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					ABSTRACT  

					ARTICLE INFO  

					Earthworm extracts are increasingly recognized for their bioactive compounds and therapeutic  

					potential. This study evaluated the bioactive properties of acetone extracts (AC1:2 and AC1:4)  

					from Perionyx excavatus, emphasizing their potential applications. Both extracts demonstrated  

					high protein content (70.247–71.150%), with AC1:4 showing significantly higher amino acid  

					levels (31.697 g/100 g) compared to AC1:2 (12.727 g/100 g). Key amino acids identified included  

					aspartic acid, glycine, alanine, leucine, tyrosine, lysine, and histidine, known for their  

					physiological and therapeutic benefits. AC1:4 exhibited superior antioxidant activity, with half  

					maximal inhibitory concentration (IC50) values of 1.077 ± 0.088 mg/mL and 0.892 ± 0.037 mg/mL  

					in DPPH and ABTS assays, respectively. It also showed potent anti-inflammatory effects by  

					inhibiting nitric oxide production in lipopolysaccharide-stimulated RAW264.7 macrophages (IC50  

					= 0.352 ± 0.025 mg/mL). Additionally, AC1:4 demonstrated strong inhibitory activity against  

					elastase (IC50 = 5.372 ± 0.333 mg/mL), tyrosinase (IC50 = 0.12 ± 0.013 mg/mL), and MMP-1 (IC50  

					= 4.885 ± 0.228 mg/mL), highlighting its potential for skincare and anti-aging applications. These  

					findings underscore the promise of P. excavatus acetone extracts, particularly AC1:4, as a  

					sustainable and natural source of bioactive compounds for pharmaceuticals, cosmetics, and  

					nutraceuticals.  
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					Protein-rich extracts from earthworms contain bioactive compounds  

					such as enzymes, peptides, and antimicrobial substances.9–12 These  

					Introduction  

					Earthworms, belonging to the phylum Annelida and class  

					Oligochaeta, play a crucial role in terrestrial ecosystems, particularly in  

					enhancing soil fertility and facilitating the decomposition of organic  

					matter.1 Among the diverse species of earthworms, Perionyx  

					excavatus—commonly known as the blue worm or compost worm—is  

					of particular ecological and economic interest due to its remarkable  

					efficiency in vermicomposting and its ability to convert organic waste  

					into nutrient-rich vermicast rapidly.2–4  

					compounds exhibit diverse therapeutic properties, including anti-  

					inflammatory, antioxidant, anticoagulant, and antimicrobial  

					activities.13–19 For instance, the proteolytic enzyme lumbrokinase,  

					derived from earthworms, has demonstrated potential in treating  

					thrombotic disorders by promoting fibrinolysis.20 Additionally,  

					earthworm extracts have shown promise in wound healing, cancer  

					therapy, and as functional biomolecules in the pharmaceutical and  

					nutraceutical industries.11–13  

					Emerging research also suggests that these bioactive compounds may  

					modulate the immune system, enhancing the body's ability to defend  

					against infections and diseases.13 Given their wide-ranging applications,  

					there is increasing interest in systematically exploring the biological  

					potential of earthworm-derived compounds. However, most studies to  

					date have focused on species like Lumbricus rubellus and Eisenia fetida  

					in regions outside Vietnam, with limited attention to P. excavatus.20–23  

					In Vietnam, the farming of P. excavatus has expanded significantly in  

					recent years, driven by the growing demand for organic fertilizers and  

					eco-friendly waste management solutions.24 Vermiculture, or the  

					practice of earthworm farming, has become an integral component of  

					organic farming initiatives, supported by governmental and non-  

					governmental organizations.4 Farmers and entrepreneurs are adopting  

					vermicomposting as a cost-effective method to manage agricultural  

					waste while enhancing soil fertility.25  

					Native to tropical and subtropical regions, including Vietnam, P.  

					excavatus thrives in surface soil layers abundant in organic material.5  

					This small, epigeic species is characterized by its adaptability, rapid  

					reproduction, and high metabolic rate, which enable it to process  

					significant amounts of organic waste into a potent organic fertilizer.6,7  

					Vietnam's favorable climatic conditions, with warm temperatures and  

					high humidity, provide an ideal habitat for the proliferation of P.  

