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					ABSTRACT  

					ARTICLE INFO  

					Chemotherapy for colorectal cancer often leads to significant adverse effects on patients,  

					underscoring the need for alternative treatments. Herbal medicines like curcumin are considered  

					a valuable complementary therapy due to their low toxicity profile and potential to mitigate the  

					side effects of chemotherapy. Curcumin's mechanism of action targets multiple pathways, with  

					untargeted metabolomic analysis helping to understand its exact mechanisms and subsequent  

					treatment response. The aim of this study was to compare HT-29 cancer cell metabolites after  

					curcumin and chemotherapy drug interventions to identify metabolites that can predict similar  

					mechanisms of action between these treatments. Principal Component Analysis (PCA) of Fourier  

					transform infrared spectroscopy (FTIR) absorption spectrum showed similar metabolite profiles  

					in HT-29 cell culture media treated with curcumin and the chemotherapeutic cisplatin. Five cell  

					metabolomes emerged after additional gas chromatography mass spectrometry/mass spectrometry  

					(GC-MS/MS) and MS-DIAL data annotation: 1-bromo-2-chloroethane, 2-cyanoacetamide,  

					dimethylamine (DMA), 2-nitrobenzo acid, and butane. The confusion matrix of these five  

					annotated metabolites could be distinguished in HT-29 cell cultures treated with curcumin, but  

					not in control cell cultures or those treated with the drugs cisplatin, doxorubicin, or 5-fluorouracil  
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					treatment with curcumin based on a p-value of < 0.05. According to these findings, no metabolite  

					can predict the resemblance of curcumin's mechanism of action to chemotherapeutic medicines.  

					Further study should therefore focus on in vivo experimental validation and upgrading  

					metabolomic analysis technologies to further establish the similarities in the metabolite profiles  

					of curcumin and cisplatin treatments.  
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					Introduction  

					With a population of 250 million people, Indonesia has a fairly high  

					incidence of colorectal cancer, estimated at 63,500 cases per year.1  

					Conventional standard treatments for colorectal cancer are surgery,  

					chemotherapy, and radiotherapy.1 Radiation therapy and chemotherapy  

					act as the main treatments, though both have serious side effects such  

					as liver toxicity, nausea, and vomiting.2 Medicinal plants are also used  

					in complementary therapy to treat several types of cancer, including  

					colorectal cancer, with relatively fewer and milder side  

					effects.3Curcumin (Curcuma longa L.), derived from a medicinal plant,  

					is a naturally occurring phenolic compound that has previously been  

					studied as a drug for use in cancer treatment.4 Curcumin's phenolic  

					linked to anti-microbial, anti-carcinogenic, anti-inflammatory,  

					hypocholesterolemic, and hepatoprotective properties.5 Its potential  

					anti-cancer effects can induce apoptosis in cancer cells without  

					triggering cytotoxicity in healthy cells, as well as overcome doxorubicin  

					therapeutic resistance through antioxidation activity and p-glycoprotein  

					inhibition.6 Curcumin also affects the expression of various genes, such  

					as the metallothionein gene, the tubulin gene, and p53, which is  

					involved in colon carcinogenesis.6 In addition, curcumin is known to  

					decrease the cell viability and growth of HT-29 colorectal cancer cells.  

					Curcumin can inhibit the activation of vascular endothelial growth  

					factor,7 matrix metalloproteinase, and protein activator-18 by inhibiting  

					epithelial-mesenchymal transition and tumor angiogenesis. Moreover,  

					curcumin can inhibit the self-renewal and differentiation of cancer stem  

					cells, the contact and adhesion of tumor cells with blood vessels, and  

					the metastasis of distant tumor cells and the formation of tumor cell  

					microstasis and microspheres.4  

					Numerous studies have shown that curcumin-based cancer treatment is  

					effective and has few to no side effects; however, its anti-cancer activity  

					is hampered by limited absorption and poor solubility.9; The active  

					ingredients in traditional medicines have an integral mechanism of  

					action to several targets. Therefore, metabolic analysis can help identify  

					the overall mechanism of traditional medicines and their early  

					diagnostic biomarkers, as well as explore disease-related processes and  
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					contains  
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					monitor treatment responses.10 Previous research highlighted  

