Tropical Journal of Natural Product Research

Available online at https://www.tjnpr.org

Original Research Article

Bibliometric Analysis of Medicinal Plants from Brunei Darussalam: Uncovering Novel Anticancer Targets

Marcellino Rudyanto^{1,2,*}, Tri Widiandani¹, Hadi Poerwono¹, Mohammad Rizki Fadhil Pratama^{3,4}

¹ Department of Pharmaceutical Sciences, Faculty of Pharmacy, Universitas Airlangga, Surabaya 60115, Indonesia.

² Institute of Tropical Disease, Universitas Airlangga, Surabaya 60115, Indonesia.

³ Department of Pharmacy, Faculty of Health Sciences, Universitas Muhammadiyah Palangkaraya, Palangka Raya 73111, Indonesia.

⁴ Doctoral Program of Pharmaceutical Sciences, Universitas Airlangga, Surabaya 60115, Indonesia.

ARTICLE INFO

ABSTRACT

Article history: Received 21 November 2024 Revised 26 November 2024 Accepted 16 December 2024 Published online 01 March 2025

Copyright: © 2025 Rudyanto *et al.* This is an openaccess article distributed under the terms of the <u>Creative Commons</u> Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Brunei Darussalam boasts a rich biodiversity of medicinal plants, including species like *Piper betel*, *Piper sarmentosum*, *Piper crocatum*, and agarwood, which have demonstrated anticancer properties in previous studies. This bibliometric analysis aimed to explore research trends related to these plants and anticancer activity. A Scopus database search conducted on July 27th, 2024, yielded 210 relevant articles using the keywords "*Piper betel*" OR "*Piper sarmentosum*" OR "*Piper crocatum*" OR "Agarwood" AND "Cancer." VOSviewer was employed for data analysis and visualization. Results indicate a strong association between oral cancer and the four target plants, with agarwood being the second most frequently connected keyword. Notably, research collaboration between these two areas remains limited, suggesting a potential research gap. While East Asian researchers, particularly from Chung Shan Medical University in Taiwan, have been at the forefront of this field, the absence of research originating from Brunei Darussalam presents a significant opportunity for local investigation. Cancer Letters (Elsevier), which has published ten relevant articles, emerges as a potential target journal for future research in this domain. This bibliometric analysis provides valuable insights into research trends and potential plants.

Keywords: Agarwood, Brunei Darussalam, medicinal plants, Oral cancer.

Introduction

Brunei Darussalam, endowed with rich biodiversity, harbors a wealth of medicinal plants that have been integral to traditional healthcare practices for generations. These plants present a promising path for the identification of new medicinal compounds because they are ingrained in the ecological and cultural legacy of the nation. Traditional knowledge has long recognized the efficacy of these plants in addressing various ailments, especially for the indigenous people of Borneo Island in general and Brunei Darussalam in particular. However, scientific validation of their medicinal values remains largely untapped.1-3 Several medicinal plants grow in Brunei Darussalam whose properties have been studied quite a lot, including Piper betel, Piper sarmentosum, Piper crocatum, and Aquilaria malaccensis (agarwood). Some of these plants are known to have various therapeutic including properties, anticancer, antiproliferation, neuropharmacological, analgesic, antioxidant, antiulcerogenic, hepatoprotective, antifertility, antibacterial, antifungal, antiinflammatory, antineoplastic, antipyretic, anti-hyperglycemic, antiallergic, and many more.⁴⁻⁷ Among these various properties, one that is quite interesting is the efficacy of these medicinal plants as anticancer.

*Corresponding author. E mail: marcellino-r@ff.unair.ac.id Tel: +628155058893

Citation: Rudyanto M, Widiandani T, Poerwono H, Pratama MRF. Bibliometric Analysis of Medicinal Plants from Brunei Darussalam: Uncovering Novel Anticancer Targets. Trop J Nat Prod Res. 2025; 9(2): 585 – 612 <u>https://doi.org/10.26538/tjnpr/v9i2.23</u>

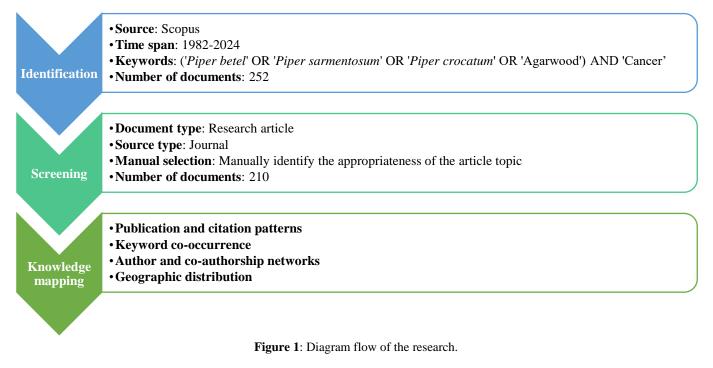
Official Journal of Natural Product Research Group, Faculty of Pharmacy, University of Benin, Benin City, Nigeria

Even with improvements in traditional therapies, cancer is still a major worldwide health concern. There is now more interest in investigating alternative therapeutic approaches due to the increasing prevalence and frequently crippling side effects of synthetic chemotherapeutics.8 Medicinal plants have become a promising field of study for cancer because of their abundance of bioactive chemicals. For ages, traditional medical systems have used these natural medicines to treat a variety of illnesses, including cancer.9 While the anticancer properties of certain Bruneian plants, such as P. betel, P. sarmentosum, P. crocatum, and agarwood, have garnered some research attention, a comprehensive understanding of the broader medicinal plant landscape and its anticancer potential remains limited. Bibliometrics is a quantitative research method that employs statistical and mathematical techniques to analyze academic publication patterns and trends within a specific research field. By examining citations, authorship, and other bibliographic data, bibliometric studies can assess the development and impact of research topics. As there are currently no bibliometric analysis reports on the potential of medicinal plants from Brunei Darussalam as anticancer, this study aims to assess existing research on these Bruneian medicinal plants in the context of cancer treatment. By mapping research trends, identifying knowledge gaps, and highlighting potential research avenues, this study seeks to contribute to the sustainable utilization of Brunei's plant resources and inform the development of evidence-based herbal medicines.

Materials and Methods

Materials

For visualizing the outcomes of our analysis, we employed VOSviewer 1.6.20, a software tool developed by the Center for Science and Technology Studies at Leiden University (https://www.vosviewer.com/). The data analyzed in this study was collected from the Scopus database (https://scopus.com/sources.uri?zone=TopNavBar&origin=searchbasic), a comprehensive, complete, and reliable citation database, on July


27th, 2024. It is important to acknowledge that access to Scopus in this research was facilitated by Universitas Airlangga, Surabaya, Indonesia.

Method

Preparation for data collection

The approach used was bibliometric analysis with the Scopus database. A single search was conducted with multiple keywords to identify relevant articles. Apart from analyzing keywords, articles, and journals, analysis was also carried out on the authors, institutions, and the

researchers' countries of origin. This bibliometric analysis provides an overview of research developments that have been reported for this scope and information about potential cooperation partners, including appropriate scientific journals to publish related research reports. This study adopted a method as reported by our previous researches.^{10,11} The collected data were analyzed according to the procedures outlined in Figure 1.

Determination of search keywords

To comprehensively identify relevant literature on the anticancer potential of *P. betel*, *P. sarmentosum*, *P. crocatum*, and agarwood, a two-level keyword search strategy was employed. A combination of keywords was used to target articles with these plant species as the subject and cancer as the therapeutic focus. The search string "TITLE-ABS-KEY ('*Piper betel*' OR '*Piper sarmentosum*' OR '*Piper crocatum*' OR 'Agarwood') AND 'Cancer' was used to limit the search to articles where these keywords appeared in the title, abstract, or keyword list. This approach maximized the retrieval of relevant studies that directly addressed the anticancer properties of the target plant species.¹²

Initial search results

All search results for the specified keywords were included in the Scopus database without limitations. The complete content of these documents, excluding metadata, was accessed. A total of 252 documents were identified that contained the search terms in their titles, abstracts, or keywords.

Refinement of search results

The initial search yielded a broad dataset that was subsequently refined using several inclusion and exclusion criteria. While the Scopus database offers numerous search parameters (including access type, year of publication, author, subject area, document type, publication stage, source title, keywords, affiliation, funding sponsor, country, source type, and language), this study focused solely on journal articles to ensure a high level of evidence and avoid potential redundancy with book chapters and other tertiary sources.¹³ These search parameters resulted in a pool of 210 relevant research articles for further analysis.

Compile preliminary data statistics

Filtered data was exported in CSV format from the Scopus database, encompassing citations, bibliography, abstracts, keywords, funding details, and other relevant metadata. Bibliometric analysis and visualization were performed using VOSviewer 1.6.20 software. In line with our previous researches,^{10,11} the analysis focused on publication and citation patterns, keyword co-occurrence, author and co-authorship networks, and geographic distribution of research.

Results and Discussion

Publication and Citation Patterns

A total of 210 relevant documents were identified in the Scopus database, with publication dates ranging from 1982 to 2024. The peak publication year was 2010, with 18 articles published. While 14 of the 210 articles appeared in journals subsequently removed from the Scopus index, these articles were published prior to the delisting date and therefore included in the analysis. Table 1 provides a comprehensive overview of the search results.

Data collection and analysis were conducted at the journal and publisher level. A keyword search yielded 143 journals and 63 publishers publishing articles related to the specified keywords. The journals with the highest number of publications were Cancer Letters (Elsevier) with ten articles, PLoS ONE (Public Library of Science) with eight, and Mutation Research - Genetic Toxicology and Environmental Mutagenesis (Elsevier) with six. Elsevier was the most prolific publisher, contributing 66 articles across 32 journals. Despite other factors, publishing research in the Environmental Health Perspectives (Public Health Services, US Dept of Health and Human Services) tends to lead to a higher number of citations compared to other journals. This is supported by the fact that one article published in 2005 within this journal has already accumulated 662 citations.¹⁴ This number surpasses the combined citations of ten articles published in Cancer Letters between 1993 and 2006, which totaled 628 citations. Typically, a longer publication history correlates with a higher citation count.¹⁵ However, this trend was not observed in our analysis. Overall, there were 7035

citations of all articles related to these keywords. This highlights the potential for high-impact publications in this field. Complete data is presented in Table 2.

Keyword Co-Occurrence

In-depth keyword analysis revealed a complex network of research connections, as shown in Figure 2a. Of the 582 identified keywords, 'oral cancer' (n=25, link strength=105) and 'agarwood' (n=22, link strength=87) emerged as the most prominent terms. However, a notable absence of connections between these two keywords suggests a potential research gap.

