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					ABSTRACT  

					ARTICLE INFO  

					Atherosclerosis is the narrowing of blood vessels due to fatty plaque buildup in the intimal layer.  

					Preventing atherosclerosis is a promising treatment avenue. Research shows that ginger (Zingiber  

					officinale), particularly its active compounds 6-gingerol and 6-shogaol, can lower total cholesterol  

					and LDL (low-density lipoprotein) levels, although the mechanisms remain unclear. The  

					Comparative Toxigenomics Database was used to identify genes interacting with 6-gingerol and  

					6-shogaol, followed by enrichment analysis via ShinyGO and mapping onto KEGG pathways to  

					identify upstream protein regulators. Docking studies were conducted using AutoDock 4.2, with  

					visualization in Discovery Studio. Five proteins emerged as potential targets: PPAR-γ  

					(peroxisome proliferator-activated receptor gamma), PPAR-δ (peroxisome proliferator-activated  

					receptor delta), LOX-1 (lectin-like oxidized low-density lipoprotein receptor 1), ACAT1 (acetyl-  

					CoA acetyltransferase 1), and PI3K (phosphoinositide 3-kinase gamma). 6-gingerol and 6-shogaol  

					inhibited PI3K, PPAR-δ, and LOX-1 similarly to their co-crystallized ligands. However, the  

					docking protocols could not account for LOX-1 tetramerization or ACAT1 steric hindrance,  

					highlighting the need for further investigation into these interactions. Regarding PPAR-γ, the  

					compounds did not show compatible interaction patterns, making it an unlikely target. The  

					experiment provides insight into how 6-gingerol and 6-shogaol may affect lipid metabolism and  

					atherosclerosis, mainly interacting with PI3K, PPAR-δ, and LOX-1. No supporting evidence was  

					found for their interaction with the other tested proteins.  
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					Over time, this process results in necrotic core formation and a  