					excavatus. Consequently, the species is widely distributed in  

					agricultural areas and is increasingly cultivated in controlled  

					environments to meet the growing demand for sustainable agricultural  

					practices.8  

					Beyond its role in soil enrichment, earthworm-derived products have  

					gained attention for their biomedical and industrial applications.  
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					Despite these advancements, the potential of P. excavatus as a source  

					of bioactive compounds remains underexplored. Investigating the  

					protein-rich extracts of this species could unlock valuable opportunities  

					for developing novel health-related products. Comprehensive studies  

					are needed to elucidate the biological activities of these extracts to  

					maximize their utility. This study is among the first to systematically  

					examine the biological activities of acetone extracts from P. excavatus  

					collected in Vietnam. The study employs acetone-based extraction  

					methods, which are widely recognized for their effectiveness in  

					isolating bioactive molecules, including polyphenols, peptides, and  
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					enzymatic compounds. By analyzing these extracts, the research aims  

					to uncover novel bioactive compounds with potential applications in  

					pharmaceuticals, cosmetics, and nutraceuticals.  

					Antioxidant activity assay  

					The antioxidant activity of earthworm extracts was determined by DPPH  

					and ABTS assays as described by Dung et al.29.  

					For the DPPH assay, various concentrations of earthworm extracts were  

					prepared in methanol. Each sample (0.9 mL) was mixed with 4 mL of a  

					0.1 mM DPPH solution in methanol. The mixture was incubated at 25°C  

					for 30 min in the dark to allow the reaction to occur. Following  

					incubation, the absorbance was measured at 517 nm using a microplate  

					reader (VersaMax, Molecular Devices, USA). Vitamin C (Sigma-  

					Aldrich, Germany) was used as the positive control. The percentage of  

					DPPH radical scavenging activity was calculated using the formula (2):  

					Materials and Methods  

					Earthworm samples  

					Living earthworms (P. excavatus), aged 7–8 weeks, were collected from  

					a farm in Cu Chi District (11°07'15.0"N 106°30'04.0"E), Ho Chi Minh  

					City, Vietnam. Immediately after collection, the earthworms were  

					transported to the Biotechnology Center of Ho Chi Minh City for further  

					processing. The earthworms were prepared according to the method  

					described by Azmi et al.,26 with minor modifications. First, the  

					earthworms were thoroughly washed under running water to remove dirt  

					and debris from their body surface. They were then immersed in 1.0%  

					NaCl solution for 15 min to eliminate impurities, followed by immersion  

					in 0.3% citric acid solution for 20 min to enhance cleanliness and reduce  

					microbial load. After these treatments, the earthworms were freeze-dried  

					to produce earthworm powder, which was subsequently stored at 40°C  

					until further use.  

					A

					−A  

					S

					C

					% Inhibition =  

					× 100  

					(2)  

					A

					C

					Where: AC: Absorbance of the control sample; AS: Absorbance of the  

					test sample.  

					For the ABTS assay, the ABTS radical cation (ABTS⁺) was generated  

					by reacting a 7 mM ABTS solution in methanol with 2.45 mM potassium  

					persulfate in a 1:1 ratio. The reaction mixture was kept in the dark at  

					24°C for 16 h to allow the formation of the ABTS stock solution. Before  

					use, the stock solution was diluted with methanol to achieve an  

					absorbance of 0.70 ± 0.02 at 734 nm. Earthworm extracts, dissolved in  

					methanol at varying concentrations, were mixed with 5 mL of the ABTS  

					solution and incubated in the dark for 15 min. Absorbance was measured  

					at 734 nm using a microplate reader (VersaMax, Molecular Devices,  

					USA). Vitamin C (Sigma-Aldrich, Germany) was used as the positive  

					control. The percentage of ABTS radical scavenging activity was  

					calculated using the formula (3):  

					Preparation of earthworm extract  

					Processed earthworm powder (50 g) was weighed and placed into a  

					stomacher bag containing 250 mL of distilled water. The mixture was  

					homogenized using a stomacher machine for 25 min to obtain a crude  

					extract, which was then centrifuged to separate the supernatant. Protein  

					precipitation was carried out using cold acetone at two different ratios  

					of crude extract to acetone: 1:2 (AC1:2) and 1:4 (AC1:4). The mixtures  

					were incubated at 4°C using a cooled incubator (MIR-254 PHCbi,  

					Japan) for 20 min to allow protein precipitation. Subsequently, the  

					mixtures were centrifuged at 7500 rpm for 40 min to collect the  

					precipitate. The resulting precipitate was dissolved in phosphate buffer  

					(pH 6.5) and then freeze-dried to obtain the earthworm extracts AC1:2  

					and AC1:4.  