					a

					combination of active chemicals found in extracts and herbal medicines  

					that automatically interact with those found in other medications to  

					either boost or decrease their therapeutic impact.11  

					HT-29 Cell Culture Treatment  

					Cell suspension in 6-well plates and a hemocytometer helped calculate  

					the number of concentrations, with as many as 100,000 cells placed in  

					each plate. The cells were incubated in a 5% CO2 incubator for 24 hours,  

					then combined with a test compound with an IC concentration of 50 (up  

					to 1 mL). A compound treatment test was then carried out by adding  

					curcumin compounds and chemotherapy drugs to individual HT-29  

					positive cell cultures. There were five types of treatments repeated five  

					times each: a control culture that was not given any test compounds, a  

					culture that was given cisplatin, a culture given 5-FU, a culture given  

					doxorubicin, and a culture given curcumin compounds. The five  

					treatment groups were each incubated for 24 hours.  

					Four cancer drugs have been tested with two different mechanisms of  

					action at inhibition concentrations (IC50) to fight against cancer cells.12  

					Research has shown that infrared (IR) spectroscopy is a very accurate  

					descriptor of how anti-cancer drugs work. Thus, the analysis of  

					potential anti-cancer drugs using molecular fingerprints based on the  

					Fourier transform infrared spectroscopy (FTIR) spectrum is invaluable  

					to the discovery of new therapeutic molecules.13 Gas chromatography  

					mass spectrometry/mass spectrometry (GC-MS/MS) has also been  

					widely used to determine the mechanisms underlying colorectal cancer  

					disease and its biomarkers.14 Metabolomes, or the end products of  

					cellular processes, represent a set of metabolites derived from cells,  

					tissues, organs, or organisms.13 The aim of this study was thus to  

					compare metabolites between HT-29 cells treated with curcumin and  

					chemotherapy drugs (5-fluorouracil [5-FU], doxorubicin, and cisplatin)  

					to identify those that can predict similar mechanisms of action between  

					treatment types. Novel to this study, FTIR allowed further classification  

					of curcumin and the chemotherapy drugs based on the HT-29 cells'  

					spectrum patterns after administering the four compounds. GC-MS/MS  

					was then used to determine the compound or metabolome underlying  

					these patterns.  

					Metabolite Extraction  

					Metabolites were extracted from the treated and control HT-29 cell  

					cultures by removing the well plates from the incubator at 37°C and  

					immediately placing them on dry ice (−80°C) or ice (4°C). Additionally,  

					l mL growth medium was collected from each well plate and transferred  

					to a Eppendorf tube for centrifuging at 1,500 rpm for 5 minutes. The  

					resulting supernatant was moved to a new Eppendorf tube.15  

					Metabolomics Analysis of HT-29 Cell Medium Using FTIR  

					An HT-29 cell medium sample (as much as 1 ml) was placed on a  

					diamond plate and mixed with 95 mg KBr, then compressed to form a  

					tablet (3 mm) for FTIR spectrophotometry. The FTIR  

					spectrophotometer (Nicolet™ iS50 FTIR Spectrometer, ThermoFisher,  

					USA) was equipped with the detector deuterated triglycine sulfate.  

					FTIR spectra were recorded in the region of 400–4,000 cm–1, in  

					absorbance mode, at 32 scans/min and a resolution of 4 cm–1. Peak  

					selection determined the samples' wavelength value, with the data saved  

					in .pdf format. Although spectroscopy provides substantial insights, it  

					is inadequate for determining precise chemical composition. This  

					constraint led to pursuing an alternative approach for comprehensive  

					compositional analysis: GC-MS, a sensitive analytical instrument  

					utilized in metabolomics that can detect, characterize, and identify  

					various chemical constituents and metabolites. 16  

					Material and Methods  

					HT-29 Cell Culture  

					Human colon adenocarcinoma HT-29 cancer line cells (carrying Smad4  

					and p53 mutations) were cultured in McCoy 5A media supplemented  

					with 10% fetal bovine serum, 2 mmol/L L- glutamine, 100 U/mL  

					penicillin, and 100 μg/mL streptomycin. Cell cultures were maintained  

					at 37°C in a humidified incubator containing 5% CO2 and cultured  

					every 3 days.15  

					In Vitro Testing of Cytotoxic Activity via the MTT Method  

					The MTT method allowed in-vitro testing of cytotoxic activity against  

					the HT-29 cells. The cells were bred using a complete medium  

					containing Dulbecco's modified eagle medium (DMEM), fetal bovine  

					serum 10%, streptomycin 1% as an antibiotic, and amphotericin B as an  

					antifungal. The cells were incubated in a 5% CO2 incubator and  

					observed every 2–3 days, then harvested after growing up to 80% inside  

					the flask with the addition of 0.25% trypsin EDTA. The cells were then  

					incubated in a 5% CO2 incubator for 3–5 minutes. The cells that  

					detached from the flask were transferred to a centrifuge tube with 5 mL  

					complete medium to stop the work of the trypsin enzyme. The cells  

					were centrifuged for 5 minutes at 1500 rpm. The resulting supernatant  

					was removed, and the pellets were added to 1 mL complete medium.  