A total of 33 keyword clusters were identified, with the largest cluster comprising 28 terms. Key terms within this cluster included 'betel',

'areca', 'p53', and 'mutation', all closely linked to 'oral cancer'. This suggests a focus on the role of *P. betel* and areca, particularly *Areca catechu*, in oral cancer development, potentially linked to p53 mutations.¹⁶ *Areca catechu* has been established as a carcinogen, while *P. betel*, often consumed together in betel quid, has been hypothesized to possess neutralizing effects on the carcinogenic properties of *A. catechu*.¹⁷⁻¹⁹ These findings underscore the need for further research to explore the potential synergistic effects of *P. betel* and *A. catechu* in oral cancer prevention or treatment. Additionally, investigating the underlying mechanisms, including the role of p53 mutations, is warranted to inform the development of targeted therapeutic strategies.²⁰

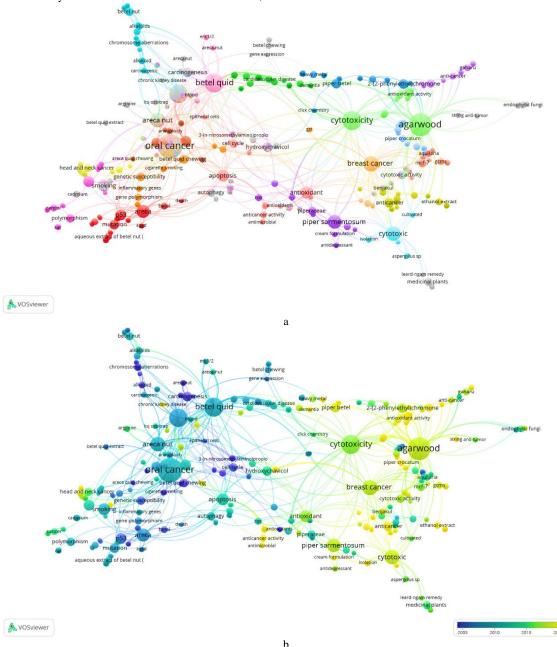


Figure 2. Network (a) and overlay (b) visualizations of the keywords "*Piper betel*" OR "*Piper sarmentosum*" OR "*Piper crocatum*" OR "Agarwood" AND "Cancer".

Another cluster analysis revealed a distinct grouping of 18 items centered around the keyword "agarwood" (Cluster 11). This cluster exhibited strong associations with terms such as "cytotoxicity," "cytotoxic," "breast cancer," and "2-(2-phenylethyl)chromone." It is evident that this cluster primarily focuses on the anticancer properties

of 2-(2-phenylethyl)chromone, a secondary metabolite derived from agarwood, with a particular emphasis on breast cancer research.^{21,22} Intriguingly, no direct connections were observed between this "agarwood" cluster and the previously identified "oral cancer" cluster. This lack of overlap suggests a potential research gap and highlights the need for further exploration into the anticancer properties of agarwood-

derived compounds against a broader spectrum of cancer types. In particular, investigating the efficacy of 2-(2-phenylethyl)chromone against oral cancer cells, especially those with p53 mutations, could be a promising avenue for future research. Additionally, exploring the synergistic effects of 2-(2-phenylethyl)chromone in combination with other chemotherapeutic agents could offer promising avenues for developing more effective cancer treatments. Furthermore, understanding the underlying molecular mechanisms of action of these compounds is crucial for optimizing their therapeutic potential.

As depicted in Figure 2b, research on agarwood (and to a lesser extent, *P. betel*) has consistently garnered interest, with publication rates remaining robust into the mid-2020s. In contrast, research on oral cancer, particularly in relation to p53 mutations, peaked in the early 2010s, with subsequent studies becoming less frequent. This contrasting trajectory between a mature research field (oral cancer) and an emerging one (agarwood) presents a promising opportunity to explore synergistic research avenues that could lead to significant advancements.²⁰ While research on oral cancer has been extensive,²³ the emerging interest in agarwood offers a unique opportunity to identify novel therapeutic targets and develop innovative treatment strategies. Future studies could focus on elucidating the precise mechanisms of action of agarwood compounds, optimizing their delivery systems, and investigating their potential to overcome drug resistance.

Author and Co-Authorship Networks

The study examined author and institutional data using the Scopus database. Due to inconsistencies in how institutions were recorded on Scopus, the analysis focuses on the entire university or institutional level, including specific departments, laboratories, or faculties. Instead of analyzing individual authors (which would limit each author to one contribution per article), the study looked at citation data for the entire document to provide a more comprehensive view of author impact.²⁴ Among the 1041 identified authors, Tsung Yun Liu from National Yang Ming Chiao Tung University, as well as Hao Fu Dai and Wen Li Mei from the Chinese Academy of Tropical Agricultural Sciences, were the most prolific with seven publications each. While Tsung Yun Liu's work garnered the highest citation count (357), Hao Fu Dai and Wen Li Mei exhibited the strongest collaboration networks with 56 links apiece.^{25,26}

Network analysis revealed eleven interconnected author clusters. The largest cluster comprised eleven authors led by Ping Ho Chen from Kaohsiung Medical University, with four publications in collaboration with researchers from various institutions, including Chung Shan Medical University (Figure 3a). However, this cluster's most recent publication dates back to the mid-2010s.²⁷ In contrast, the group led by Chia Tzu Chen from National Yang Ming Chiao Tung University represents the most recent research activity in this field which were published in the early 2020s (Figure 3b).²⁸

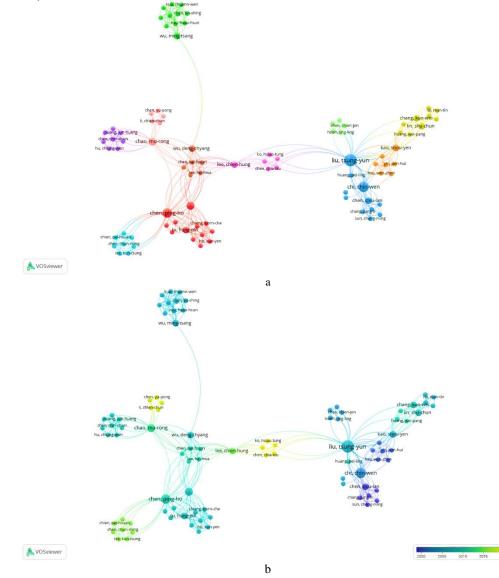


Figure 3. Network (a) and overlay (b) visualizations of authorship of the keywords "*Piper betel*" OR "*Piper sarmentosum*" OR "*Piper crocatum*" OR "Agarwood" AND "Cancer".

Analysis of author affiliations revealed that Chung Shan Medical University, specifically the Institute of Medicine, was the most prolific institution, contributing eight documents. Despite generating only 233 citations (Figure 4a), this institution exhibited the highest total link strength with 63 connections. This contrasts with the work of Ward *et al.*¹⁴ from the National Cancer Institute, which garnered 663 citations. The disparity in citation counts can be attributed to the publication

timeline.²⁹ While the work of Ward *et al.*¹⁴ dates back to the mid-2000s, allowing for greater citation accumulation, the research from Chung Shan Medical University primarily falls within the last decade (Figure 4b). Consequently, shorter publication timelines often correlate with lower citation rates, further compounded by journal impact factors.³⁰

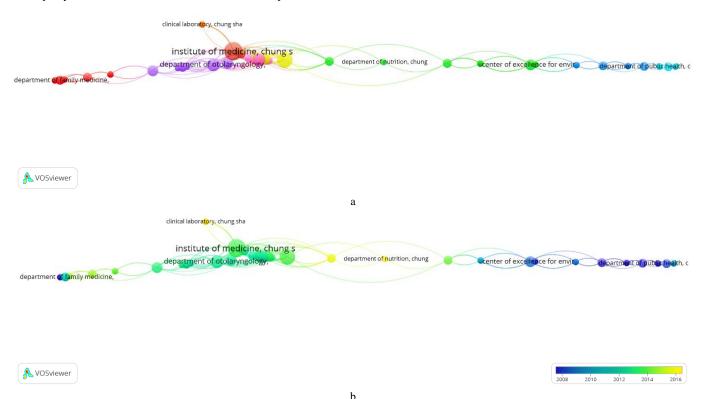


Figure 4. Network (a) and overlay (b) visualizations of institutions of the keywords "*Piper betel*" OR "*Piper sarmentosum*" OR "*Piper crocatum*" OR "Agarwood" AND "Cancer".

Geographic Distribution of Research

The analysis was extended to investigate the geographic distribution of research contributions. Among the 210 analyzed documents, authors from 35 countries were represented, often in collaborative efforts (Figure 5a). Taiwan emerged as the leading contributor, with 70 publications garnering 2649 citations. In contrast, researchers from the United States exhibited the strongest collaborative network, with 25 links to research institutions in ten other countries. Despite producing only 21 documents, this network generated a substantial 1758 citations. As demonstrated by Ward *et al.*,¹⁴ the largest cross-country collaboration involves researchers from the US, Netherlands, Canada, Denmark and Slovakia.

While Taiwan led in overall publication volume (followed by India with 52 documents), a surprising trend emerged regarding publication recency. Although Taiwan's research peaked in the mid-2010s, China demonstrated a more recent research surge, with a peak in the early 2020s (Figure 5b). This discrepancy is primarily attributed to the significant contributions of the Chinese Academy of Tropical Agricultural Sciences, which produced ten documents, eight within the past five years.³¹ This contrasts sharply with Taiwan's National Yang Ming Chiao Tung University,²⁸ which, despite having the highest overall publication count (70), demonstrated a lower proportion of recent publications (six within the past five years). Consequently, while Taiwan holds a historical advantage in this research field, China exhibits more recent and active research engagement. This dynamic highlight the evolving landscape of research on these medicinal plants

and underscores the importance of continuous monitoring for emerging trends. $^{\rm 32}$

A notable finding is the absence of research contributions from Brunei Darussalam, despite the endemic nature of the studied medicinal plants in the region and their traditional use by local populations.³³ This gap in research represents a significant opportunity for future investigations into the anticancer potential of these plants. The lack of involvement from Bruneian institutions highlights the need for increased research capacity and collaboration within the country. Establishing collaborations with researchers from other countries where these plants are also prevalent could be a strategic approach to accelerating research progress in this area.³⁴

The findings of this bibliometric analysis provide valuable insights into the current state of research on the anticancer potential of *P. betel*, *P. sarmentosum*, *P. crocatum*, and agarwood. While significant progress has been made, particularly in understanding the molecular mechanisms underlying their anticancer effects, there remains ample scope for further investigation. Future research should focus on exploring the synergistic effects of these plants in combination with conventional therapies, optimizing their formulations for improved bioavailability and therapeutic efficacy in human subjects. Additionally, the underrepresentation of research from Brunei Darussalam, despite the endemic nature of these plants, underscores the need for increased investment in local research infrastructure and collaborative efforts with international researchers to unlock the full potential of these medicinal plants.