					vulnerable fibrous cap, increasing the risk of thrombosis.9–11 Current  

					Introduction  

					pharmacological treatments primarily target hypertension and high  

					cholesterol using antihypertensives and statins. Emerging approaches  

					include targeting inflammatory processes and foam cell formation,  

					which are critical in atherosclerosis progression. Ginger (Zingiber  

					officinale) is a widely recognized medicinal plant13,14 with documented  

					benefits in traditional medicine systems such as Chinese and  

					Ayurveda.15 Global interest in ginger has grown significantly over the  

					past two decades, reflected in increasing production and consumption.16  

					Ginger exhibits anti-inflammatory, antioxidant, and cardiovascular  

					protective properties. Its active compounds, 6-gingerol and 6-shogaol,  

					demonstrate antihypertensive, anti-inflammatory, and anti-  

					atherosclerotic effects. For instance, 6-shogaol reduces shear stress on  

					endothelial cells and inhibits arterial calcification through Akt/ROS and  

					NLRP3 inflammasome pathways, while both compounds downregulate  

					pro-inflammatory cytokines like IL-1β, NF-κB, and TNF-α.20–23  

					However, the exact proteins or pathways influenced by 6-gingerol and  

					6-shogaol remain unknown. Network pharmacology offers a promising  

					approach to drug discovery, moving beyond the traditional "one drug-  

					one target-one disease" model. This method maps complex drug-  

					disease interactions, enabling the exploration of multiple targets  

					simultaneously.24 Networks reflect the complex signaling pathways  

					associated with specific diseases and allow a thorough exploration of  

					multiple targets during drug discovery. Network pharmacology has  

					successfully investigated 6-gingerol and 6-shogaol for anti-obesity,25  

					anti-tumor,26 and anti-emetic effects,27 with findings highlighting the  

					PI3K/Akt pathway as a key mechanism. However, the effects of  

					ginger’s bioactive compounds on pathways involved in atherogenesis  

					remain unclear. This study aims to evaluate the inhibitory potential of  

					6-gingerol and 6-shogaol from ginger (Zingiber officinale) on  

					atherogenesis by identifying gene interactions and pathways using  

					network pharmacology and assessing their binding affinity to key  

					Atherosclerosis is defined as narrowing blood vessels caused  

					by the buildup of fatty plaque, fibrosis, and calcification in the intimal  

					layer.1,2 It is influenced by factors such as genetics, obesity,  

					dyslipidemia, hypertension, smoking, and chronic inflammation.3,4  

					While initially asymptomatic, atherosclerosis progresses to atheroma,  

					which can rupture, causing thrombosis and significant morbidity.  

					Prevalence begins early, affecting up to 17% of individuals under 20  

					years and increasing to 85% in those over 50.5 Atherosclerosis remains  

					a leading cause of vascular disease worldwide, with an increasing  

					incidence over the last decade.6,7 Key contributors to atherogenesis  

					include high LDL (low-density lipoprotein) levels and endothelial  

					dysfunction, often linked to hypertension, smoking, and diabetes.8–10  

					Dysfunctional endothelium facilitates LDL accumulation in the arterial  

					intima, where it oxidizes into oxLDL (oxidized low-density  

					lipoprotein).11 OxLDL attracts macrophages, forming foam cells that  

					secrete cytokines, promoting inflammation and fibrous cap formation  

					(Figure 1).1,12  
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					atherosclerosis-related proteins through molecular docking. The  

					novelty of this research lies in its use of network pharmacology  

					combined with molecular docking to identify and explore the specific  

					interactions of 6-gingerol and 6-shogaol with multiple molecular targets  

					involved in atherogenesis, highlighting their potential therapeutic  

					effects in cardiovascular disease.  

					= phosphoinositide 3-kinase gamma; Akt = protein kinase B; PPAR-γ  

					= peroxisome proliferator-activated receptor gamma; PPAR-δ =  

					peroxisome proliferator-activated receptor delta; ABCA1 = ATP  

					binding cassette transporter A1)  

					Ligand Preparation  

					Coordinate files for 6-gingerol (CID 442793) and 6-shogaol (CID  

					5281794)  

					were  

					obtained  

					from  

					PubChem31  

					Materials and Methods  

					(https://pubchem.ncbi.nlm.nih.gov/) in *.sdf format and were converted  

					to *.pdb format using the Online SMILES Translator  

					(https://cactus.nci.nih.gov/translate/). PDBQT files for docking were  

					prepared in AutoDock 4.232,33 following the protocol by Forli et al. 34  

					Identification of Interacting Genes and Enrichment Analysis  

					Potential gene targets of 6-gingerol and 6-shogaol were identified using  

					the Comparative Toxigenomics Database (https://ctdbase.org/) for  

					28  

					interacting genes. Duplicate gene entries were merged before  

					Receptor Preparation, Docking, and Visualization  

					enrichment  

					analysis  

					using  

					ShinyGO  

					(http://bioinformatics.sdstate.edu/go/).29 KEGG pathway30 mapping  

					was performed to identify upstream protein regulators for molecular  

					docking.  

					Crystal structures for PPAR-γ (peroxisome proliferator-activated  

					receptor gamma) (5YCN), PPAR-δ (peroxisome proliferator-activated  

					receptor delta) (7WGL), LOX-1 (lectin-like oxidized low-density  

					lipoprotein receptor 1) (6TL9), ACAT1 (lectin-like oxidized low-  

					density lipoprotein receptor 1) (6VUM), and PI3K (phosphoinositide 3-  

					kinase gamma) (5JHB) were retrieved from the RCSB Protein Data  

					Bank35 (https://www.rcsb.org/). Water, ligands, ions, and solvent  

					molecules were removed using Discovery Studio,36 except oleic acid  

					and coenzyme A, retained in ACAT1 for their functional relevance.37  

					Co-crystallized ligands served as positive controls and validated the  

					docking protocol (RMSD < 2 Å). Docking was performed in AutoDock  

					4.2 per Forli et al.34 Docking results were visualized using Discovery  

					Studio,36 displaying 2D diagrams of protein-ligand interactions.  