					A

					−A  

					S

					C

					% Inhibition =  

					× 100  

					(3)  

					A

					C

					Where: AC: Absorbance of the control sample; AS: Absorbance of the  

					test sample.  

					Anti-inflammatory activity assay  

					The ability of earthworm extracts to inhibit nitric oxide (NO) production  

					was evaluated as an indicator of anti-inflammatory activity.30 RAW  

					264.7 cells, obtained from the American Type Culture Collection  

					(ATCC), were seeded in 96-well plates at a density of 2×104 cells/well  

					and incubated for 24 h under standard culture conditions (37°C, 5%  

					CO2). Following incubation, the medium was replaced with fresh  

					medium containing various concentrations of earthworm extract or 20  

					µM dexamethasone, which served as a positive control. Cells were  

					Determination of protein content  

					The total protein content of the earthworm extracts was determined  

					using the Kjeldahl method.27 Each extract (1 g) was placed in a Kjeldahl  

					digestion flask containing 25 mL of concentrated H2SO4 and a catalyst  

					mixture comprising 9 g K2SO4 and 1 g CuSO4·5H2O. The sample was  

					digested for 2.5 h using an electric heater equipped with a fume removal  

					system. After digestion, the mixture was cooled to room temperature,  

					and 80 mL of NaOH solution was added to neutralize the acid and  

					release ammonia. The resulting mixture was distilled, and the liberated  

					incubated for an additional hour before adding  

					1

					µg/mL  

					lipopolysaccharide (LPS) to induce inflammation. After 24 h of further  

					incubation, 50 µL of supernatant from each well was transferred to a  

					new 96-well plate, and 50 µL of Griess reagent was added. The mixture  

					was incubated for 10 min at room temperature, and the optical density  

					(OD) was measured at 540 nm using a microplate reader (VersaMax,  

					Molecular Devices, USA). The percentage of NO inhibition was  

					calculated using the formula (4):  

					ammonia was collected in  

					a

					receiving solution. The ammonia  

					concentration was determined by titration with standardized HCl  

					solution. The total protein content was calculated using the formula (1):  

					(V×C×14×6.25)  

					(

					)

					Protein content %  

					=

					(1)  

					W

					Where: V: Volume of HCl used in the titration (mL); C: Concentration  

					of HCl (mol/L); W: Weight of the sample (g); 14: Atomic weight of  

					nitrogen (g/mol); 6.25: Conversion factor to estimate protein content.  

					OD of LPS group−OD of treated group  

					% NO inhibition =  

					× 100%  

					(4)  

					OD of LPS group  

					Determination of amino acid composition  

					The cytotoxicity of earthworm extracts on RAW 264.7 macrophage cells  

					was assessed both before and after inflammatory stimulation with LPS  

					using the MTT assay.30 RAW 264.7 cells were seeded in 96-well plates  

					at a density of 2×104 cells/well and incubated for 24 h under standard  

					culture conditions (37°C, 5% CO2). After incubation, the medium was  

					replaced with fresh medium containing different concentrations of  

					earthworm extract. At the end of the treatment, MTT reagent was added  

					to each well, followed by a 4 h incubation to allow for the formation of  

					formazan crystals. The crystals were subsequently dissolved in DMSO,  

					and the OD was measured at 570 nm using a microplate reader  

					(VersaMax, Molecular Devices, USA). Cell viability was calculated  

					using the formula (5):  