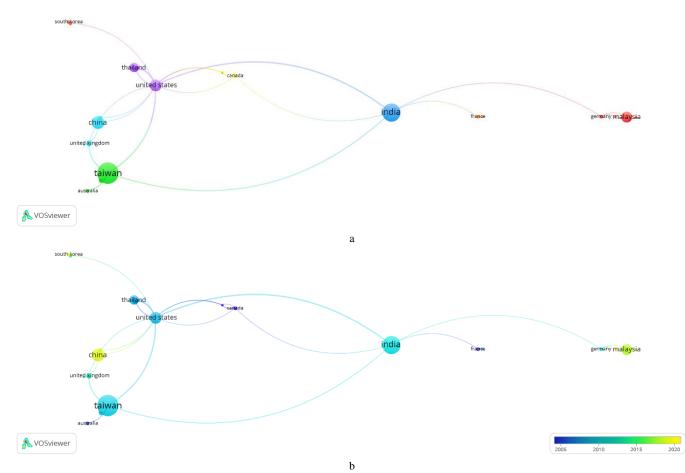


Figure 5. Network (a) and overlay (b) visualizations of countries of the keywords "*Piper betel*" OR "*Piper sarmentosum*" OR "*Piper crocatum*" OR "Agarwood" AND "Cancer".

Table 1. Articles on Scopus with the keywords "Piper betel" OR "Piper sarmentosum" OR "Piper crocatum" OR "Agarwood" AND
"Cancer". Articles in red indicate discontinued status in the Scopus database

	Delleretter					Number
No	Publication	Authors	Title	Journal	Publisher	of
	year					citations
1	2005	Ward et al.	Workgroup report: Drinking-water	Environmental Health	Public Health	662
			nitrate and health - Recent findings and	Perspectives	Services, US Dept of	
			research needs		Health and Human	
					Services	
2	1994	Hoffmann et al.	Tobacco-specific n-nitrosamines and	Journal of Toxicology	Taylor & Francis	311
			arecaderived n-nitrosamines: Chemistry,	and Environmental		
			biochemistry, carcinogenicity, and	Health		
			relevance to humans			
3	2006	Manosroi et al.	Anti-proliferative activity of essential	Cancer Letters	Elsevier	275
			oil extracted from Thai medicinal plants			
			on KB and P388 cell lines			
4	2010	Mahavorasirikul	Cytotoxic activity of Thai medicinal	BMC Complementary	Springer Nature	195
		et al.	plants against human	and Alternative		
			cholangiocarcinoma, laryngeal and	Medicine		
			hepatocarcinoma cells in vitro			

					, , ,	
5	2000	Merchant et al.	Paan without tobacco: An independent	International Journal of	John Wiley & Sons	172
			risk factor for oral cancer	Cancer		
6	2004	He et al.	Identification of tumor-associated	Proteomics	John Wiley & Sons	148
			proteins in oral tongue squamous cell			
			carcinoma by proteomics			
7	2015	Lee <i>et al</i> .	IL-1β promotes malignant	Journal of Cellular	John Wiley & Sons	147
			transformation and tumor	Physiology		
			aggressiveness in oral cancer			
8	2004	Chang <i>et al</i> .	The induction of prostaglandin E2	Journal of Biological	American Society for	119
			production, interleukin-6 production,	Chemistry	Biochemistry and	
			cell cycle arrest, and cytotoxicity in		Molecular Biology	
			primary oral keratinocytes and KB		Inc.	
			cancer cells by areca nut ingredients is			
			differentially regulated by MEK/ERK			
			activation			
9	2008	Tsai <i>et al</i> .	Arecoline, a major alkaloid of areca nut,	Toxicology	Elsevier	110
			inhibits p53, represses DNA repair, and			
			triggers DNA damage response in			
			human epithelial cells			
10	2006	Kietthubthew et	Polymorphism in DNA repair genes and	International Journal of	Elsevier	109
		al.	oral squamous cell carcinoma in	Hygiene and		
			Thailand	Environmental Health		
11	2008	Lin <i>et al</i> .	Betel nut chewing is associated with	American Journal of	Elsevier	94
			increased risk of cardiovascular disease	Clinical Nutrition		
			and all-cause mortality in Taiwanese			
			men			
12	1992	Rosin, M.P.	The use of the micronucleus test on	Mutation Research -	Elsevier	93
			exfoliated cells to identify anti-	Fundamental and		
			clastogenic action in humans: a	Molecular Mechanisms		
			biological marker for the efficacy of	of Mutagenesis		
10	2010	a	chemopreventive agents			01
13	2010	Zaveri et al.	Chemistry and pharmacology of Piper	International Journal of	Global Research	91
			longum L	Pharmaceutical Sciences	Online	
	2015			Review and Research		
14	2015	Joseph <i>et al</i> .	Human health risk assessment from	Science of the Total	Elsevier	88
15	2006	T *	arsenic exposures in Bangladesh	Environment		07
15	2006	Lin <i>et al</i> .	Functional polymorphism in NFKB1	Cancer Letters	Elsevier	87
			promoter is related to the risks of oral			
			squamous cell carcinoma occurring on			
16	2001	T , 1	older male areca (betel) chewers			01
16	2001	Lee <i>et al</i> .	Accumulation of mitochondrial DNA	Mutation Research -	Elsevier	81
			deletions in human oral tissues - Effects	Genetic Toxicology and		
			of betel quid chewing and oral cancer	Environmental		
17	2005		• • • · · · •	Mutagenesis		66
17	2006	Dasgupta <i>et al</i> .	Immunosuppression, hepatotoxicity and	Toxicology	Elsevier	80
			depression of antioxidant status by			
			arecoline in albino mice			

18	2009	Zainal Ariffin et	Intrinsic anticarcinogenic effects of	Cancer Cell	Springer Nature	75
		al.	Piper sarmentosum ethanolic extract on	International		
			a human hepatoma cell line			
19	2002	Chen et al.	Hydroxyl radical formation and	Journal of Toxicology	Taylor & Francis	73
			oxidative dna damage induced by areca	and Environmental		
			quid in vivo	Health - Part A		
20	2013	Talukdar <i>et al</i> .	Epigenetic, Genetic and Environmental	PLoS ONE	Public Library of	72
			Interactions in Esophageal Squamous		Science	
			Cell Carcinoma from Northeast India			
21	2011	Cui et al.	Antitumor and antimicrobial activities	Journal of Zhejiang	Zhejiang University	72
			of endophytic fungi from medicinal	University: Science B		
			parts of Aquilaria sinensis			
22	2018	Wang et al.	Agarwood essential oil ameliorates	International Journal of	Multidisciplinary	67
			restrain stress-induced anxiety and	Molecular Sciences	Digital Publishing	
			depression by inhibiting HPA axis		Institute (MDPI)	
			hyperactivity			
23	2010	Chattopadhyay	Genome-wide analysis of chromosomal	Mutation Research -	Elsevier	67
		et al.	alterations in patients with esophageal	Genetic Toxicology and		
			squamous cell carcinoma exposed to	Environmental		
			tobacco and betel quid from high-risk	Mutagenesis		
			area in India			
24	2010	Lu et al.	Areca nut extract induced oxidative	Autophagy	Taylor & Francis	66
			stress and upregulated hypoxia inducing			
			factor leading to autophagy in oral			
			cancer cells			
25	2014	Gundala et al.	Hydroxychavicol, a betel leaf	Toxicology and Applied	Elsevier	65
			component, inhibits prostate cancer	Pharmacology		
			through ROS-driven DNA damage and			
			apoptosis			
26	2007	Chiang <i>et al</i> .	Characterization of erecoline-induced	Toxicological Sciences	Oxford University	65
			effects on cytotoxicity in normal human		Press	
			gingival fibroblasts by global gene			
			expression profiling			
27	2002	Boonyaphiphat	Lifestyle habits and genetic	Cancer Letters	Elsevier	65
		et al.	susceptibility and the risk of esophageal			
20	2012		cancer in the Thai population	DI CONF		(2)
28	2012	Chu <i>et al</i> .	Impacts of microRNA gene	PLoS ONE	Public Library of	63
			polymorphisms on the susceptibility of		Science	
			environmental factors leading to			
20	2011	Vuon et -1	carcinogenesis in oral cancer	Science of the Total	Floorier	62
29	2011	Yuan <i>et al</i> .	Possible association between nickel and		Elsevier	63
			chromium and oral cancer: A case- control study in central Taiwan	Environment		
30	2006	Lai & Lee	Genetic damage in cultured human	Mutation Research -	Elsevier	62
50	2000	Lai & Lee	keratinocytes stressed by long-term	Fundamental and	LISCALO	02
			exposure to areca nut extracts	Molecular Mechanisms		
			exposure to areca nut extracts	of Mutagenesis		
				or mulagenesis		

31	2018	Wang <i>et al</i> .	CYP450-mediated mitochondrial ROS	Environmental	John Wiley & Sons	60
			production involved in arecoline N-	Toxicology		
			oxide-induced oxidative damage in liver			
			cell lines			
32	2009	Wu et al.	Impact of chewing betel-nut (Areca	Public Health Nutrition	Cambridge	58
			catechu) on liver cirrhosis and		University Press	
			hepatocellular carcinoma: A population-			
			based study from an area with a high			
			prevalence of hepatitis B and C			
			infections			
33	2006	Lee <i>et al</i> .	Prolonged exposure to arecoline arrested	Toxicology	Elsevier	57
			human KB epithelial cell growth:			
			Regulatory mechanisms of cell cycle			
24	2016	T *	and apoptosis			5.0
34	2016	Liao <i>et al</i> .	2-(2-Phenylethyl)chromone derivatives	Fitoterapia	Elsevier	56
			in artificial agarwood from Aquilaria sinensis			
35	2012	Lin et al.	Effects of NFKB1 and NFKBIA gene	PLoS ONE	Public Library of	55
00	2012		polymorphisms on susceptibility to	1205 0112	Science	
			environmental factors and the			
			clinicopathologic development of oral			
			cancer			
36	2001	Kietthubthew et	Genetic and environmental interactions	Environmental and	John Wiley & Sons	55
		al.	on oral cancer in Southern Thailand	Molecular Mutagenesis		
37	2004	Wu et al.	Clastogenic effect for cigarette smoking	Mutation Research -	Elsevier	52
			but not areca quid chewing as measured	Genetic Toxicology and		
			by micronuclei in exfoliated buccal	Environmental		
			mucosal cells	Mutagenesis		
38	2005	Katiyar <i>et al</i> .	p53 gene mutation and human	Cancer Letters	Elsevier	51
			papillomavirus (HPV) infection in			
			esophageal carcinoma from three			
			different endemic geographic regions of			
39	2006	Chang at al	India Betel nut chewing and other risk factors	International Journal of	Springer Nature	49
57	2000	Chang <i>et al</i> .	associated with obesity among	Obesity	Springer mature	47
			Taiwanese male adults	Cocony		
40	2004	Jeng et al.	Reactive oxygen species are crucial for	Cellular and Molecular	Springer Nature	49
	2001		hydroxychavicol toxicity toward KB	Life Sciences	FOst timulto	.,
			epithelial cells			
41	2016	Dahham et al.	In vivo toxicity and antitumor activity	BMC Complementary	Springer Nature	48
			of essential oils extract from agarwood	and Alternative		
			(Aquilaria crassna)	Medicine		
42	2003	Tan <i>et al</i> .	Novel heteroplasmic frameshift and	Genes Chromosomes	John Wiley & Sons	48
			missense somatic mitochondrial DNA	and Cancer		
			mutations in oral cancer of betel quid			