					Binding energy, inhibition constants, and ligand efficiency were  

					reported.  

					Results and Discussion  

					The search in the Comparative Toxigenomics Database yielded 236 and  

					183 entries for Gingerol and shogaol, respectively (Supplementary  

					Table 1). After merging duplicate entries, identified 86 and 56 genes  

					were identified for enrichment analysis using ShinyGO. Both  

					compounds were significantly enriched for the lipid and atherosclerosis  

					pathway,38 which is the focus of this research (Figure 2). Detailed  

					enrichment results with enriched genes involved in the lipid and  

					atherosclerosis pathway are provided in Supplementary Table 2. The  

					top 10 significant pathways, ranked by the false discovery rate, are  

					presented (Figure 2A, 2B). Gingerol’s interacting genes were notably  

					enriched for pathways in cancer, which may present future research  

					opportunities, but lipid and atherosclerosis ranked fifth with a moderate  

					~30-fold enrichment. In contrast, shogaol’s genes showed the highest  

					enrichment for lipid and atherosclerosis, with up to ~40-fold  

					enrichment. These findings highlight Gingerol and shogaol as potential  

					modulators of lipid and atherosclerosis processes.  

					Figure 1: Regulation of Foam Cell Formation: Cholesterol and  

					oxLDL Transport in Foam Cells  

					LOX-1 uptakes oxLDL into the foam cell. PPAR-γ and PPAR-δ  

					upregulate ABCA1 expression on foam cell that causes cholesterol  

					efflux. Esterification of cholesterol by ACAT1 leads to lipid droplet  

					accumulation. PI3K/Akt pathway exerts various pathways such as lipid  

					droplet accumulation, reduction of lipid transporter, and increased pro-  

					inflammatory cytokines (not shown in the figure). Figure adapted from  

					Wang et al.10 (LDL = low-density lipoprotein; oxLDL = oxidized low-  

					density lipoprotein; LOX-1  

					=

					lectin-like oxidized low-density  

					lipoprotein receptor 1; ACAT1 = acetyl-CoA acetyltransferase 1; PI3K  

					Table 1: Validation Results of the Docking Protocol Used in this Experiment  

					Estimated Free  

					Energy of Binding  

					(kcal/mol)  

					-7.49  

					Protein  

					Ligand  

					Ligand Efficiency  

					Reference RMSD  

					PI3K  

					PIKin3  

					-0.24  

					-0.29  

					-0.40  

					-0.34  

					-0.32  

					1.281 Å  

					0.559 Å  

					0.683 Å  

					1.080 Å  

					1.390 Å  

					PPAR-γ  

					LOX-1  

					ACAT1  

					PPAR-δ  

					Lobeglitazone  

					BI-0115  

					-9.78  

					-7.90  

					Nevanimibe  

					Bezafibrate  

					-10.66  

					-7.90  

					PI3K: phosphoinositide 3-kinase gamma; PPAR-γ: peroxisome proliferator-activated receptor gamma; LOX-1: lectin-like oxidized low-density  

					lipoprotein receptor 1; ACAT1 = acetyl-CoA acetyltransferase 1; PPAR-δ = peroxisome proliferator-activated receptor delta; RMSD = Root Mean Square  

					Deviation.  
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					Figure 2: Gene Enrichment Results for Gingerol and Shogaol  

					A, B. Whole gene enrichment results for genes interacting with Gingerol and shogaol, respectively shown, are the enriched pathway sorted by the level  

					of fold enrichment. The Lipid and Atherosclerosis pathway is marked with a red underline. The lollipop plot is sorted according to the False Discovery  

					Rate (FDR). The color depicts the level of significance as measured by the FDR. The size of the dot reflects the number of genes in each pathway. C, D.  