					Resuspension took place so that the cells were homogeneous.15  

					The HT-29 cells were examined with a hemocytometer. A total of 10  

					μL of cells were added to 10 μL trypan blue until mixed and piped onto  

					the glass of the hemocytometer. The cells were observed under an  

					inverted microscope. The known number and concentration of cells  

					were then diluted according to the desired concentrations. The cells  

					were then placed on 96-well plates (10,000 cells per well). The cells  

					were incubated in a 5% CO2 incubator for 24 hours, during which they  

					were observed. After 24 hours, curcumin samples were added to the  

					cells at different concentrations (3.12 μg/mL, 6.25 μg/mL, 12.5 μg/mL,  

					12.5 μg/mL, 100 μg/mL, and 200 μg/mL) dissolved in a complete  

					medium. The cells were then incubated for another 24 hours.15The  

					curcumin concentrations were removed from the cells so the cells could  

					be added to an MTT substance at a concentration of 5 mg/mL (diluted  

					ten times). The cells were given as much as 100 μL MTT and then  

					incubated 3–4 hours. If the cells subsequently formed a purple formazan  

					crystal, this indicated the presence of living cells. The resulting  

					formazan crystals were dissolved with the addition of dimethyl  

					sulfoxide and read using a microplate reader (Model 550, Bio-Rad,  

					USA) with a wavelength of 590 nm. The absorbance obtained was used  

					to curve the relationship between concentration and inhibition  

					percentage to determine IC50.15  

					Metabolomics Analysis of HT-29 Cell Medium Using GC-MS/MS15  

					IR spectroscopy is a supplementary technique to GC-MS intended for  

					the analysis of intricate variations in compounds.18 The volatile  

					constituents and comprehensive chemical distinctions between the  

					curcumin- and chemotherapy drug–treated HT-29 cell cultures were  

					thus determined using both IR spectroscopy and GC-MS (YL6900  

					GC/MS, YL Instrument, Korea). The culture samples were screened  

					first with a syringe-driven filter unit. The filtered samples were pipetted  

					with a micropipette into the GC-MS vial along with 200 µl methanol  

					solvent and homogenized. The GC-MS vials were inserted into the GC-  

					MS/MS injection site with column types GC 30 m, 0.25 mm, and 0.25  

					µm at 50°C for 5 minutes and MS 280°C for 20 minutes.17  

					Analysis of Raw FTIR Metabolomics Data Using Orange Data Mining  

					The Fourier Transform Infrared Spectroscopy (FTIR) raw data were  

					analyzed using the open-source software Orange Data Mining ver. 3.31.  

					The collection of data absorbances were uploaded to Microsoft Excel  

					and divided into five targets (one per treatment group). Absorbance  

					spectrum data were pre-processed with Gaussian smoothing SD 0.5 and  

					rubber band–type baseline correction, then cut according to the  

					reference spectrum section of the bond data group. The Select Row  

					widget allowed selection of a specific treatment. The absorbance  

					spectrum data were then analyzed via multivariate principal component  

					analysis and visualized with the Scatter Plot widget.14  

					Analysis of Raw GC-MS Metabolomics Data Using MS-DIAL  

					The raw Gas Chromatography-Mass Spectrometry (GC-MS) data were  

					analyzed using the open-source software MS-DIAL ver. 4.92, which is  

					linked to the GCMS KovatsRI-VS3 database (retrieved from  

					http://prime.psc.riken.jp/compms/msdial/main.html). The MS-DIAL  
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					parameters were as follows: Data were collected in the mass range of  