					The amino acid composition of the earthworm extracts was analyzed  

					using high-performance liquid chromatography (HPLC Agilent series  

					1200, Agilent Technologies, USA) based on the method described by  

					Istiqomah et al.28. A 2 g sample of earthworm extract was mixed with  

					10 mL of 6 N HCl in a test tube and hydrolyzed at 110°C for 20 h. After  

					hydrolysis, the sample was cooled to room temperature and evaporated  

					at 50°C to remove excess HCl. The residue was neutralized with 6 N  

					NaOH and filtered through a 0.2 µm membrane. Prior to injection into  

					the HPLC system, a derivatization reaction was performed. The reaction  

					mixture consisted of 275 µL of OPA solution (prepared by dissolving  

					0.01 g phthalaldehyde in 9 mL methanol, 40 mL borax buffer at pH 9.1,  

					and 100 µL 2-mercaptoethanol) and 25 µL of the sample. The mixture  

					was vortexed and reacted for 5 min. The HPLC analysis was performed  

					using a C18 column and a binary solvent system. Solvent A was sodium  

					acetate buffer (pH 5), and solvent B was a mixture of methanol, acetate  

					buffer, and tetrahydrofuran (80:15:5, v/v/v). The column was eluted at a  

					flow rate of 1.5 mL/min, and detection was performed using a  

					fluorescence detector (excitation: 340 nm; emission: 450 nm).  

					OD of treated group  

					% Cell Viability =  

					× 100%  

					(5)  

					OD of untreated group  

					Anti-elastase activity assay  

					The elastase inhibition activity of earthworm extracts was determined  

					using the method described by Azmi et al.26. The reaction mixture  
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					consisted of 100 µL of 0.2 M Tris-HCl buffer (pH 8.0), 25 µL of 10 mM  

					N-(methoxysuccinyl)-ala-ala-pro-val-4-nitroanilide (MAAPVN)  

					and AC1:4 was 70.247% and 71.150%, respectively, with no  

					statistically significant difference between the two (Figure 1). This high  

					protein content aligns with findings from previous studies on different  

					species of earthworms.10,28 Such protein-rich extracts are highly valued  

					for their nutritional and therapeutic potential.10  

					substrate solution, and 100 µL of the test sample. The mixture was  

					thoroughly mixed and incubated at 25°C for 15 min. Subsequently, 50  

					µL of elastase enzyme solution (0.3 U/mL) was added, and the mixture  

					was further incubated at 25°C for 15 min. Absorbance was measured at  

					410 nm using a microplate reader (VersaMax, Molecular Devices,  

					USA). Epigallocatechin gallate (EGCG) served as the positive control.  

					The percentage of elastase inhibition was calculated using the formula  

					(6):  

					A

					−A  

					S

					C

					% Elastase inhibition =  

					× 100  

					(6)  

					A

					C

					Where: AC: Absorbance of the control sample; AS: Absorbance of the  

					test sample.  

					Anti-tyrosinase activity assay  

					The tyrosinase inhibition activity of earthworm extracts was determined  

					using the method described by Azmi et al.26. A 2 mM solution of L-  

					tyrosine was prepared in 50 mM phosphate buffer (pH 6.8). Phosphate  

					buffer served as the negative control, and deionized water was used as  

					the blank. The sample was incubated with tyrosinase (250 U/mL) for 10  

					min. Then, 50 µL of L-tyrosine solution was added to each well of a 96-  

					well plate, and the mixture was incubated at 25°C for 30 min.  

					Absorbance was measured at 492 nm using a microplate reader  

					(VersaMax, Molecular Devices, USA). The percentage of tyrosinase  

					inhibition was calculated using the formula (7):  

					Figure 1: Total protein content of earthworm extracts.  

					The amino acid composition of AC1:2 and AC1:4 revealed notable  

					differences. AC1:4 demonstrated higher concentrations of all analyzed  

					amino acids, with total amino acid content reaching 31.697 g/100 g  

					compared to 12.727 g/100 g in AC1:2 (Table 1). Among the identified  

					amino acids, aspartic acid, glycine, alanine, leucine, lysine, and  

					histidine were predominant. These results are consistent with the  

					findings of Istiqomah et al.28 and Hidayat et al.33 for Lumbricus  

					rubellus, Garczyńska et al.34 for Dendrobaena veneta, Kostecka et al.35  

					and Rufchaei et al.36 for Eisenia fetida, and Kavle et al.37 for Eisenia  

					andrei. Interestingly, aspartic acid, glycine, alanine, and tyrosine were  

					absent in the extract of Eisenia fetida as reported by Vital et al.38. This  

					variability among species and extraction methods underscores the  

					complexity of earthworm-derived bioactives and their unique  

					benefits.39  

					The amino acids identified in these extracts contribute to various  

					physiological functions, including protein synthesis, immune response  

					enhancement, and cellular repair mechanisms.28 The absence of certain  

					amino acids, such as those noted in the study by Vital et al.,38 may  

					suggest selective bioavailability or differences in extraction  

					methodologies, warranting further exploration. Overall, these findings  

					highlight the significant potential of P. excavatus extracts as a valuable  

					source of bioactive compounds, reinforcing their utility in advancing  

					sustainable and effective bioresource applications.  