					Genes involved in the Lipid and Atherosclerosis pathway for Gingerol and shogaol, respectively. The gene symbols with a short gene description are  

					shown.  

					Using ShinyGO, interacting genes of gingerol and shogaol were  

					mapped (Figure 2C, 2D) to the Lipid and Atherosclerosis pathway  

					(Figure 3). Key upstream proteins identified as potential targets  

					included LOX-1, PPAR-γ, and PI3K. Literature research also  

					highlighted ACAT1 and PPAR-δ as additional targets related to  

					cholesterol efflux. These pathways suggest a multifaceted mechanism  

					for preventing foam cell formation, which was further explored through  

					docking experiments. The docking protocol was validated by re-  

					docking co-crystallized ligands with the respective receptors.  

					Figure 3: Modified KEGG Pathway of Lipid and Atherosclerosis  

					This figure showed a snippet of the Lipid and Atherosclerosis KEGG pathway 38 redrawn with permission, focusing on the components with genes  

					interacting with either Gingerol or shogaol. Purple box: interacting genes of both Gingerol and shogaol. Blue box: interacting genes of shogaol. Dashed  

					lines: indirect or unknown interaction. Solid lines: direct molecular interaction. Dashed boxes: cellular function or phenotype.  
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					A standard grid box size of 40x40x40 Å and a resolution of 0.375 Å  

					were used and the protocol achieved RMSD values < 2 Å for all proteins  

					(Table 1). Validated parameters were then applied to dock 6-gingerol  

					and 6-shogaol with the identified receptors. For all target proteins  

					except PI3K, the binding energy of 6-gingerol and 6-shogaol was lower  

					than that of their respective co-crystallized ligands (Table 2). Notably,  

					both compounds demonstrated binding energy comparable to the PI3K  

					inhibitor (PIKin3, the co-crystallized ligand of PI3K). Predicted binding  

					energies for all protein targets were < -6 kcal/mol, a widely accepted  

					threshold for drug candidate screening.39 To further evaluate these  

					interactions, compared the amino acid residues involved in binding  

					between the ligands and their respective co-crystallized ligands were  

					compared. Particular attention was given to crucial residues identified  

					as significant for binding energy or interaction stabilization.40 These  

					key residues were determined from the original structural studies of the  

					crystallized proteins. This comparison provides insights into how 6-  

					gingerol and 6-shogaol interact with their target proteins and highlights  

					their potential as drug development candidates. Detailed interaction  

					data are provided in Supplementary Table 3.  

					Table 2: Molecular Docking Results of 6-Gingerol and 6-Shogaol  

					Estimated Free Energy of Binding (kcal/mol) Estimated Inhibition Constant, Ki (μM)  

					Ligand Efficiency  

					Protein  

					6-Gingerol  

					-7.43  

					6-Shogaol  

					-7.14  

					6-Gingerol  

					3.59  

					6-Shogaol  

					5.82  

					6-Gingerol  

					-0.35  

					6-Shogaol  

					PI3K  

					-0.36  

					-0.34  

					-0.35  

					-0.33  

					-0.35  

					PPAR-γ  

					LOX-1  

					ACAT1  

					PPAR-δ  

					-6.82  

					-6.73  

					10.07  

					11.68  

					7.91  

					-0.28  

					-6.56  

					-6.96  

					15.62  

					-0.31  

					-6.39  

					-6.62  

					20.79  

					14.06  

					6.57  

					-0.30  

					-6.77  

					-7.07  

					13.49  

					-0.32  

					PI3K: phosphoinositide 3-kinase gamma; PPAR-γ: peroxisome proliferator-activated receptor gamma; LOX-1: lectin-like oxidized low-density  

					lipoprotein receptor 1; ACAT1 = acetyl-CoA acetyltransferase 1; PPAR-δ = peroxisome proliferator-activated receptor delta  

					Interaction of 6-Gingerol and 6-Shogaol with PI3K  

					for BI-0115, -6.56 kcal/mol for 6-gingerol, and -6.96 kcal/mol for 6-  

					shogaol) suggest comparable interactions. However, BI-0115 uniquely  

					induces LOX-1 tetramerization,45 inhibiting oxLDL binding—a  

					mechanism not predictable through docking alone. While 6-gingerol  

					and 6-shogaol show potential as LOX-1 inhibitors, further  

					experimentation and lead optimization are required to confirm their  

					efficacy and clarify their inhibitory mechanisms.  