					0–1000 Da. Peak detection was set at an average peak width of 20 scans  

					and a minimum peak height of 1,000 amplitudes. A sigma window  

					value of 0.5 with an electron ionization spectrum limit of 10 amplitudes  

					was implemented for deconvolution. The identification settings were  

					set to a retention index of 20, m/z tolerance of 0.5 Da, EI similarity limit  

					at 70%, and identification score limit at 70%. Setting an alignment  

					parameter yielded a retention index tolerance of 20, with an EI  

					similarity tolerance of 70%. Metabolite annotations were performed by  

					comparing the HT-29 cell culture samples' retention index and spectrum  

					to those in the database.19  

					of the O-H bond. Absorption at wavelengths 2,800–3,000 cm−1 was  

					dominated by symmetrical stretching vibrations and asymmetry of the  

					Data Accuracy Analysis with Machine Learning  

					Owing to the extensive array of metabolites analyzed by several  

					devices, researchers often employ statistical methodologies such as  

					principal component analysis (PCA). PCA, an unsupervised technique,  

					is widely utilized in metabolomics to elucidate the distribution of many  

					compounds following dimensional reduction. It has also been  

					extensively utilized in metabolomics for biomarker discovery in human  

					disorders, including cancer.20 The current study's PCA data accuracy  

					was tested via machine learning using the open-source software Orange  

					Data Mining ver. 3.31., specifically the models support vector machine  

					(SVM) and neural network (NN). The Test and Score widget with cross  

					validation–type sample data processing displayed data accuracy, and  

					the Confusion Matrix widget gave the proportion of prediction data as  

					well as data from previous machine learning prediction results.14  

					Machine learning can be used for metabolomic data to identify  

					druggable targets or pathways in disease processes, as well as predictive  

					metabolites that provide mechanistic inferences of target hypotheses.  

					Target-agnostic drug discovery focuses on target pathways, identifying  

					metabolites that differentiate individuals with specific diagnoses or  

					illnesses. Discriminative metabolites can help develop larger target  

					hypotheses for traditional drug discovery by profiling the metabolomes  

					of individuals with specific diagnoses or illnesses.21  

					Figure 1. Absorption wave spectrum compared to Relative Peak  

					Intensities34  

					Results and Discussion  

					Cytotoxic Activity  

					Curcumin compounds were tested for cytotoxicity (in IC50) via the 3-  

					(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT)  

					method as compared to three anti-cancer compounds commonly used in  

					chemotherapy (doxorubicin, 5-FU, and cisplatin) using HT-29  

					colorectal cancer line cells. The IC50 value of each compound was  

					obtained from the linear line equation y = ax + b, where y is % inhibition  

					and x is the concentration log. The IC50 value, obtained by converting  

					to anti-log x, is a 50% concentration of cell growth inhibition in μg/mL  

					converted to μM after being multiplied by the molecular weight of each  

					compound. The IC50 values of each compound were 102.44 µg/ml for  

					curcumin, 12.47 µg/ml for cisplatin, 6.83 µg/ml for 5-FU, and 16.21  

					µg/m for doxorubicin.  

					(a)  

					Metabolite Data Processing with FTIR  

					Combining all infrared spectrum absorption data from four absorption  

					waves (O-H, C-H, N-C=O, and C-O) of each HT-29 cell culture sample  

					(curcumin, doxorubicin, 5-FU, cisplatin, and control) yielded  

					extracellular metabolite data. The raw data were processed according to  

					the Orange Data workflow. Figure 1 features the FTIR absorbance  

					results of the pre-processed raw data as compared with the reference  

					spectrum. Figure 1. Absorption wave spectrum compared to Relative  

					Peak Intensities34 The results of the pre-processed FTIR absorption data  

					were compared with infrared absorption spectrum data from each  

					functional group.22 The obtained alcohol absorption spectrum was  

					determined at wavelengths of 3,200–3,500 cm−1, while the aliphatic  

					absorption spectrum appeared at wavelengths 2,800–3,000 cm−1,  

					carbonyl absorption spectrum at wavelengths 1,300–1,700 cm−1, and  

					amide at wavelengths 1,630–17,000 cm−1. The other functional groups  

					appeared to be stacked, so they were not analyzed further. PCA of the  

					FTIR absorbance data was then performed on each functional group.  

					Absorption at wavelengths 3,200–3,500 cm−1 represented the stretching  

					(b)  

					Figure 2. (a) PCA profile similarities in N-C=O metabolite  

					absorption spectrums across control and treated HT-29 cell culture  

					medium samples; (b) comparison of N-C=O metabolite absorption  

					spectrums across control and treated medium samples.  

