroid 

9 7.24 505.3514 504.34509 C30H48O6 Esculentagenic acid47 Steroid 

10 7.46 503.3349 502.32944 C30H46O6 11a,12a-Epoxy-23ß,23- 

dihydroxyolean-28,13ß-olide48 

Steroid 
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11 7.77 461.3255 460.31887 C28H44O5 Polyporusterone D49 Steroid 

12 8.48 647.3792 646.37170 C36H54O10 Abrusoside A50 Steroid 

13 10.14 305.2475 304.24023 C20H32O2 Arachidonic Acid51 Fatty Acid 

14 5.58 355.1288  332.14124 C22H20O3 - - 

15 5.81 347.2202  346.21441 C21H30O4 - - 

16 8.91 687.3754 686.36661 C38H54O11 - - 

17 9.35 671.3797 670.37170 C38H54O10 - - 

18 9.62 729.3856 728.37718 C40H56O12 - - 

19 10.29 313.2736  312.26645 C19H36O3 - - 

20 9.96 256.2632  255.25621 C16H33NO - Alkaloid 

Fraction E 

21 7.27 457.2955 456.28757 C28H40O5 Siraitic acid E52 Steroid 

22 7.49 463.3415 462.33452 C28H46O5 Polyporusterone F49 Steroid 

23 7.55 605.3693 604.36113 C34H52O9 Periplocoside M53 Steroid 

24 6.27 274.2743 273.26678 C16H35NO2 - Alkaloid 

25 6.91 591.3897  590.38187 C34H48O8 - - 

26 7.17 573.3435 572.33492 C33H48O8 - - 

27 8.06 645.3654 622.37706 C40H50N2O4 - Alkaloid 

28 8.63 482.3611  459.37124 C29H49NO3 - Alkaloid 

29 9.63 510.3926 487.40254 C31H53NO3 - Alkaloid 

30 2.59 185.0707 184.06366 C11H8N2O - Alkaloid 

31 3.20 249.1232  226.13577 C16H18O -  

32 3.31 144.0807  143.07350 C10H9N - Alkaloid 

 
 

Figure 3: LC-MS/MS chromatograms of Fraction C and Fraction E 
 

 

In-silico study was conducted on the LC-MS phytoconstituents of I. 

hippuris to determine their mechanisms of anti-bacteria and antifungal 

potencies. Determination of the most active compounds against E. coli, 

S. aureus, and C. albicans from fractions C and E of I. hippuris was 

carried out using an in-silico study using the docking method. The 

docking results from Fractions C and E of I. hippuric against β-

ketoacyl-ACP synthase from E. coli, TyrRS from S. aureus, and sterol 

14α-demethylase from C. albicans revealed that periplocoside M and 

critic acid E from Fraction E are predicted to have the best affinity 

towards E. coli, S. aureus, and C. albicans. Meanwhile, the Abrusoside 

A and 11α,12α-Epoxy-23β,23-dihydroxyolean-28,13β-olide from 

Fraction C are predicted to have the best affinity towards C. albicans, 

with binding energies of -10.9 kcal/mol and -10.1 kcal/mol, respectively 

(Table 3). 

In S. aureus, Periplocoside M forms hydrogen bonds with the residues 

Ala39, Gln174, Asp177, and Phe232 (Figure 5A). These hydrogen 

bonds are crucial for maintaining the stability of the compound within 

the active site of TyrRS. The hydrogen bonds facilitate the proper 

orientation of the molecule, allowing for optimal interactions with the 

enzyme, which in turn enhances the compound's affinity for the target 

enzyme.54 Additionally, hydrophobic interactions with the residues 

Tyr36, His47, His50, Leu223, and Val224 play a significant role in 

strengthening the compound's binding to the enzyme's hydrophobic 

region. Furthermore, 25(S)-ruscogenin also exhibits the ability to bind 

to the TyrRS enzyme of S. aureus through hydrogen interactions with 

the residues Gly38, Gln174, Asp195, and Val224, which help stabilize 

the compound within the enzyme's active site (Figure 5B). Hydrophobic 

interactions with residues His47, Leu223, and Val224 also suggest that 

the compound is firmly embedded within the enzyme's non-polar 

pocket. In E. coli, saurufuran B forms hydrogen bonds with the residues 

His298 and Pro303, facilitating stable binding within the active site of 

the β-ketoacyl-ACP synthase enzyme (Figure 6A).  
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Table 3: Binding energies of compounds from fractions C and E of I. hippuris 

Sample Compounds 
Binding Energy (kcal/mol) 