					Previous studies have analyzed the interaction of 6-gingerol and 6-  

					shogaol with PI3K using similar approaches but for different  

					purposes.25–27 The interaction of these compounds with PI3K has been  

					well-documented. This study further compares their interaction with  

					crucial amino acids in PI3K. The 2D visualization reveals eight  

					hydrophobic interactions for 6-gingerol and 13 hydrophobic  

					interactions for 6-shogaol (Figure 4B-C). Hydrophobic interactions  

					account for over 50% of bonds in high-efficiency ligands41,42 and  

					contribute to the comparable binding energy of these ligands with  

					PIKin3, a potent PI3K inhibitor.43 The 2D visualizations also showed  

					that 6-gingerol interacts with Asp836, Asp841, Tyr867, Val882, and  

					Asp964 through van der Waals forces, hydrogen bonds, π-π T-shaped,  

					and alkyl/π-alkyl interactions. In contrast, 6-shogaol interacts with all  

					these residues except Asp836 and exhibits more hydrophobic  

					interactions, suggesting it may bind PI3K more effectively than 6-  

					gingerol. Along the carbon chains of both ligands, van der Waals  

					interactions further stabilize binding. Despite these findings, the  

					interaction with Asn951, which requires water molecules, could not be  

					simulated using molecular docking.43  

					Predicted Interaction of 6-Gingerol and 6-Shogaol with PPAR-γ  

					Lobeglitazone interacts with PPAR-γ through key residues Ile249,  

					Leu255, Arg280, Ile281, Ile341, and Met348 and effectively inhibits  

					Cdk5-mediated phosphorylation at Ser245, enhancing its efficacy  

					compared to rosiglitazone.46 In contrast, 6-gingerol binds only to Ile341  

					via π-σ and alkyl/π-alkyl, while 6-shogaol interacts with Ile341 and  

					Met348 via van der Waals forces (Figure 5B–C). These differences in  

					interaction patterns were reflected in the lower binding energies of 6-  

					gingerol (-6.82 kcal/mol) and 6-shogaol (-6.73 kcal/mol) compared to  

					lobeglitazone (-9.78 kcal/mol). Consequently, these findings suggest  

					that 6-gingerol and 6-shogaol are less effective than lobeglitazone in  

					targeting PPAR-γ.  

					Predicted Interaction of 6-Gingerol and 6-Shogaol with PPAR-δ  

					The 2D interaction analysis revealed eight hydrophobic interactions  

					between 6-gingerol and PPAR-δ and 13 interactions between 6-shogaol  

					and PPAR-δ (Figure 4E–F). Both ligands interacted with the crucial  

					residues Thr253, His287, His413, and Tyr417, previously identified as  

					key for bezafibrate binding,44 through van der Waals forces, hydrogen  

					bonds, and alkyl/π-alkyl interactions. The evenly distributed van der  

					Waals interactions likely enhance anchoring to the active site. The  

					similar binding energies (-7.90 kcal/mol for bezafibrate, -6.77 kcal/mol  

					for 6-gingerol, and -7.07 kcal/mol for 6-shogaol) further support their  

					potential as PPAR-δ ligands. These findings suggest that 6-gingerol and  

					6-shogaol could interact effectively with PPAR-δ, warranting further  

					lead optimization and experimental validation.  