					A

					−A  

					S

					C

					% Tyrosinase inhibition =  

					× 100  

					(7)  

					A

					C

					Where: AC: Absorbance of the control sample; AS: Absorbance of the  

					test sample.  

					Anti-MMP-1 activity assay  

					The matrix metalloproteinase-1 (MMP-1) inhibition activity of  

					earthworm extracts was determined using the method described by Tien  

					et al.31. The sample was incubated with 20 µL of MMP-1 enzyme  

					solution (0.5 µg/mL) at 37°C for 1 h. Following incubation, 40 µL of  

					collagen solution (5 mg/mL) and 75 µL of collagenase buffer (50 mM  

					Tris-HCl, 10 mM CaCl2, 0.15 M NaCl, pH 7.4) were added to the  

					reaction mixture, which was then incubated at 37°C for 4 h. After  

					incubation, 100 µL of Coomassie Brilliant Blue (CBB) solution (0.1%)  

					was added to stain the collagen. The reaction mixture was centrifuged,  

					and the collagen precipitate was dissolved in 200 µL of DMSO. EGCG  

					served as the positive control. The OD was measured at 600 nm using a  

					microplate reader (VersaMax, Molecular Devices, USA). The  

					percentage of MMP-1 inhibition was calculated using the formula (8):  

					Table 1: Amino acid composition of earthworm extracts.  

					Amino acid composition  

					(g/100g)  

					Earthworm extract  

					(A −A )−(A −A  

					) × 100  

					(8)  

					S

					B

					C

					B

					AC1:2  

					AC1:4  

					% MMP − 1 inhibition =  

					(A −A  

					CO  

					)

					B

					Aspartic acid  

					Glycine  

					Alanine  

					Leucine  

					Tyrosine  

					3.279 ± 0.045  

					1.817 ± 0.015  

					2.330 ± 0.026  

					1.363 ± 0.015  

					0.213 ± 0.015  

					2.760 ± 0.026  

					1.137 ± 0.015  

					12.727 ± 0.186  

					8.250 ± 0.026  

					3.277 ± 0.006  

					3.897 ± 0.025  

					6.047 ± 0.015  

					2.627 ± 0.015  

					5.630 ± 0.036  

					2.057 ± 0.035  

					31.697 ± 0.049  

					Where: AS: Absorbance of the sample containing collagenase and the  

					test compound; AB: Absorbance of the sample containing only buffer,  

					CBB, and DMSO; AC: Absorbance of the sample containing collagenase  

					without the test compound; ACO: Absorbance of the sample containing  

					collagen and buffer.  

					Lysine  

					Histidine  

					Statistical analysis  

					Total  

					All experiments were performed in triplicate to ensure reliability and  

					reproducibility. Data were expressed as the mean ± standard deviation  

					(SD) and calculated using Microsoft Office Excel 2016. The half  

					maximal inhibitory concentration (IC50) value, which indicates the  

					sample concentration required to achieve 50% inhibition, was  

					determined by plotting the percentage of inhibition against the  

					logarithmic scale of sample concentrations. A dose-response curve was  

					generated using non-linear regression analysis in Microsoft Office Excel  

					2016. The IC50 value was derived from the fitted curve.  

					Antioxidant activity of earthworm extracts  

					The evaluation of antioxidant activity in earthworm extracts was  

					conducted to explore their potential as natural antioxidant sources and  

					to contribute to the understanding of earthworm-derived bioactive  

					compounds.13 The antioxidant activity was assessed through two  

					mechanisms: scavenging of DPPH free radicals and ABTS free radicals.  

					For DPPH radical scavenging, the extract AC1:2 exhibited an IC50 value  

					of 2.073 ± 0.163 mg/mL, whereas AC1:4 demonstrated significantly  

					higher activity with an IC50 value of 1.077 ± 0.088 mg/mL (Figure 2).  