43	2013	Paranjpe et al.	Piper betel leaf extract: Anticancer benefits and bio-guided fractionation to	Carcinogenesis	Oxford University Press	47
			identify active principles for prostate cancer management			
44	2007	Cheng et al.	Carotenoids suppress proliferating cell nuclear antigen and cyclin D1	Journal of Nutritional Biochemistry	Elsevier	47
45	2004	Wu et al.	expression in oral carcinogenic models Influences of lifestyle habits and p53 codon 72 and p21 codon 31	Cancer Letters	Elsevier	47
			polymorphisms on gastric cancer risk in Taiwan			
46	2020	Hung et al.	Assessment of the risk of oral cancer incidence in a high-risk population and establishment of a predictive model for oral cancer incidence using a	International Journal of Environmental Research and Public Health	Multidisciplinary Digital Publishing Institute (MDPI)	46
47	2016	Li & Xing	population-based cohort in Taiwan Ethnobotanical study on medicinal plants used by local Hoklos people on Hainan Island, China	Journal of Ethnopharmacology	Elsevier	45
48	2010	Yadav <i>et al</i> .	Polymorphisms of glutathione-S- transferase genes and the risk of aerodigestive tract cancers in the northeast indian population	Genetic Testing and Molecular Biomarkers	Mary Ann Liebert	45
49	2007	Lo et al.	S100A8 is identified as a biomarker of HPV18-infected oral squamous cell carcinomas by suppression subtraction hybridization, clinical proteomics analysis, and immunohistochemistry	Journal of Proteome Research	American Chemical Society	45
50	2014	Hashim <i>et al</i> .	staining Screening of anticancer activity from agarwood essential oil	Pharmacognosy Research	Phcog.Net	44
51	2011	Pan <i>et al</i> .	Bioassay-guided isolation of constituents of Piper sarmentosum using a mitochondrial transmembrane potential assay	Journal of Natural Products	American Chemical Society	43
52	2007	Lan <i>et al</i> .	Areca nut chewing and mortality in an elderly cohort study	American Journal of Epidemiology	Oxford University Press	43
53	1999	Jeng et al.	Arecoline cytotoxicity on human oral mucosal fibroblasts related to cellular thiol and esterase activities	Food and Chemical Toxicology	Elsevier	42
54	2010	Kazi <i>et al</i> .	Interaction of cadmium and zinc in biological samples of smokers and chewing tobacco female mouth cancer patients	Journal of Hazardous Materials	Elsevier	41
55	2008	Yen <i>et al</i> .	A prospective community-population- registry-based cohort study of the association between betel-quid chewing	American Journal of Clinical Nutrition	Elsevier	40

			and cardiovascular disease in men in Taiwan (KCIS no. 19)			
56	2011	Ihsan <i>et al</i> .	Investigation on the role of p53 codon 72 polymorphism and interactions with tobacco, betel quid, and alcohol in susceptibility to cancers in a high-risk population from North East India	DNA and Cell Biology	Mary Ann Liebert	39
57	2005	Wu et al.	Effects of pH on nicotine-induced DNA damage and oxidative stress	Journal of Toxicology and Environmental Health - Part A	Taylor & Francis	38
58	2015	Franke <i>et al</i> .	Composition of betel specific chemicals in saliva during betel chewing for the identification of biomarkers	Food and Chemical Toxicology	Elsevier	37
59	2010	Huang et al.	Effects of Areca catechu L. containing procyanidins on cyclooxygenase-2 expression in vitro and in vivo	Food and Chemical Toxicology	Elsevier	37
60	1996	Lee-Chen et al.	Role of oxidative DNA damage in hydroxychavicol-induced genotoxicity	Mutagenesis	Oxford University Press	37
61	2014	Chen et al.	Identification of cucurbitacins and assembly of a draft genome for Aquilaria agallocha	BMC Genomics	Springer Nature	36
62	2013	Sarode & Sarode	Better grade of tumor differentiation of oral squamous cell carcinoma arising in background of oral submucous fibrosis	Medical Hypotheses	Elsevier	35
63	1996	Jin et al.	Studies on promoting activity of Taiwan betel quid ingredients in hamster buccal pouch carcinogenesis	European Journal of Cancer Part B: Oral Oncology	Elsevier	35
64	2015	Tseng et al.	Subclinical hypothyroidism is associated with increased risk for cancer mortality in adult taiwanese-A 10 years population- Based cohort	PLoS ONE	Public Library of Science	34
65	2015	Yang et al.	A systematic gene-gene and gene- environment interaction analysis of DNA repair genes XRCC1, XRCC2, XRCC3, XRCC4, and oral cancer risk	OMICS A Journal of Integrative Biology	Mary Ann Liebert	34
66	2007	Tovosia <i>et al</i> .	Prevalence and associated factors of betel quid use in the Solomon Islands: A hyperendemic area for oral and pharyngeal cancer	American Journal of Tropical Medicine and Hygiene	American Society of Tropical Medicine and Hygiene	34
67	2009	Wicaksono <i>et</i> al.	Antiproliferative effect of the methanol extract of Piper crocatum Ruiz & Pav leaves on human breast (T47D) cells in- vitro	Tropical Journal of Pharmaceutical Research	Pharmacotherapy Group	33
68	1999	Chatterjee & Deb	Genotoxic effect of arecoline given either by the peritoneal or oral route in murine bone marrow cells and the influence of N-acetylcysteine	Cancer Letters	Elsevier	32

69	2018	Hematpoor et	Phenylpropanoids isolated from Piper	Chemico-Biological	Elsevier	31
		al.	sarmentosum Roxb. induce apoptosis in	Interactions		
			breast cancer cells through reactive			
			oxygen species and mitochondrial-			
			dependent pathways			
70	2017	Li et al.	Piper sarmentosum Roxb. produces	Journal of	Elsevier	31
			antidepressant-like effects in rodents,	Ethnopharmacology		
			associated with activation of the CREB-			
			BDNF-ERK signaling pathway and			
			reversal of HPA axis hyperactivity			
71	2013	Chen et al.	High expression of interleukin 10 might	Clinica Chimica Acta	Elsevier	30
			predict poor prognosis in early stage			
			oral squamous cell carcinoma patients			
72	2010	Chiang et al.	Spatiotemporal trends in oral cancer	International Journal of	Multidisciplinary	30
			mortality and potential risks associated	Environmental Research	Digital Publishing	
			with heavy metal content in Taiwan soil	and Public Health	Institute (MDPI)	
73	1999	Saikia <i>et al</i> .	Arecoline-induced changes of poly-	Cancer Letters	Elsevier	30
			ADP-ribosylation of cellular proteins			
			and its influence on chromatin			
			organization			
74	2012	Chien et al.	Impacts of CA9 Gene Polymorphisms	PLoS ONE	Public Library of	29
			and Environmental Factors on Oral-		Science	
			Cancer Susceptibility and			
			Clinicopathologic Characteristics in			
			Taiwan			
75	2012	Javed et al.	Areca-nut chewing habit is a significant	Journal of Nutrition,	Elsevier	29
			risk factor for metabolic syndrome: A	Health and Aging		
			systematic review			
76	2010	Madani <i>et al</i> .	Risk assessment of tobacco types and	American Journal of	Science Publications	29
			oral cancer	Pharmacology and		
				Toxicology		
77	2010	Wu et al.	Quantification of blood betel quid	Journal of Analytical	Preston Publications	28
			alkaloids and urinary 8-	Toxicology		
			hydroxydeoxyguanosine in humans and			
			their association with betel chewing			
=0			habits			•
78	2007	Saha <i>et al</i> .	Ultrastructural and hormonal changes in	Journal of Experimental	John Wiley & Sons	28
			the pineal-testicular axis following	Zoology Part A:		
			arecoline administration in rats	Ecological Genetics and		
70	2010	77 1 1 . 1		Physiology		26
79	2010	Kaushal <i>et al</i> .	Betel quid chewing as an environmental	Mutation Research -	Elsevier	26
			risk factor for breast cancer	Genetic Toxicology and		
				Environmental		
00	2017	Loctal	A dult mortality of discourse and initial	Mutagenesis	Springer Meture	25
80	2017	Lo et al.	Adult mortality of diseases and injuries	Population Health	Springer Nature	25
			attributable to selected metabolic,	Metrics		
			lifestyle, environmental, and infectious			

			risk factors in Taiwan: A comparative risk assessment			
81	2017	Suzuki <i>et al</i> .	Phenylethylchromones with in Vitro Antitumor Promoting Activity from Aquilaria filaria	Planta Medica	Thieme	25
82	2014	Lakhanpal <i>et al.</i>	Association of interleukin-1 β -511 C/T polymorphism with tobacco-associated cancer in northeast India: A study on oral and gastric cancer	Cancer Genetics	Elsevier	25
83	2009	Feng & Lu	A new matrix for analyzing low molecular mass compounds and its application for determination of carcinogenic areca alkaloids by matrix- assisted laser desorption ionization time-of-flight mass spectrometry	Analytica Chimica Acta	Elsevier	25
84	2005	Miyazaki <i>et al</i> .	Mutagenic activation of betel quid- specific N-nitrosamines catalyzed by human cytochrome P450 coexpressed with NADPH-cytochrome P450 reductase in Salmonella typhimurium YG7108	Mutation Research - Genetic Toxicology and Environmental Mutagenesis	Elsevier	25
85	2018	Chher et al.	Prevalence of oral cancer, oral potentially malignant disorders and other oral mucosal lesions in Cambodia	Ethnicity and Health	Taylor & Francis	24
86	2012	Chuang et al.	Differential Impact of IL-10 Expression on Survival and Relapse between HPV16-Positive and -Negative Oral Squamous Cell Carcinomas	PLoS ONE	Public Library of Science	24
87	2009	Lin et al.	Areca nut-induced micronuclei and cytokinesis failure in Chinese hamsterovary cells is related to reactive oxygen species production and actin filament deregulation	Environmental and Molecular Mutagenesis	John Wiley & Sons	24
88	2011	Yang et al.	Interaction between tumour necrosis factor-α gene polymorphisms and substance use on risk of betel quid- related oral and pharyngeal squamous cell carcinoma in Taiwan	Archives of Oral Biology	Elsevier	23
89	2006	Lee et al.	The associations of p53 overexpression with p53 codon 72 genetic polymorphism in esophageal cancer	Mutation Research - Fundamental and Molecular Mechanisms of Mutagenesis	Elsevier	23
90	2015	Cox et al.	High-performance liquid chromatographic determination of arecoline in human saliva	Journal of Chromatography A	Elsevier	23
91	2015	Wu et al.	Betel quid use and mortality in Bangladesh: A cohort study	Bulletin of the World Health Organization	World Health Organization	22