					Predicted Interaction of 6-Gingerol and 6-Shogaol with ACAT1  

					Nevanimibe interacts with ACAT1 through key residues, including  

					Phe254, Phe258, Phe384, Tyr417, Asn421, and Val424, and inhibits the  

					catalytic residue His460 by steric hindrance, blocking substrate  

					binding.47 Additional residues, such as Phe382, Trp408, Arg418, and  

					Ser456, also contribute to ACAT1 activity, as point mutation  

					experiments show.47 The 2D visualizations showed that 6-gingerol  

					forms seven hydrophobic interactions and three hydrogen bonds with  

					ACAT1, while 6-shogaol forms six hydrophobic interactions and three  

					hydrogen bonds (Figure 5E–F). Both ligands interacted with Phe384,  

					Tyr417, Asn421, and Val424 via van der Waals and alkyl/π-alkyl  

					interactions. Additionally, 6-gingerol interacted with Phe254 and  

					Phe258 through alkyl/π-alkyl interactions, Ser456 via van der Waals,  

					and His460 via a carbon-hydrogen bond, suggesting better potential to  

					inhibit ACAT1 than 6-shogaol. However, the interaction configurations  

					of both ligands do not support strong binding to the active site, with  

					binding energies up to 3 kcal/mol weaker than Nevanimibe. These  

					results suggest that neither 6-gingerol nor 6-shogaol effectively inhibits  

					ACAT1.  

					Predicted Interaction of 6-Gingerol and 6-Shogaol with LOX-1  

					The 2D visualization showed that 6-gingerol forms six hydrophobic  

					interactions with LOX-1, while 6-shogaol forms 11 hydrophobic  

					interactions (Figure 4H–I). Key residues Pro201, Trp203, Tyr245,  

					Leu258, Ala259, and Ala260 interact with 6-gingerol via van der Waals  

					and hydrogen bonds, and with 6-shogaol via van der Waals and alkyl/π-  

					alkyl interactions. These residues also interact with BI-0115, the co-  

					crystallized ligand of LOX-1.45 The binding energies (-7.90 kcal/mol  
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					Figure 4: Protein-ligand interaction profiles of 6-gingerol and 6-shogaol with PI3K, PPAR-, and LOX-1  

					Panels A–C depict the molecular docking interactions between the co-crystallized ligand (PIKin3), 6-gingerol, and 6-shogaol, respectively, with PI3K.  

					Panels D-F depict the interaction between Bezafibrate, 6-gingerol, and 6-shogaol, respectively, with PPAR-. Panels G-I depict the interaction between  

					the co-crystallized ligand (BI-0115), 6-gingerol, and 6-shogaol, respectively, with LOX-1. Key interaction types are highlighted, including hydrogen  

					bonds, van der Waals forces, and hydrophobic interactions, illustrating binding affinities and potential inhibitory effects on pathways involved in  

					atherogenesis. Note that many similar interactions are shared between the co-crystallized ligands and 6-gingerol and 6-shogaol. These reflect the potential  

					of both ligands to modulate lipid metabolism and inflammation via PI3K, PPAR-, and LOX-1.  

					6-Gingerol and 6-Shogaol’s Predicted Potency in Inhibiting  

					Atherogenesis  

					binding. Notably, 6-shogaol demonstrated inhibitory effects on LOX-1  

					activity in HUVEC cells53, though no similar studies exist for 6-  

					gingerol. Further lead optimization may uncover their therapeutic  

					potential. PPAR-δ showed comparable binding energy and amino acid  

					interactions between the ligands and the co-crystallized ligand,  

					suggesting activation potential. Previous studies reported that 6-  

					gingerol and 6-shogaol increase PPAR-δ expression and exert anti-  

					obesity effects,54 potentially amplifying their efficacy. Conversely, 6-  

					gingerol and 6-shogaol were less likely to bind ACAT1 effectively, with  

					binding energies inferior to Nevanimibe. However, 6-gingerol’s  

					carbon-hydrogen bond with His460 suggests a possible inhibitory  

					advantage.47(p1) Similarly, neither compound demonstrated strong  

					binding to PPAR-γ, although prior studies reported 6-shogaol’s ability  

					to activate PPAR-γ in microglia, potentially via alternate mechanisms.55  

					In summary, PI3K, LOX-1, and PPAR-δ emerge as primary targets  

					mediating the effects of 6-gingerol and 6-shogaol on atherosclerosis.  