					Vitamin C, a well-known antioxidant, had an IC50 value of 0.006 ±  

					0.0002 mg/mL. Similarly, in the ABTS assay, the extract AC1:2  

					showed an IC50 value of 12.405 ± 0.459 mg/mL, while AC1:4 exhibited  

					a remarkable IC50 value of 0.892 ± 0.037 mg/mL, compared to vitamin  

					C’s IC50 of 0.012 ± 0.002 mg/mL (Figure 3).  

					Results and Discussion  

					Total protein and amino acid contents of earthworm extracts  

					The analysis of total protein content and amino acid composition in  

					earthworm extracts was conducted to explore their potential  

					applications in various fields, including pharmaceuticals, nutrition, and  

					agriculture.32 The total protein content of the acetone extracts AC1:2  
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					anti-inflammatory activity of acetone extracts derived from P.  

					excavatus, driven by the growing demand for natural therapeutic  

					products and the need to explore sustainable bioresources. The anti-  

					inflammatory potential was evaluated by examining the ability of these  

					extracts to inhibit NO production in RAW264.7 macrophage cells  

					stimulated with LPS.30 Both acetone extracts (AC1:2 and AC1:4)  

					effectively inhibited NO production at concentrations ranging from 0.2  

					to 0.8 mg/mL, with cell viability remaining consistently above 85%  

					under these conditions (Figure 4 and Figure 5). This demonstrates the  

					non-cytotoxic nature of the extracts, both before and after LPS  

					stimulation. The IC50 value for AC1:2 was 0.465 ± 0.013 mg/mL, while  

					AC1:4 exhibited a stronger inhibitory effect with an IC50 of 0.352 ±  

					0.025 mg/mL (Figure 6). In comparison, the positive control,  

					dexamethasone (20 μM), achieved a 48% inhibition of NO production.  

					The difference in IC50 values suggests that the composition of the  

					extracts influences their anti-inflammatory efficacy. The superior  

					activity of AC1:4 may be attributed to its higher concentration of amino  

					acids. Notably, amino acids such as aspartic acid, glycine, alanine,  

					leucine, tyrosine, lysine, and histidine likely contribute to the observed  

					effects. For instance, glycine is known to modulate immune responses  

					by suppressing pro-inflammatory cytokines,44 while tyrosine and  

					histidine may alleviate oxidative stress and inflammation.45–47 Leucine,  

					recognized for its ability to regulate macrophage activity, may  

					synergize with other amino acids to enhance the overall anti-  

					inflammatory effect.45–47  

					Figure 2: Antioxidant activity of earthworm extracts AC1:2 (A) and  

					AC1:4 (B), compared to positive control Vitamin C (C), in the DPPH  

					assay.  

					Figure 4: Effect of earthworm extract AC1:2 on the viability of RAW  

					264.7 macrophages before (A) and after (B) LPS-induced inflammatory  

					stimulation.  

					The mechanism of NO inhibition by these extracts likely involves  

					interference with the NF-κB signaling pathway, which plays a key role  

					in regulating inducible nitric oxide synthase (iNOS) during  

					inflammation.43,46 Bioactive peptides and secondary metabolites present  

					in the extracts may further amplify these effects.46 In summary, acetone  

					extracts of P. excavatus exhibit promising anti-inflammatory activity by  

					effectively inhibiting NO production in LPS-stimulated RAW264.7  

					cells. Among the two extracts, AC1:4 demonstrated superior efficacy,  

					highlighting the potential of earthworm-derived products as natural  

					anti-inflammatory agents.  

					Figure 3: Antioxidant activity of earthworm extracts AC1:2 (A) and  

					AC1:4 (B), compared to positive control Vitamin C (C), in the ABTS  

					assay.  

					The results indicate that the AC1:4 extract had stronger antioxidant  

					activity compared to AC1:2 in both assays. Furthermore, these findings  

					suggest that P. excavatus exhibits better antioxidant potential compared  

					to some earthworms studied previously. For example, Mustafa et al.40  

					reported lower antioxidant activity in extracts from other earthworm  

					species, and Dewi et al.41 documented an IC50 value of 12.3 mg/mL for  

					DPPH radical scavenging in Lumbricus rubellus. This highlights the  

					distinctive bioactivity of P. excavatus, potentially attributable to  

					differences in amino acid content and other bioactive constituents.  