					CH2 and CH3 groups, especially in cell fatty acids. Absorption between  

					1,700 and 1,800 cm−1 was characteristic of lipid vibrations.  

					Wavelengths 1,300–1,700 cm−1 indicated protein absorption.  

					Specifically, amide I on the carbonyl stretching of peptide bonds was  

					observed at 1,640 cm−1, sensitive to the secondary structure of the  
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					protein. Deformation of the N-H amide protein bond (amide II)  

					generated a signal at 1,540 cm−1. Absorption at 1,153 cm−1 was mainly  

					associated with C-O hydrogen and non-hydrogen bonds.23  

					metabolite variations between samples to determine whether there were  

					systematic changes in the research group.27 Untargeted MS also has the  

					potential to generate large amounts of information and compare various  

					Table 1: GC-MS/MS analysis of five metabolites using t-test  

					HT-29 Cell  

					Mean  

					Metabolite  

					Culture  

					t

					(SD)  

					Treatment  

					0,47074 ±  

					0,10267  

					0,01513 ± (p=0,000)  

					0,02033  

					Curcumin  

					Control  

					1-Bromo-2-  

					Chloroethana  

					9,733  

					0,09153 ±  

					0.02392  

					0,25763 ± (p=0,045)  

					0,12990  

					Curcumin  

					Control  

					2,812  

					2-Cyanoacetamide  

					Dimethylamine  

					2-Asam Nitrobenzoic  

					Butane  

					0,21521 ±  

					0,13726  

					0,41510 ± (p=0,185)  

					0,26503  

					0,03245 ±  

					0,01276  

					0,01147 ± (p=0,228)  

					0,02634  

					0,14017 ±  

					0,03535  

					Curcumin  

					Control  

					1,598  

					Curcumin  

					Control  

					1,350  

					Figure 3. GC-MS/MS data visualization after MS-DIAL processing  

					Curcumin  

					Control  

					2,347  

					Peak stretching vibration at wavelength absorption areas of 3,200–  

					3,500 cm−1, constituting the O-H absorption spectrum, underwent  

					additional PCA. This revealed the separation of the metabolic profile of  

					the curcumin-treated HT-29 cell culture medium compared to the  

					control medium, as was also the case with all chemotherapy drug–  

					treated media. Each sample thus had a typical metabolome profile,  

					showing differences in different O-H wavelength absorption regions.  

					Peak wavelength absorption at 2,800–3,000 cm−1 indicated the C-H, or  

					fatty acid (aliphatic), region, demonstrating lipogenesis and increased  

					membrane lipid saturation. These are associated with the development  

					of cancer because it can reduce membrane fluidity and cell  

					permeability, thus making cancer cells less susceptible to lipid  

					peroxidation and chemotherapy than normal cells.24 A comparison of  

					aliphatic uptake data showed the separation of the metabolomic profile  

					of the curcumin-treated cell culture medium versus the control medium.  

					0,29863 ± (p=0,72)  

					0,14677  

					complex metabolite datasets by using a correlation coefficient matrix to  

					measure metabolite similarities between different samples.28  

					A comparison of the wavelengths of the amide absorbance spectrum  

					(N-C=O) of the control, curcumin, and cisplatin culture medium  

					samples revealed that the absorption of amide increased with curcumin  

					and cisplatin treatments compared to the control. This shows that  

					treatment with curcumin successfully inhibits the metabolism of HT-29  

					cell amide. Amide, namely L-glutamine, is the second source of  

					nutrients for the growth and division of colon cancer cells.29 Glutamine  

					is considered fuel for the Krebs cycle through a-ketoglutarate, which  

					results in the synthesis of adenosine triphosphate. Glutamine plays an  

					important role in cellular antioxidative processes, reducing oxidative  

					stress by producing nicotinamide adenine dinucleotide phosphate and  

					glutathione through biosynthesis. Glutamine can also control energy  

					production, redox homeostasis, and intracellular signaling so that  

					tumors are "glutamine addicted," indicating that glutamine and the  

					enzymes involved in its route can be targeted in cancer treatment.30  

					The overall PCA metabolomic profiles of the four treated HT-29 cell  

					culture media showed different C-H absorption metabolites. The  

					curcumin-treated medium had lower fatty acid levels compared to the  

					three chemotherapy drug–treated media, indicating curcumin is better  

					able to suppress fatty acid levels than the assessed chemotherapeutics.  