					These compounds could potentially influence multiple proteins,  

					deviating from the traditional single-target drug model. While  

					molecular docking has limitations, including its inability to account for  

					protein flexibility,56 water-mediated interactions,57 or tetramerization  

					effects. These findings highlight the therapeutic promise of these  

					The experiment explores the possible mechanisms of preventing the  

					progression of atherogenesis, as reported through several in vivo, in  

					vitro, and randomized trials. Three main proteins were promising  

					targets of 6-gingerol and 6-shogaol: PI3K, LOX-1, and PPAR-δ.  

					Experimental studies and the results supported several of these proteins  

					further identified that these proteins may be critical targets mediating  

					the effects of 6-This study explored the mechanisms by which 6-  

					gingerol and 6-shogaol may prevent atherogenesis, identifying PI3K,  

					LOX-1, and PPAR-δ as key targets. These findings align with prior  

					research demonstrating the compounds’ inhibitory effects on PI3K-  

					related pathways, such as the PI3K/Akt/mTOR pathway in human  

					48  

					umbilical vein endothelial cell (HUVEC) cells and the PI3K/Akt  

					pathway in RAW 264.7 cells.18 While PI3K inhibition has dual  

					effects—reducing inflammation and lipid accumulation but potentially  

					destabilizing plaques through foam cell apoptosis—early intervention  

					may outweigh these risks.48–52  

					LOX-1 interaction with both compounds was supported by their ability  

					to bind crucial residues similar to BI-0115. However, molecular  

					docking cannot simulate LOX-1 tetramerization, which inhibits oxLDL  
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					compounds for further lead optimization. Experimental validation in  

					vitro and in vivo is necessary to confirm these results and advance their  

					application in multi-target therapeutics.  

					Figure 5: Protein-ligand interaction profiles of 6-gingerol and 6-shogaol with PPAR-γ and ACAT-1  

					Panels A-C depict the interaction between lobeglitazone, 6-gingerol, and 6-shogaol, respectively, with PPAR-. Panels D-F depict the interaction between  

					Nevanimibe, 6-gingerol, and 6-shogaol, respectively, with ACAT1. Visualization was done through Discovery Studio. Key interaction types are  

					highlighted, including hydrogen bonds, van der Waals forces, and hydrophobic interactions, illustrating binding affinities and potential inhibitory effects  

					on pathways involved in atherogenesis. Note the limited binding interactions of both 6-gingerol and 6-shogaol with PPAR-γ and ACAT1 in contrast to  

					those in Figure 4.  

					Conclusion  

					Acknowledgment  

					This study provides insights into the anti-atherosclerotic mechanisms of  

					6-gingerol and 6-shogaol, highlighting their interactions with key  

					proteins in the lipid and atherosclerosis pathway through network  

					pharmacology and molecular docking. Both compounds demonstrated  

					notable binding energy with PI3K, PPAR-δ, and LOX-1, supporting  

					their potential as modulators of atherogenesis. However, no significant  

					interactions were observed with PPAR-γ and ACAT1. These findings  

					suggest the potential of 6-gingerol and 6-shogaol for further lead  

					optimization and drug development targeting atherosclerosis. Future  

					research should combine molecular dynamics simulations, in vitro  

					assays, and multi-omics data with network pharmacology to validate  

					the effects and identify new targets of 6-gingerol and 6-shogaol in  

					developing natural product-based therapeutics for atherosclerosis.  

					The authors thanked Maranatha Christian University for supporting the  
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