					Amino acids such as aspartic acid, glycine, alanine, leucine, tyrosine,  

					lysine, and histidine likely contribute to the observed antioxidant  

					activity.42 These compounds are known to function as free radical  

					scavengers or metal chelators, stabilizing oxidative species through  

					hydrogen donation or electron transfer.19,42 The higher antioxidant  

					activity in the AC1:4 extract could be due to a greater concentration of  

					these amino acids, which enhance its capacity to neutralize reactive  

					oxygen species (ROS) through multiple mechanisms. Additionally, the  

					solvent ratio plays a critical role in isolating compounds with higher  

					antioxidant potential.29 These findings underscore the potential  

					application of P. excavatus extracts in natural antioxidant development,  

					offering an environmentally friendly alternative to synthetic  

					antioxidants.  

					Anti-elastase activity of earthworm extracts  

					The anti-elastase activity of acetone extracts derived from earthworms  

					was evaluated to assess their potential as natural inhibitors of elastase,  

					an enzyme involved in tissue degradation and inflammatory  

					processes.48 Previous studies, such as by Azmi et al.,26 have shown that  

					extracts from species such as Eisenia fetida, Lumbricus rubellus, and  

					Eudrilus eugeniae inhibit elastase activity by 40–52% at 10 mg/mL.  

					This study extends these findings by investigating acetone extracts  

					(AC1:2 and AC1:4) from P. excavatus. AC1:2 exhibited an IC50 value  

					of 6.347 ± 0.198 mg/mL, while AC1:4 showed a stronger inhibitory  

					effect with an IC50 of 5.372 ± 0.333 mg/mL (Figure 7). For comparison,  

					the positive control, EGCG achieved an IC50 of 0.97 ± 0.013 mg/mL.  

					The variation in IC50 values suggests differences in the bioactive  

					compound profiles of the extracts. The enhanced activity of AC1:4 may  

					stem from a higher concentration or better bioavailability of specific  

					amino acids. These findings align with prior research, reinforcing the  

					notion that earthworm extracts possess notable elastase-inhibitory  

					potential.26  

					Anti-inflammatory activity of earthworm extracts  

					The observed anti-elastase activity is likely attributable to the extracts'  

					rich amino acid content, including aspartic acid, glycine, alanine,  

					leucine, tyrosine, lysine, and histidine.49 These amino acids may interact  

					with elastase, inhibiting its activity.  

					Inflammation is the body’s defensive response to stimuli and can be  

					classified as infectious or non-infectious.43 In some cases, inflammation  

					may be alleviated by anti-infective agents. This study investigates the  
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					potential of P. excavatus extracts as natural tyrosinase inhibitors,  

					though their activity is lower than that of Eisenia fetida extracts.  

					Figure 5: Effect of earthworm extract AC1:4 on the viability of RAW  

					264.7 macrophages before (A) and after (B) LPS-induced inflammatory  

					stimulation.  

					Glycine and alanine are known for their roles in protein stabilization  

					and enzymatic inhibition, while tyrosine and histidine may provide  

					antioxidant properties that indirectly contribute to enzyme  

					inhibition.50,51 Additionally, leucine’s hydrophobic interactions with  

					elastase could enhance inhibitory effects.52 Mechanistically, inhibition  

					may occur through direct binding to the enzyme’s active site or  

					allosteric modulation, preventing substrate access.26,49 Bioactive  

					peptides and secondary metabolites in the extracts could also amplify  

					these inhibitory effects.49 In conclusion, acetone extracts of P.  

					excavatus demonstrate significant anti-elastase activity, with AC1:4  

					outperforming AC1:2 in efficacy. Although less potent than EGCG, the  

					natural origin and non-cytotoxic properties of these extracts underscore  

					their potential as alternative elastase inhibitors.  

					Figure 7: Anti-elastase activity of earthworm extracts AC1:2 (A) and  

					AC1:4 (B), compared to positive control EGCG (C).  

					Figure 6: Inhibitory effect of earthworm extracts AC1:2 (A) and AC1:4  

					(B) on nitric oxide production in LPS-stimulated RAW 264.7  

					macrophages.  