			Consommation de chiques de bétel et			
			mortalité au Bangladesh: Étude de			
			cohorte			
92	2005	Wen <i>et al</i> .	How opening the cigarette market led to	Public Health	Elsevier	22
			an increase in betel quid use in Taiwan			
93	2004	Tsai <i>et al</i> .	Urokinase gene 3'-UTR T/C	Journal of Clinical	John Wiley & Sons	22
			polymorphism is associated with oral	Laboratory Analysis		
			cancer			
94	2003	Subapriya et al.	Oxidant-antioxidant status in oral	Toxicology Mechanisms	Taylor & Francis	22
- -	1000		precancer and oral cancer patients	and Methods		
95	1982	Tanaka <i>et al</i> .	Carcinogenicity Examination of Betel	Nutrition and Cancer	Taylor & Francis	22
			Quid. II. Effect of Vitamin A Deficiency			
			on Rats Fed Semipurified Diet			
			Containing Betel Nut and Calcium			
06	2019	Ahn <i>et al</i> .	Hydroxide Adiponectin-secretion-promoting	Journal of Natural	American Chemical	21
96	2019	Ann et al.	phenylethylchromones from the	Products	Society	21
			agarwood of aquilaria malaccensis	Tioducts	Society	
97	2014	Astuti <i>et al</i> .	Antimicrobial and cytotoxic activities of	Asian Pacific Journal of	Wolters Kluwer	21
71	2014	ristuti er ur.	endophytic fungi isolated from Piper	Tropical Biomedicine	Health	21
			crocatum Ruiz & Pav	Hopical Diolicalenie	Titutti	
98	2013	Chien <i>et al</i> .	Impact of VEGF-C Gene	PLoS ONE	Public Library of	21
			Polymorphisms and Environmental		Science	
			Factors on Oral Cancer Susceptibility in			
			Taiwan			
99	2018	Ismail <i>et al</i> .	Piper sarmentosum as an antioxidant: A	Sains Malaysiana	Penerbit Universiti	20
			systematic review		Kebangsaan	
					Malaysia	
100	2003	Thongsuksai et	P53 mutations in betel-associated oral	Cancer Letters	Elsevier	20
		al.	cancer from Thailand			
101	2013	Yang <i>et al</i> .	Sarmentosumols A to F, new mono- and	Planta Medica	Thieme	19
			dimeric alkenylphenols from Piper			
			sarmentosum			
102	2010	Wu et al.	Epistasis of oxidative stress-related	Clinica Chimica Acta	Elsevier	19
			enzyme genes on modulating the risks			
			in oral cavity cancer			
103	2010	Giri et al.	Arecoline induced disruption of	BMC Cell Biology	Springer Nature	19
			expression and localization of the tight			
			junctional protein ZO-1 is dependent on			
			the HER 2 expression in human			
101			endometrial Ishikawa cells			10
104	2010	Kietthubthew <i>et</i>	Association of polymorphisms in	International Journal of	Elsevier	19
		al.	proinflammatory cytokine genes with	Hygiene and		
			the development of oral cancer in	Environmental Health		
105	2009	I in -4 -1	Southern Thailand	Autophass	Toylor & Free	10
105	2008	Lin et al.	Autophagy induction by a natural	Autophagy	Taylor & Francis	19
			ingredient of areca nut			

106	2006	Young et al.	Increased sensitivity of Hep G2 cells	Archives of Toxicology	Springer Nature	19
			toward the cytotoxicity of cisplatin by			
			the treatment of piper betel leaf extract			
107	2017	Wagh et al.	Inflammation Modulatory Phorbol	Journal of Natural	American Chemical	18
			Esters from the Seeds of Aquilaria	Products	Society	
			malaccensis			
108	2015	Lin et al.	Interactions between environmental	PLoS ONE	Public Library of	18
			factors and melatonin receptor type 1A		Science	
			polymorphism in relation to oral cancer			
			susceptibility and clinicopathologic			
			development			
109	2010	Musthaba et al.	Patented herbal formulations and their	Recent Patents on Drug	Bentham Science	18
			therapeutic applications	Delivery and	Publishers	
				Formulation		
110	2019	Xia <i>et al</i> .	LC-MS guided identification of dimeric	Fitoterapia	Elsevier	17
			2-(2-phenylethyl)chromones and			
			sesquiterpene-2-(2-			
			phenylethyl)chromone conjugates from			
			agarwood of Aquilaria crassna and their			
			cytotoxicity			
111	2014	Yadav et al.	Synthesis and evaluation of	European Journal of	Elsevier	17
			antiproliferative activity of a novel	Medicinal Chemistry		
110	2010		series of hydroxychavicol analogs	T '		1.6
112	2019	Mi et al.	Four new guaiane sesquiterpenoids from	Fitoterapia	Elsevier	16
112	1004		agarwood of Aquilaria filaria	Concerning	Electric	16
113	1994	Chakradeo et al.	Endogenous formation of N-	Cancer Letters	Elsevier	16
			nitrosoproline and other N-nitrosamino acids in tobacco users			
114	2019	Wang <i>et al</i> .	Agarwood extract mitigates intestinal	Biological and	Pharmaceutical	15
114	2017	Wang Ci ui.	injury in fluorouracil-induced mice	Pharmaceutical Bulletin	Society of Japan	15
115	2020	Lin <i>et al</i> .	Difference between female and male	International Journal of	Multidisciplinary	14
110	2020	2	patients with oral squamous cell	Environmental Research	Digital Publishing	
			carcinoma: A single-center retrospective	and Public Health	Institute (MDPI)	
			study in Taiwan		× ·-/	
116	2013	Sharkar <i>et al</i> .	Ethnomedicinal importance of the plants	Journal of Herbs, Spices	Taylor & Francis	14
			in villages in kushtia sador and mirpur	and Medicinal Plants	-	
			upozila, bangladesh			
117	2013	Nersesyan et al.	Induction of nuclear anomalies in	Archives of Toxicology	Springer Nature	14
			exfoliated buccal cells of coca chewers:			
			Results of a field study			
118	2010	Chiu et al.	Betel quid extract promotes oral cancer	Biochemical and	Elsevier	14
			cell migration by activating a	Biophysical Research		
			muscarinic M4 receptor-mediated	Communications		
			signaling cascade involving SFKs and			
			ERK1/2			
119	2008	Wong et al.	Sulfotransferase 1A1 and glutathione S-	Archives of Toxicology	Springer Nature	14
11)		-	e e e e e e e e e e e e e e e e e e e	0,	1 0	

			modulate the levels of urinary 8-			
			hydroxy-2'-deoxyguanosine in betel			
			quid chewers			
120	2006	Heepchantree et	A biological evaluation of DNA damage	Journal of Toxicology	Taylor & Francis	14
		al.	detected by comet assay in healthy	and Environmental		
			populations residing in areas that differ	Health - Part A: Current		
			in lung cancer incidence	Issues		
121	2004	Lin et al.	The tumorigenic characteristics of	Archives of Toxicology	Springer Nature	14
			Lime-Piper betel quid-transformed JB6			
			cells			
122	2009	Chou et al.	Arecoline-induced phosphorylated p53	Journal of Cellular	John Wiley & Sons	13
			and p21 ^{WAF1} protein expression is	Biochemistry		
			dependent on ATM/ATR and			
			phosphatidylinositol-3-kinase in Clone-			
			9 cells			
123	2009	Choudhury &	Altered p53 response and enhanced	Environmental	Elsevier	13
		Sharan	transgenerational transmission of	Toxicology and		
			carcinogenic risk upon exposure of mice	Pharmacology		
			to betel nut			
124	2014	Rattarom et al.	Cytotoxic activity against small cell	Journal of the Medical	Medical Association	12
			lung cancer cell line and	Association of Thailand	of Thailand	
			chromatographic fingerprinting of six			
			isolated compounds from the ethanolic			
			extract of Benjakul			
125	2014	Lin <i>et al</i> .	Relationship between betel quid	Drug and Alcohol	Elsevier	12
			chewing and risks of cardiovascular	Dependence		
			disease in older adults: A cross-sectional			
126	2021	TT'1	study in Taiwan	T 1 C A 1' 1		11
126	2021	Hidayat <i>et al</i> .	Bioactive composition, antifungal,	Journal of Applied	MediPoeia	11
			antioxidant, and anticancer potential of	Pharmaceutical Science		
			agarwood essential oil from decaying			
			logs (Gyrinops spp.) of Papua Island (Indonesia)			
127	2020	Hsieh et al.	Arecoline induces epithelial	Environmental	John Wiley & Sons	11
127	2020	fisien et ut.	mesenchymal transition in HK2 cells by	Toxicology	John whey & Sons	11
			upregulating the ERK-mediated	Toxicology		
			signaling pathway			
128	2020	Wu et al.	Chemical constituents with GNMT-	Molecules	Multidisciplinary	11
120	2020	in a cr ar.	promoter-enhancing and nrf2-reduction	morecures	Digital Publishing	
			activities from Taiwan agarwood		Institute (MDPI)	
			excoecaria formosana			
129	2018	Aswini &	Production of camptothecin from	Asian Journal of	Asian Journal of	11
		Soundhari	endophytic fungi and characterization	Pharmaceutical and	Pharmaceutical and	
			by high-performance liquid	Clinical Research	Clinical Research	
			chromatography and anticancer activity			
			against colon cancer cell line			