S. aureus  E. coli C. albicans 

Fraction C 1,2,3,4-tetrahydro-1-oxo-ß-carboline -8.1 -8.2 -7.4 

11a,12a-Epoxy-23ß,23-dihydroxyolean-28,13ß-olide -8.0 -6.2 -10.1 

14-Deoxy-11-hydroxy-andrographolide -8.3 -7.4 -8.1 

25(S)-Ruscogenin -10.2 -5.9 -8.7 

Abrusoside A -9.1 -8.1 -10.9 

Arachidonic acid -6.0 -7.1 -6.5 

Digiprolactone -6.6 -7.2 -6.6 

Esculentagenic acid -7.3 -5.7 -7.9 

Leoheterin -7.0 -6.7 -8.0 

Polyporusterone D -7.5 -7.4 -9.1 

Saurufuran B -7.1 -8.5 -7.6 

Siegesbeckic acid -8.2 -7.4 -8.3 

Sugiol -7.7 -8.3 -9.4 

Fraction E Siraitic acid E -9.1 -8.7 -10.7 

Polyporusterone F -6.6 -6.5 -9.1 

Periplocoside M -10.2 -8.3 -12.5 

Positive Controls Nystatin N.A N.A -8.4 

Chloramphenicol -7.3 -8.1 N.A 

N.A = not available 

These hydrogen bonds are critical for maintaining high binding affinity, 

thereby enhancing the compound's effectiveness in inhibiting the target 

enzyme.55 Additionally, the compound interacts with the residues 

Pro272, Lys308, Phe390, and Phe392, indicating that saurufuran B is 

firmly embedded within the enzyme's hydrophobic pocket. 

Furthermore, Siraitic Acid E exhibits hydrogen interactions with the 

residues Met204, Asp268, His298, and Gly305 (Figure 6B). The 

compound also forms hydrophobic interactions with the residues 

Ala271, Val270, Ala206, Phe392, His333, Cys163, and Phe229, which 

enhance its affinity for the non-polar regions of the β-ketoacyl-ACP 

synthase enzyme. This binding supports the compound's ability to 

inhibit enzyme activity, effectively suppressing E. coli growth. 

 

 

 
 

Figure 4: Secondary metabolites structures of Fraction C and E of I. hippuris 
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Figure 5: Molecular interactions of (A) periplocoside M and (B) 25(S)-ruscogenin with TyrRS from S. aureus. 

 

 
Figure 6: Molecular interactions of (A) saurufuran B and (B) siraitic acid E with β-ketoacyl-ACP synthase from E. coli. 
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Figure 7: Molecular interactions of (A) periplocoside M and (B) abrusoside A with sterol 14α-demethylase from C. albicans. 

 

 

In C. albicans, the compound Periplocoside M from Fraction E did not 

form hydrogen bonds with the amino acid residues of the target enzyme. 

However, it demonstrated strong hydrophobic interactions with the 

residues Phe233, Leu376, Met508, Leu121, Phe380, His377, Pro230, 

Tyr132, and Tyr118 (Figure 7A). These dominant hydrophobic 

interactions suggest the compound binds effectively within the 

enzyme's non-polar pocket.56 Despite the absence of hydrogen bonds, 

the strong hydrophobic interactions enable Periplocoside M to remain 

embedded within the enzyme, potentially inhibiting the activity of sterol 

14α-demethylase in C. albicans. Additionally, abrusoside A interacts 

with the enzyme of C. albicans through hydrogen bonds with the 

residues Cys470, Ile471, and Gly472 (Figure 7B), as well as 

hydrophobic interactions with the residues Tyr118, Ile131, Tyr132, 

Phe228, Phe233, Leu376, His377, and Phe380, ensuring strong binding 

within the enzyme's hydrophobic region. 

 

Conclusion 
 

The study highlights the potential of Isis hippuris ethyl acetate extract 

(EAE), particularly Fractions C and E, as potent antimicrobial agents. 

Fraction E demonstrated significant antibacterial activity against 

Staphylococcus aureus and Escherichia coli, while Fractions C and E 

showed potent antifungal activity against Candida albicans. In silico 

analysis further supported these findings, revealing that compounds 

such as periplocoside M, siraitic acid E, abrusoside A, and 11α,12α-

epoxy-23β,23-dihydroxyolean-28,13β-olide exhibit strong affinities 

toward key microbial targets. These findings suggest that I. hippuris 

holds promising potential as a source for developing marine-derived 

antimicrobial agents in pharmaceutical applications. 
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