					Fatty acid levels in colorectal cancer patients often increase due to the  

					oxidation of fatty acids.25 A previous comparison of fatty acid levels  

					between the plasma of colorectal cancer patients with the plasma of  

					healthy controls showed an increase in 2-methyl butyric acid–type fatty  

					acids and propionic acid in the colorectal cancer patients.26  

					PCA also yielded N-C=O absorption wavelength results in the  

					metabolites of the control and treated HT-29 culture media, as  

					summarized in Supplementary Data 1. This analysis showed further  

					similarities in the profiles of the metabolites of cultures treated with  

					curcumin compared to those treated with cisplatin (Figure 2).  

					Figure 2. (a) PCA profile similarities in N-C=O metabolite absorption  

					spectrums across control and treated HT-29 cell culture medium  

					samples; (b) comparison of N-C=O metabolite absorption spectrums  

					across control and treated medium samples. As shown in Figure 2a,  

					treatment with curcumin compared to cisplatin featured the same  

					wavelength for amide absorption (N-C=O). This indicates that the  

					processing of metabolomic data with PCA makes it easier for  

					researchers to determine the separation or grouping of metabolite data  

					from various samples. The complexity of the data generated by time  

					spectroscopic analysis creates difficulties when comparing metabolite  

					profiles between samples. However, metabolomic investigation  

					requires meaningful data interpretation. PCA therefore helps examine  

					entire iterative measurements of absorption wavelength over a single  

					point in time for each sample. One study featured PCA examination of  

					Validation of PCA Data Accuracy with Machine Learning  

					PCA processing of the FTIR absorbance spectrums, especially the  

					comparisons between the treatment and control HT-29 cell culture  

					samples, validated the accuracy of the data, as well as the predicted  

					proportion and actual confusion matrix values.  

					Table 2: PCA accuracy validation and confusion matrix of O-H absorption  

					wave numbers  

					PCA  

					Data  

					O-H  

					Spectrum Types  

					Machine  

					of Cross Validation Confusion  

					Accuracy  

					Score  

					Rate Matrix  

					(Average of Machine  

					Learning  

					for classes)  

					Learning  

					Algorithm  

					results  

					[4 1]  

					CUR CON  

					CIS CON  

					0.96  

					1.0  

					Support  

					Vector  

					Machine  

					[0 5]  

					[5 0]  

					[0 5]  

					[5 0]  

					[0 5]  

					[5 0]  

					[0 5]  

					DOX CON  

					LU CON  

					1.0  

					1.0  
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					Table 3: Validation of PCA accuracy and confusion matrix of C-H absorption wave number  

					PCA Spectrum Data Types of Machine  

					Cross Validation AccuracyRate Score  

					(Average for classes)  

					Confusion  

					Machine  

					Algorithm results  

					[4 1]  

					Matrix  

					of  

					C-H  

					Learning  

					Learning  

					CUR CON  

					0.96  

					Support  

					Vector  

					[0 5]  

					Machine  

					[5 0]  

					[0 5]  

					[5 0]  

					[0 5]  

					[5 0]  

					[0 5]  

					CIS CON  

					DOX CON  

					FLU CON  

					1.0  

					1.0  

					1.0  

					Table 4: Validation of PCA Accuracy and confusion matrix of N-C=O absorption wave numbers  

					PCA Spectrum Data  

					N-C=O  

					Types  

					Machine  

					Learning  

					of  

					Cross Validation AccuracyRate Score  

					(Average for classes)  

					Confusion Matrix ofMachine  

					Learning Algorithm results  

					CUR CON  

					CIS CON  

					Support  

					Vector  

					0.92  

					1.0  

					[3 2]  

					[0 5]  

					[5 0]  

					[0 5]  

					Machine  

					DOX CON  

					FLU CON  

					1.0  

					1.0  

					[5 0]  

					[0 5]  

					[5 0]  

					[0 5]  