130	2012	Chen et al.	Cathepsin B SNPs elevate the	Human Genetics	Springer Nature	11
			pathological development of oral cancer			
			and raise the susceptibility to			
			carcinogen-mediated oral cancer			
131	2012	Chitra et al.	Effect of α -tocopherol on salivary	Annals of Clinical	SAGE	11
			reactive oxygen species and trace	Biochemistry		
			elements in oral submucous fibrosis			
132	2010	Choudhury &	Ultrastructural alterations in liver of	Microscopy Research	John Wiley & Sons	11
		Sharan	mice exposed chronically and	and Technique		
			transgenerationally to aqueous extract of			
			betel nut: Implications in betel nut-			
			induced carcinogenesis			
133	2019	Tsou <i>et al</i> .	Betel quid containing safrole enhances	Environmental Pollution	Elsevier	10
			metabolic activation of tobacco specific			
			4-(methylnitrosamino)-1-(3-pyridyl)-1-			
			butanone (NNK)			
134	2016	Astuti et al.	Pyrophen produced by endophytic fungi	Asian Pacific Journal of	Asian Pacific	10
			Aspergillus sp isolated from Piper	Cancer Prevention	Organization for	
			crocatum Ruiz & Pav exhibits cytotoxic		Cancer Prevention	
			activity and induces S phase arrest in			
			T47D breast cancer cells			
135	2015	Kurkalang et al.	Precocious anaphase and expression of	Mutagenesis	Oxford University	10
			Securin and p53 genes as candidate		Press	
			biomarkers for the early detection in			
			areca nut-induced carcinogenesis			
136	2013	Adhikari & De	Toxic effects of betel quid	International Journal of	Kamla-Raj	10
				Human Genetics	Enterprises	
137	2011	Li et al.	Novel genetic biomarkers for	Medical Hypotheses	Elsevier	10
			susceptibility to oral submucous			
			fibrosis: Cytochrome P450 3A			
138	2011	Choudhury &	Altered BRCA1 and BRCA2 responses	Environmental	Elsevier	10
		Sharan	and mutation of BRCA1 gene in mice	Toxicology and		
			exposed chronically and	Pharmacology		
			transgenerationally to aqueous extract of			
			betel nut (AEBN)			
139	2003	Kumpawat &	The usefulness of cytogenetic	Human and	SAGE	10
		Chatterjee	parameters, level of p53 protein and	Experimental		
			endogenous glutathione as intermediate	Toxicology		
			end-points in raw betel-nut genotoxicity			
140	1994	Carley et al.	Diet and oral oremalignancy in female	Nutrition and Cancer	Taylor & Francis	10
			south indian tobacco and betel chewers:			
			A case-control study			
141	2019	Paul <i>et al</i> .	Hydroxychavicol sensitizes imatinib-	Anti-Cancer Drugs	Wolters Kluwer	9
			resistant chronic myelogenous leukemia		Health	
			cells to TRAIL-induced apoptosis by			
			ROS-mediated IAP downregulation			

142	2013	Chuang et al.	BPDE-like DNA adduct level in oral	Archives of Oral	Elsevier	9
			tissue may act as a risk biomarker of	Biology		
			oral cancer			
143	2012	Chou et al.	Characterization of protein adducts	Journal of Mass	John Wiley & Sons	9
			formed by toxic alkaloids by nano-scale	Spectrometry		
			liquid chromatography with mass			
			spectrometry			
144	2023	Ware et al.	Characterization and Bioactive Potential	International Journal of	Multidisciplinary	8
			of Secondary Metabolites Isolated from	Molecular Sciences	Digital Publishing	
			Piper sarmentosum Roxb.		Institute (MDPI)	
145	2022	Chen et al.	Anti-Cancer Effect of Sesquiterpene and	Molecules	Multidisciplinary	8
			Triterpenoids from Agarwood of		Digital Publishing	
			Aquilaria sinensis		Institute (MDPI)	
146	2019	Zhao et al.	Three new 2-(2-phenylethyl)chromone	Phytochemistry Letters	Elsevier	8
			derivatives from agarwood of Aquilaria			
			crassna Pierre ex Lecomte			
			(Thymelaeaceae)in Laos			
147	2015	Kumar et al.	Synthetic modification of	European Journal of	Elsevier	8
			hydroxychavicol by Mannich reaction	Medicinal Chemistry		
			and alkyne-azide cycloaddition			
			derivatives depicting cytotoxic potential			
148	2015	Wu et al.	Association study between novel	Scientific World Journal	Hindawi	8
			CYP26 polymorphisms and the risk of			
			betel quid-related malignant oral			
			disorders			
149	2013	Yong et al.	Dichamanetin inhibits cancer cell	Anticancer Research	International Institute	8
			growth by affecting ROS-related		of Anticancer	
			signaling components through		Research	
			mitochondrial-mediated apoptosis			
150	1995	Singh & Rao	Modulatory influence of arecanut on the	Teratogenesis,	John Wiley & Sons	8
			mouse hepatic xenobiotic detoxication	Carcinogenesis, and		
			system and skin papillomagenesis	Mutagenesis		
151	2023	Chen et al.	Seven new 2-(2-phenethyl)chromone	Fitoterapia	Elsevier	7
			derivatives from agarwood of Aquilaria			
			walla			
152	2021	Wang et al.	Two new 2-(2-phenethyl)chromone	Phytochemistry Letters	Elsevier	7
			derivatives from agarwood of Aquilaria			
			walla and their cytotoxicity			
153	2020	Tian <i>et al</i> .	Two new sesquiterpenoids from	Journal of Asian Natural	Taylor & Francis	7
			agarwood originated from Aquilaria sp.	Products Research		
154	2017	Nurhanan et al.	In vitro anticancer activity and high-	Journal of Tropical	Forest Research	7
			performance liquid chromatography	Forest Science	Institute Malaysia	
			profiles of Aquilaria subintegra fruit and			
			seed extracts			
155	2002	Pariat & Sharan	Role of mouse spleen cell HMG	Indian Journal of	National Institute of	7
			proteins and their poly-ADP-	Biochemistry and	Science	

			ribosylation in betelnut induced		Communication and	
			carcinogenesis		Policy Research	
156	2023	Nagarajaiah <i>et</i>	Evaluation of apoptosis in human breast	Applied Physics A:	Springer Nature	6
		al.	cancer cell (MDA-MB-231) induced by	Materials Science and		
			ZnO nanoparticles synthesized using	Processing		
			Piper betle leaf extract as bio-fuel			
157	2021	Tian <i>et al</i> .	UHPLC-QTOF-MS based metabolite	Journal of	Elsevier	6
			profiling analysis and the correlation	Pharmaceutical and		
			with biological properties of wild and	Biomedical Analysis		
			artificial agarwood	2		
158	2020	Hsiao <i>et al</i> .	Investigating the health disparities in the	Cancer Science	John Wiley & Sons	6
			association between lifestyle behaviors		,	
			and the risk of head and neck cancer			
159	2017	Lin et al.	Taiwanin C selectively inhibits	Environmental	John Wiley & Sons	6
			arecoline and 4-NQO-induced oral	Toxicology	Ş	
			cancer cell proliferation via ERK1/2	85		
			inactivation			
160	2016	Jaiaree <i>et al</i> .	Cytotoxic and anti-inflammatory	Journal of the Medical	Medical Association	6
			activities of medicinal plants and	Association of Thailand	of Thailand	
			women's health remedy found in			
			"Mahachotarat scripture" of Thai			
			traditional medicine			
161	2015	Liu <i>et al</i> .	Purification of Cu/Zn superoxide	Journal of Agricultural	American Chemical	6
			dismutase from piper betle leaf and its	and Food Chemistry	Society	
			characterization in the oral cavity	and I ood Chombury	Sourcey	
162	2011	Chava <i>et al</i> .	Evaluation of aurora-A gene	Genetic Testing and	Mary Ann Liebert	6
102	2011		polymorphism and esophageal cancer	Molecular Biomarkers	Mary Min Electric	0
			risk in a south indian population			
163	2022	Dash <i>et al</i> .	Screening of anti-cancerous potential of	Journal of	Walter de Gruyter	5
			classical Raudra rasa and modified	Complementary and		-
			Raudra rasa modified with hiraka	Integrative Medicine		
			bhasma (nanodiamond) through FTIR &	integrative integration		
			LC-MS analysis			
164	2022	Sangavi et al.	Identification and Validation of	Current Enzyme	Bentham Science	5
101	2022	Sangari er ari	Hydroxychavicol from Betel Leaf as a	Inhibition	Publishers	C
			Promising Breast Cancer Inhibitor: An			
			In vitro and In silico Analysis			
165	2021	Hussain <i>et al</i> .	Anticancer and antimicrobial peptides	Advances in Traditional	Springer Nature	5
105	2021	ffussuni er ur.	from medicinal plants of Borneo island	Medicine	Springer Huttire	5
			in Sarawak			
166	2020	Omar <i>et al</i> .	Teratogenic potential of traditional	British Food Journal	Emerald Publishing	5
100	2020	Oniai er ar.	Malaysian vegetables (ulam) in the	Diffish i ood Journal	Elliptaid Fublishing	5
			zebrafish model			
167	2019	Gameil et al.	Anticancer potential and chemical	Malaysian Journal of	Penerbit UTM Press	5
			profile of agarwood hydrosol	Fundamental and		
				Applied Sciences		
				r r		