					Anti-tyrosinase activity of earthworm extracts  

					Tyrosinase is a key enzyme in melanin biosynthesis, and its inhibitors  

					hold potential applications in both the cosmetic and medical  

					industries.53 This study evaluated the tyrosinase inhibitory activity of  

					two acetone extracts of P. excavatus (AC1:2 and AC1:4) compared to  

					L-cysteine as the positive control. The AC1:2 extract exhibited  

					tyrosinase inhibitory activity with an IC50 value of 0.27 ± 0.014 mg/mL,  

					whereas AC1:4 demonstrated significantly stronger inhibition, with an  

					IC50 value of 0.12 ± 0.013 mg/mL (Figure 8). L-cysteine, the positive  

					control, achieved an IC50 of 0.10 ± 0.012 mg/mL. These results suggest  

					that AC1:4 possesses a higher tyrosinase inhibitory potential than  

					AC1:2 and approaches the efficacy of L-cysteine. When compared to  

					findings by Azmi et al.,26 where Eisenia fetida extracts achieved  

					80.12% inhibition at 0.25 mg/mL, the tyrosinase inhibitory activity of  

					P. excavatus extracts in this study was relatively lower. The higher  

					inhibition observed in Eisenia fetida extracts could reflect differences  

					in protein composition, enzyme cofactors, or specific active compounds  

					that may be absent or present in lower concentrations in P. excavatus.  

					The amino acids abundant in the protein-rich extracts of P. excavatus  

					are likely contributors to their tyrosinase inhibitory effects. Specific  

					amino acids, such as tyrosine, lysine, and histidine, may bind to the  

					copper ions within the tyrosinase active site, disrupting catalytic  

					activity.54,55 Other amino acids, such as glycine and alanine, might act  

					as competitive inhibitors or stabilize active compounds, while aspartic  

					acid and leucine could enhance structural interactions between the  

					extract and the enzyme, further improving inhibition.54,55 The tyrosinase  

					inhibitory mechanism of P. excavatus extracts likely involves copper  

					ion chelation, competitive inhibition at the substrate-binding site, or  

					allosteric modulation.26,53 The combined effects of amino acid  

					composition, peptides, and other bioactive molecules contribute  

					synergistically to inhibition.54 In summary, the findings highlight the  

					Figure 8: Anti-tyrosinase activity of earthworm extracts AC1:2 (A) and  

					AC1:4 (B), compared to positive control L-cysteine (C).  

					Anti-MMP-1 activity of earthworm extracts  

					MMP-1 is a critical enzyme involved in collagen degradation within the  

					extracellular matrix, and its overexpression is associated with skin  

					aging and inflammatory conditions.56 This study investigated the MMP-  

					1 inhibitory activity of acetone extracts from P. excavatus. Extracts  

					AC1:2 and AC1:4, prepared using different solvent-to-sample ratios,  

					were tested at concentrations ranging from 1 to 9 mg/mL. The IC50  

					values for AC1:2 and AC1:4 were 5.877 ± 0.222 mg/mL and 4.885 ±  

					0.228 mg/mL, respectively, indicating stronger inhibition by AC1:4  

					(Figure 9). In comparison, the positive control EGCG demonstrated an  

					IC50 of 0.620 ± 0.042 mg/mL.  

					The MMP-1 inhibitory activity of P. excavatus extracts surpassed that  

					of Eisenia fetida, Lumbricus rubellus, and Eudrilus eugeniae, as  

					reported by Azmi et al.,26 with inhibition rates of 75.47%, 72.9%, and  

					81.42% at 10 mg/mL, respectively. The superior activity observed in P.  

					excavatus extracts may be attributed to their rich protein content and the  

					presence of bioactive amino acids such as aspartic acid, glycine,  

					alanine, leucine, tyrosine, lysine, and histidine. Aspartic acid and  

					glycine, for instance, are known to influence collagen synthesis and  

					stability, while tyrosine and lysine, with their functional side chains,  

					may interact directly with the MMP-1 active site or modify its  

					conformation to reduce activity.57–59 Histidine, with its metal-  

					coordination properties, could disrupt the zinc-dependent catalytic  

					mechanism of MMP-1, further enhancing inhibition.60  
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