					Additional machine learning methods, including SVM and NN models,  

					validated the accuracy of the PCA data of each treatment sample  

					compared to the control. Internal validation was carried out five times  

					in conjunction with SVM model and internal validation via cross-  

					validation using training datasets to eliminate potential bias caused by  

					random separation, as feature selection was not performed in this  

					experiment and could therefore use features selected in previous data  

					experiments. The limited sample size allowed a resampling test to be  

					performed as well. The SVM accuracy analysis and validation of PCA  

					FTIR absorbance spectrum data revealed an Area Under the Curve  

					(AUC) value of > 0.92 and Classification Accuracy (CA) value of >  

					0.80 for all absorption spectrum samples (O-H, C-H, and N-C=O) of  

					the curcumin-treated HT-29 cell cultures compared to the control  

					showed based on their metabolite profiles (Tables 2–4). The accuracy  

					of machine learning predictions can be measured with the confusion  

					matrix. Tables 2–4 shows a separation between the metabolite profiles  

					of curcumin-treated HT-29 cancer cells compared to the control as  

					based on the confusion matrix. The suitability of the machine learning  

					algorithms used plays a role in determining data accuracy as well. For  

					example, for data validation between treatment and control cells, an  

					SVM algorithm can be used for datasets that often cannot be completely  

					separated. SVM will try to build a "soft margin" that minimizes data  

					training points that are outside the classification limits while allowing  

					some points to be misclassified. SVM can only distinguish between two  

					classes, and due to its computational complexity, the algorithm does not  

					scale well with very large data sets. In the case of metabolites, it is  

					therefore often advantageous to perform feature selection before  

					training multivariate algorithms.28 Identifying multivariate statistical  

					features from data helps distinguish between two separate groups within  

					a high-dimensional feature space so that SVM can create an ideal hyper-  

					plane that sets boundaries and maximizes margins between the two  

					groups.31  

					Figure 4: PCA data visualization after MS-DIAL processing  

					Metabolite Data Processing with GC-MS/MS  

					Metabolite annotations were performed by comparing the retention  

					index and sample spectrum of each HT-29 cell culture sample with  

					those in the MS-DIAL database. This revealed five metabolites from  

					each treatment group with similar chromatogram and ion peak patterns  

					Figure 5: PCA data visualization of unknown MS-DIAL metabolites.  

					The blue dot represents the HT-29 cell sample treated with cisplatin,  

					and the red dot represents the sample treated with curcumin.  
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					to those in the MS-DIAL database. These five metabolites were 1-  

					visualization of unknown MS-DIAL metabolites. The blue dot  

					represents the HT-29 cell sample treated with cisplatin, and the red dot  

					represents the sample treated with curcumin. The PCA results of the  

					five metabolites with the same time and retention index from each  

					media sample validated the accuracy of the data, as well as the predicted  

					proportion value and actual confusion matrix value, as shown in e 1ure  

					6. The validation analysis of the fifth PCA data metabolite from the MS-  

					DIAL annotation of all treatment and control samples showed an AUC  

					value of > 0.92, indicating that although the metabolites 2-nitrobenzoic  

					acid, DMA, and butane have a p-value of > 0.05 with machine learning,  

					the NN algorithm can show data separation. Subsequent evaluation of  

					NN machine learning prediction performance with the confusion matrix  

					showed that all five MS-DIAL annotation metabolites could be  

					distinguished in the curcumin-treated HT-29 cell culture, but not in the  

					control or other treatment groups. Figure 6. PCA accuracy validation  

					and confusion matrix of five metabolites found via GC-MS/MS. PCA  

					data validation for a large set of data uses appropriate NN algorithms  

					that can process these data well. Units known as neurons form an  

					artificial NN and combine many inputs to produce a single output. The  

					network estimates the relationship between the input (e.g., absorbance  

					spectrum) and the intended output (e.g., disease risk). Inputs, outputs,  

					and intermediate layers, also referred to as hidden layers, form the  

					neurons' organizational structure.37 The neurons of the first hidden layer  

					receive input from the variables of the layer input after being multiplied  

					by a series of numbers called weights. Each neuron takes input and  

					transforms it by applying a nonlinear activation function, such as a  

					sigmoid or rectified linear unit, and adding bias to the result.38  

					Figure 6: PCA accuracy validation and confusion matrix of five  

					metabolites found via GC-MS/MS.  