168	2018	Zainurin et al.	Agarwood Leaf essential oil	International Journal on	INSIGHT -	5
			characterization and effects on MCF-7	Advanced Science,	Indonesian Society	
			breast cancer cells	Engineering and	for Knowledge and	
				Information Technology	Human Development	
169	2014	Banerjee &	Antiproliferative activity of piper betel	International Journal of	IJPPS	5
		Shah	leaf extracts on human lung cancer cell	Pharmacy and		
			line (A549)	Pharmaceutical Sciences		
170	2011	Rotolo et al.	Systematic toxicological analysis of	Annales de Toxicologie	EDP Sciences	5
			Indian herbal ready-to-chew pouches by	Analytique		
			gas chromatography mass spectrometry			
171	1993	Govekar &	Mutagenic activity in urine samples	Cancer Letters	Elsevier	5
		Bhisey	from female tobacco habitues			
172	2020	Yao et al.	Research progress on chemical	Tianran Chanwu Yanjiu	Science China Press	4
			constituents and pharmacological	yu Kaifa		
			activities of agarwood volatile oil 沉香			
			挥发油化学成分及药理活性研究 进展			
173	2016	Zhao <i>et al</i> .	Higher cytotoxicity and genotoxicity of	Environmental	Springer Nature	4
			cultivated versus natural agarwood	Chemistry Letters	1 0	
			incense smoke	-		
174	2015	Jyoti et al.	Detection of aneugenicity and	Mutagenesis	Oxford University	4
			clastogenicity in buccal epithelial cells		Press	
			of pan masala and gutkha users by pan-			
			centromeric FISH analysis			
175	2014	Kangralkar &	Evaluation of effect of piper betel,	Research Journal of	A and V Publication	4
		Kulkarni	centella asiatica and aristolochia indica	Pharmacy and		
			extracts on bacterial enzymes in 1, 2-	Technology		
			dimethyl hydrazine induced colon			
			cancer in wistar rats			
176	2013	Kangralkar &	In vitro antitumor activity of alcoholic	Research Journal of	RJPBCS	4
		Kulkarni	extract of piper betel leaf	Pharmaceutical,		
				Biological and Chemical		
				Sciences		
177	2023	Huang et al.	Aquilariperoxide A, a Sesquiterpene	Journal of Organic	American Chemical	3
			Dimer from Agarwood of Aquilaria	Chemistry	Society	
			sinensis with Dual Antitumor and			
			Antimalarial Effects			
178	2023	Satapathy et al.	Bioactive components of piper betel	Current Trends in	Association of	3
			could be potential anticancer agents: A	Biotechnology and	Biotechnology and	
			short review on pre-clinical inves-	Pharmacy	Pharmacy	
			tigations and practical challenges			
179	2022	Safithri et al.	Antioxidant activity of ethanol extract	Turkish Journal of	Turk Biyokimya	3
			and fractions of Piper crocatum with	Biochemistry	Dernegi	
			Rancimat and cuprac methods			
180	2020	Buranrat <i>et al</i> .	Extracts of edible, medicinal Thai plants	Tropical Journal of	Pharmacotherapy	3
			inhibit the human breast cancer cells	Pharmaceutical	Group	
				Research		

181	2017	Abbas <i>et al</i> .	Cytokinetic study of uninfected	Asia-Pacific Journal of	Universiti Putra	3
101	2017	Abbas el ul.	agarwood branch ethanolic extract on	Molecular Biology and	Malaysia	3
			breast cancer cells	Biotechnology	Walaysia	
182	2014	Panthong &	Effect of Piper chaba Hunter, Piper	Journal of the Medical	Medical Association	3
102	2014	Itharat	sarmentosum Roxb. and Piper	Association of Thailand	of Thailand	5
		Innarat	interruptum Opiz. On natural killer cell	rissociation of Thanand	of finitum	
			activity and lymphocyte proliferation			
183	2012	Naik & Naik	A study of 63 cases of mouth neoplasms	Iranian Journal of	Shahid Beheshti	3
105	2012		in arecanut growing belt of Sullia	Cancer Prevention	Medical University	5
184	2023	Rollando <i>et al</i> .	A Phenylpropanoid Compound from the	Tropical Journal of	Faculty of Pharmacy,	2
			Seeds of Sterculia quadrifida and its	Natural Product	University of Benin	
			Cytotoxic Activity	Research	ÿ	
185	2022	Assidqi et al.	Bioactive Compounds of Indonesian	Rasayan Journal of	Rasayan Journal of	2
			Red Betel (Piper crocatum) Extract and	Chemistry	Chemistry, c/o Dr.	
			Its Inhibitory Activity in MCF-7 Cell	-	Pratima Sharma	
			Line			
186	2020	Rosyadi et al.	Anticancer properties of methanolic	Annals of Tropical	Africa Health	2
		-	extract of Piper crocatum leaf using	Medicine and Public	Research	
			BST and cytotoxicity on HeLa cell lines	Health	Organization	
187	2019	Xia et al.	One new 2-(2-phenylethyl) chromone	Chinese Traditional and	Editorial Office of	2
			derivative from agarwood of Aquilaria	Herbal Drugs	Chinese Traditional	
			crassna in Cambodia 柬埔寨柯拉斯那		and Herbal Drugs	
			沉香中1个新的2-(2-苯乙基) 色酮			
188	2019	Abbas et al.	Uninfected agarwood branch extract	Marmara	Marmara University	2
			possess cytotoxic and inhibitory effects	Pharmaceutical Journal		
100	2015		on mcf-7 breast cancer cells			2
189	2015	Ghani <i>et al</i> .	The role of polyamines in anti-	Jurnal Teknologi	Penerbit UTM Press	2
			proliferative effect of selected malaysian			
			herbs in human lung adenocarcinoma			
190	2014	Chang <i>et al</i> .	cell line	Clinical Laboratory	Verlag Klinisches	2
190	2014	Chang <i>et at</i> .	Detection of SF3B3 gene mutations in	Chilical Laboratory	Labor GmbH	2
			oral cancer by high resolution melting analysis		Labor Gillon	
191	2014	Abbas <i>et al</i> .	Anti-cancer potential of agarwood	Journal of Pure and	Journal of Pure and	2
191	2014	Abbas ei ui.	distillate	Applied Microbiology	Applied	2
			distillate	Applied Microbiology	Microbiology	
192	2010	Chen <i>et al</i> .	Mechanism of DNA damage induced by	Food Chemistry	Elsevier	2
1)2	2010	Chen et ut.	arecaidine: The role of Cu(II) and	r oou chennsu y	Lisevier	2
			alkaline conditions			
193	2005	Heepchantree et	A comparative biomonitoring study of	Mutation Research -	Elsevier	2
190	2000	al.	populations residing in regions with low	Genetic Toxicology and		-
			and high risk of lung cancer using the	Environmental		
			chromosome aberration and the	Mutagenesis		
			micronucleus tests			
194	2024	Yang <i>et al</i> .	Tandem mass spectrometry (MS/MS)	Phytochemical Analysis	John Wiley & Sons	1
		-	molecular networking guided profiling		-	
			000			

			of small molecules from Aquilaria sinensis (Lour.) Gilg leaves and their bioactivity evaluation			
195	2021	Rahman <i>et al</i> .	Formulation and antimicrobial screening of piper sarmentosum cream against staphylococcus aureus	Pertanika Journal of Tropical Agricultural Science	Universiti Putra Malaysia	1
196	2021	Widayat <i>et al</i> .	Metabolite profiles of agarwood Gyrinops versteegii (Gilg) domke leaves collected from different locations	Research Journal of Biotechnology	Research Journal of BioTechnology	1
197	2008	Thiéry et al.	Betel quid and oral cancer: Case report Chique de bétel et cancers oraux: À propos d'une observation	Medecine Tropicale	Institut de Medecine Tropicale	1
198	2024	Hossain <i>et al</i> .	Malondialdehyde and heavy metal contents in Piper betel: Possible risks of heavy metals in human health	Journal of Food Composition and Analysis	Elsevier	0
199	2024	Duenngai <i>et al</i> .	Antioxidant and Anticancer Potentials and Metabolic Profiling of Benjakul, A Thai Herbal Preparation	Tropical Journal of Natural Product Research	Faculty of Pharmacy, University of Benin	0
200	2024	Zhang et al.	Determination of Antitumor Active Ingredients in Agarwood Essential Oil by Gas Chromatography-Mass Spectrometry (GC-MS) and Grey Relational Analysis	Analytical Letters	Taylor & Francis	0
201	2023	Nursyarah <i>et al</i> .	Red Betel Leaf Bioactive Compounds as ERα Receptor Inhibitors In Silico and MCF-7 Cell Anticancer In Vitro	HAYATI Journal of Biosciences	Institut Pertanian Bogor	0
202	2022	Su et al.	Three new 2-(2-phenylethyl)chromones from 'Chong-lou' agarwood of Aquilaria sinensis	Phytochemistry Letters	Elsevier	0
203	2022	Jang et al.	Agarwood (Aquilaria crassna) Inhibits Beta-amyloid and Tau-protein Formation in a Mouse Obesity Model	Journal of Animal Health and Production	ResearchersLinks Ltd	0
204	2021	Lisna et al.	String Analysis to identify the Activity of Gyrinops versteegii derived Lauric Acid against Breast Cancer	Research Journal of Biotechnology	Research Journal of BioTechnology	0
205	2020	Ghazali <i>et al.</i>	Antioxidant and cytotoxicity activity of phenolic compounds from piper sarmentosum roxb. Against T47D human breast cancer cell	Natural Products Journal	Bentham Science Publishers	0
206	2015	Chitra	Role of irradiation and status of A-feto protein, B2-microglobulin and carcinoembryonic antigen in different stages of oral cancer patients	International Journal of Pharma and Bio Sciences	International Journal of Pharma and Bio Sciences	0
207	2013	Kulkarni Rajesh	Tobacco consumption and associated morbidities-a community based cross sectional study among rural agricultural workers in North Karnataka	International Journal of Pharma and Bio Sciences	International Journal of Pharma and Bio Sciences	0

ISSN 2616-0684 (Print) ISSN 2616-0692 (Electronic)

			Total			7035
				Sciences		
				Physical and Biological		
			the Asian Pacific	Academy Series B:		
210	2003	Moore et al.	Epidemiology of the major cancers in	Proceedings of the Japan	Japan Academy	0
				Environmental Sciences		
				Biotechnology and		
			and epidemiological case study	Microbiology,		
209	2009	Shashi et al.	Oral and respiratory cancer: A clinical	Asian Journal of	Global Publications	0
				Protection		
			(piper betel) and chewing tobacco	Environmental		
208	2011	Ghosh et al.	High α - Radioactivity level in betel leaf	Indian Journal of	Kalpana Corporation	0

Table 2. Comparison of each journal and publisher with the keywords "*Piper betel*" OR "*Piper sarmentosum*" OR "*Piper crocatum*" OR "Agarwood" AND "Cancer". Journals in red indicate discontinued status in the Scopus database.