					bromo-2-chloroetana, 2-cyanoacetamide, dimethylamine (DMA), 2-  

					nitrobenzoic acid, and butane. The annotation of the HT-29 cell culture  

					metabolites also showed 300 metabolites that had nothing in common  

					with the ones in the MS-DIAL database. Untargeted MS-based  

					metabolomic analysis generates large datasets, making the  

					identification of metabolites with high accuracy a fundamental  

					difficulty. This could be because there are no candidate matches in the  

					database or attributes (e.g., mass ratio and retention time pairings) that  

					only show similarities to a large number of early structures.32  

					To date, there are no studies that support the existence of 1-bromo-2-  

					chloroethana, 2-nitrobenzoic acid, or butane after cell metabolism in  

					colorectal cancer cases. In contrast, 2-cyanoacetate is an organic  

					volatile compound previously found in the urine of colorectal cancer  

					patients using GC-MS.33 2-cyanoacetamide in the curcumin-treated  

					HT-29 cell medium was significantly decreased compared to the control  

					and other treated media. As shown in Table 1, 2-cyanoacetamide had a  

					p-value of < 0.05, indicating a significant difference between the  

					curcumin-treated and control media. This implies that 2-cyanoacetate is  

					a suitable biomarker of HT-29 cells' response to curcumin treatment in  

					targeted metabolomic in vivo analysis.Figure 3. GC-MS/MS data  

					visualization after MS-DIAL processing. Dimethylamine (DMA)  

					metabolites in the curcumin-treated HT-29 cell medium showed higher  

					levels compared to media treated with all three chemotherapy drugs  

					(Figure 3), suggesting that curcumin plays no role in reducing this  

					metabolite in HT-29 cells. This is in contrast with the research of  

					Bednarz-Misa et al. (2020), who showed that DMA levels increase with  

					malignancy stage in colorectal cancer patients.34 Other research on the  

					metabolomic profile of colorectal cancer metastases to spleen nodes  

					found accumulated DMA in line with metastatic development versus  

					normal tissue.25 DMA is a simple aliphatic amine found in human urine  

					and other bodily fluids such as plasma. The main source of DMA  

					circulating in human urine is asymmetric DMA, which is released from  

					the demethylated protein arginine product.35 DMA can give rise to  

					nitroso-DMA in acidic gastric juices in the presence of nitrates from  

					carcinogenic foods with DNA alkylation activity. In humans, most  

					DMA (95%) is excreted by the kidneys, while 1–3% of DMA is  

					excreted as feces and exhaled air.36 DMA's T-test yielded a p-value of  

					> 0.05, showing a negligible difference between the curcumin-treated  

					and control HT-29 cell cultures. As such, DMA cannot be used as a  

					biomarker of HT-29 cell response to curcumin treatment. Analysis of  

					extracellular metabolite data from the HT-29 culture media began with  

					combining all raw intensity data from the four treatment samples' m/z.  

					The results were then compared with MS-DIAL references and  

					visualized in a boxplot. PCA of the five metabolites similar to the MS-  

					DIAL references of each treatment and control group were visualized  

					with Orange Data scatter plot software (Figure 4). The metabolite PCA  

					showed no resemblance between the five samples and the MS-DIAL  

					references (Figure 5). The overall PCA of the five metabolite profiles,  

					unknown metabolites from the control sample, and all four treated HT-  

					29 cell cultures showed different and typical metabolite profiles in the  

					curcumin-treated medium. Figure 5 shows an unknown metabolite  

					profile in the curcumin-treated HT-29 cell medium adjacent to that of  

					the cisplatin-treated medium. This is in support of these media's  

					similarity in the FTIR metabolite profiles. Figure 4. PCA data  

					visualization after MS-DIAL processing. Figure 5. PCA data  

					Conclusion  

					HT-29 cell culture media treated with curcumin and cisplatin displayed  

					similarities in metabolite profiles based on their FTIR N-C=O and  

					amide absorbance spectrums. Additionally, the metabolite 2-  

					cyanoacetamide can be used as a biomarker of HT-29 cells' response to  

					treatment with curcumin. However, the profiles of five metabolites  

					resulting from the GC-MS/MS of all five culture samples do not predict  

					similarities in the mechanism of action between curcumin and the  

					chemotherapy drugs cisplatin, 5-FU, and doxorubicin. It is challenging  

					to establish a relationship between these metabolite profiles and the  

					proteins related to colorectal cancer due to the complexity of the cellular  

					response mechanisms. Further research should therefore focus on in  

					vivo experimental validation that upgrades metabolomic analysis tools  

					to confirm the similar metabolite profiles between curcumin and  

					cisplatin treatments, and to determine if any metabolites can predict  

					similarities in the mechanism of action of curcumin to chemotherapy  

					drugs.  
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