			Total	Total
No	Journal	Publisher	articles	citations
1	Cancer Letters	Elsevier	10	628
2	PLoS ONE	Public Library of Science	8	316
3	Mutation Research - Genetic Toxicology and	Elsevier	6	253
	Environmental Mutagenesis			
4	Fitoterapia	Elsevier	4	96
5	Archives of Toxicology	Springer Nature	4	61
6	Toxicology	Elsevier	3	247
7	Mutation Research - Fundamental and Molecular	Elsevier	3	178
	Mechanisms of Mutagenesis			
8	Food and Chemical Toxicology	Elsevier	3	116
9	International Journal of Environmental Research and	Multidisciplinary Digital Publishing Institute	3	90
	Public Health	(MDPI)		
10	Journal of Natural Products	American Chemical Society	3	82
11	Environmental Toxicology	John Wiley & Sons	3	77
12	Mutagenesis	Oxford University Press	3	51
13	Journal of the Medical Association of Thailand	Medical Association of Thailand	3	21
14	Phytochemistry Letters	Elsevier	3	15
15	BMC Complementary and Alternative Medicine	Springer Nature	2	243
16	Science of the Total Environment	Elsevier	2	151
17	American Journal of Clinical Nutrition	Elsevier	2	134
18	International Journal of Hygiene and Environmental	Elsevier	2	128
	Health			
19	Journal of Toxicology and Environmental Health - Part	Taylor & Francis	2	111
	А			
20	Autophagy	Taylor & Francis	2	85
21	Environmental and Molecular Mutagenesis	John Wiley & Sons	2	79
22	Journal of Ethnopharmacology	Elsevier	2	76
23	International Journal of Molecular Sciences	Multidisciplinary Digital Publishing Institute (MDPI)	2	75

24	Genetic Testing and Molecular Biomarkers	Mary Ann Liebert	2	51
25	Clinica Chimica Acta	Elsevier	2	49
26	Medical Hypotheses	Elsevier	2	45
27	Planta Medica	Thieme	2	44
28	Tropical Journal of Pharmaceutical Research	Pharmacotherapy Group	2	36
29	Archives of Oral Biology	Elsevier	2	32
30	Nutrition and Cancer	Taylor & Francis	2	32
31	European Journal of Medicinal Chemistry	Elsevier	2	25
32	Environmental Toxicology and Pharmacology	Elsevier	2	23
33	Molecules	Multidisciplinary Digital Publishing Institute	2	19
		(MDPI)		
34	Tropical Journal of Natural Product Research	Faculty of Pharmacy, University of Benin	2	2
35	Research Journal of Biotechnology	Research Journal of BioTechnology	2	1
36	International Journal of Pharma and Bio Sciences	International Journal of Pharma and Bio	2	0
		Sciences		
37	Environmental Health Perspectives	Public Health Services, US Dept of Health and	1	662
		Human Services		
38	Journal of Toxicology and Environmental Health	Taylor & Francis	1	311
39	International Journal of Cancer	John Wiley & Sons	1	172
40	Proteomics	John Wiley & Sons	1	148
41	Journal of Cellular Physiology	John Wiley & Sons	1	147
42	Journal of Biological Chemistry	American Society for Biochemistry and	1	119
72	Journal of Biological Chemistry	Molecular Biology Inc.	1	117
43	International Journal of Pharmaceutical Sciences Review	Global Research Online	1	91
75	and Research		1	71
44	Cancer Cell International	Springer Nature	1	75
45	Journal of Zhejiang University: Science B	Zhejiang University	1	73
46	Toxicological Sciences	Oxford University Press	1	65
40 47	Toxicology and Applied Pharmacology	Elsevier	1	65
48	Public Health Nutrition	Cambridge University Press	1	58
49 50	Cellular and Molecular Life Sciences	Springer Nature	1	49
50	International Journal of Obesity	Springer Nature	1	49
51	Genes Chromosomes and Cancer	John Wiley & Sons	1	48
52	Carcinogenesis	Oxford University Press	1	47
53	Journal of Nutritional Biochemistry	Elsevier	1	47
54	Journal of Proteome Research	American Chemical Society	1	45
55	Pharmacognosy Research	Phcog.Net	1	44
56	American Journal of Epidemiology	Oxford University Press	1	43
57	Journal of Hazardous Materials	Elsevier	1	41
58	DNA and Cell Biology	Mary Ann Liebert	1	39
59	BMC Genomics	Springer Nature	1	36
60	European Journal of Cancer Part B: Oral Oncology	Elsevier	1	35
61	American Journal of Tropical Medicine and Hygiene	American Society of Tropical Medicine and Hygiene	1	34
62	OMICS A Journal of Integrative Biology	Mary Ann Liebert	1	34
63	Chemico-Biological Interactions	Elsevier	1	31
	-			

65	Journal of Nutrition, Health and Aging	Elsevier	1	29
66	Journal of Analytical Toxicology	Preston Publications	1	29 28
67	Journal of Experimental Zoology Part A: Ecological	John Wiley & Sons	1	28
07	Genetics and Physiology	John whey & Johns	1	20
68	Analytica Chimica Acta	Elsevier	1	25
69	Cancer Genetics	Elsevier	1	25
70	Population Health Metrics	Springer Nature	1	25
71	Ethnicity and Health	Taylor & Francis	1	24
72	Journal of Chromatography A	Elsevier	1	23
73	Bulletin of the World Health Organization	World Health Organization	1	22
74	Journal of Clinical Laboratory Analysis	John Wiley & Sons	1	22
75	Public Health	Elsevier	1	22
76	Toxicology Mechanisms and Methods	Taylor & Francis	1	22
77	Asian Pacific Journal of Tropical Biomedicine	Wolters Kluwer Health	1	21
78	Sains Malaysiana	Penerbit Universiti Kebangsaan Malaysia	1	20
79	BMC Cell Biology	Springer Nature	1	19
80	Recent Patents on Drug Delivery and Formulation	Bentham Science Publishers	1	18
81	Biological and Pharmaceutical Bulletin	Pharmaceutical Society of Japan	1	15
82	Biochemical and Biophysical Research Communications	Elsevier	1	14
83	Journal of Herbs, Spices and Medicinal Plants	Taylor & Francis	1	14
84	Journal of Toxicology and Environmental Health - Part	Taylor & Francis	1	14
	A: Current Issues			
85	Journal of Cellular Biochemistry	John Wiley & Sons	1	13
86	Drug and Alcohol Dependence	Elsevier	1	12
87	Annals of Clinical Biochemistry	SAGE	1	11
88	Asian Journal of Pharmaceutical and Clinical Research	Asian Journal of Pharmaceutical and Clinical	1	11
		Research		
89	Human Genetics	Springer Nature	1	11
90	Journal of Applied Pharmaceutical Science	MediPoeia	1	11
91	Microscopy Research and Technique	John Wiley & Sons	1	11
92	Asian Pacific Journal of Cancer Prevention	Asian Pacific Organization for Cancer	1	10
		Prevention		
93	Environmental Pollution	Elsevier	1	10
94	Human and Experimental Toxicology	SAGE	1	10
95	International Journal of Human Genetics	Kamla-Raj Enterprises	1	10
96	Anti-Cancer Drugs	Wolters Kluwer Health	1	9
97	Journal of Mass Spectrometry	John Wiley & Sons	1	9
98	Anticancer Research	International Institute of Anticancer Research	1	8
99	Scientific World Journal	Hindawi	1	8
100	Teratogenesis, Carcinogenesis, and Mutagenesis	John Wiley & Sons	1	8
101	Indian Journal of Biochemistry and Biophysics	National Institute of Science Communication	1	7
102	Journal of Asian Natural Draduate Descarab	and Policy Research	1	7
102 103	Journal of Asian Natural Products Research	Taylor & Francis Forest Research Institute Malaysia	1	7 7
103	Journal of Tropical Forest Science Applied Physics A: Materials Science and Processing	Forest Research Institute Malaysia Springer Nature	1	6
104	Cancer Science	John Wiley & Sons	1	6
105	Journal of Agricultural and Food Chemistry	American Chemical Society	1	6
100	sournar of Agricultural and 1000 Chellinsuly	American Chemical Society	1	0

ISSN 2616-0684 (Print) ISSN 2616-0692 (Electronic)

107 Journal of Pharmaceutical and Biomedical Analysis Elsevier 1 6 108 Advances in Traditional Medicine Springer Nature 1 5 Annales de Toxicologie Analytique EDP Sciences 1 5 109 British Food Journal **Emerald Publishing** 1 5 110 Bentham Science Publishers 5 111 Current Enzyme Inhibition 1 **IJPPS** 5 112 International Journal of Pharmacy and Pharmaceutical 1 Sciences 113 International Journal on Advanced Science, Engineering INSIGHT - Indonesian Society for Knowledge 5 1 and Human Development and Information Technology Journal of Complementary and Integrative Medicine 5 114 Walter de Gruyter 1 115 Malaysian Journal of Fundamental and Applied Sciences Penerbit UTM Press 1 5 116 Environmental Chemistry Letters Springer Nature 1 4 Research Journal of Pharmaceutical, Biological and RJPBCS 117 4 **Chemical Sciences** 118 Research Journal of Pharmacy and Technology A and V Publication 1 4 Tianran Chanwu Yanjiu yu Kaifa Science China Press 4 119 1 120 Asia-Pacific Journal of Molecular Biology and Universiti Putra Malaysia 1 3 Biotechnology 3 121 Current Trends in Biotechnology and Pharmacy Association of Biotechnology and Pharmacy 1 122 Iranian Journal of Cancer Prevention Shahid Beheshti Medical University 3 1 123 Journal of Organic Chemistry American Chemical Society 1 3 124 Turkish Journal of Biochemistry Turk Biyokimya Dernegi 1 3 125 Annals of Tropical Medicine and Public Health Africa Health Research Organization 2 1 2 126 Chinese Traditional and Herbal Drugs Editorial Office of Chinese Traditional and 1 Herbal Drugs 127 Clinical Laboratory Verlag Klinisches Labor GmbH 2 1 2 1 128 Food Chemistry Elsevier Journal of Pure and Applied Microbiology 2 129 Journal of Pure and Applied Microbiology 1 130 Jurnal Teknologi Penerbit UTM Press 1 2 131 Marmara Pharmaceutical Journal Marmara University 1 2 132 Rasayan Journal of Chemistry Rasayan Journal of Chemistry, c/o Dr. Pratima 1 2 Sharma 133 Medecine Tropicale Institut de Medecine Tropicale 1 1 134 Pertanika Journal of Tropical Agricultural Science Universiti Putra Malaysia 1 1 135 Phytochemical Analysis John Wiley & Sons 1 1 Taylor & Francis 136 Analytical Letters 1 0 137 Asian Journal of Microbiology, Biotechnology and **Global Publications** 1 0 **Environmental Sciences** 138 HAYATI Journal of Biosciences Institut Pertanian Bogor 1 0 Indian Journal of Environmental Protection 1 0 139 Kalpana Corporation Journal of Animal Health and Production ResearchersLinks Ltd 140 1 0 141 Journal of Food Composition and Analysis Elsevier 1 0 142 Natural Products Journal Bentham Science Publishers 1 0 143 Proceedings of the Japan Academy Series B: Physical Japan Academy 1 0 and Biological Sciences Total 210 7035

610

Conclusion

While extensive research has explored the anticancer properties of several medicinal plants endemic to Brunei Darussalam, including *P. betel*, *P. sarmentosum*, *P. crocatum*, and agarwood, a notable gap exists in the literature regarding the association between agarwood and oral cancer. This presents a promising avenue for future research, particularly for researchers in countries with a significant focus on oral cancer, such as Taiwan and China.

Conflicts of Interest

The authors declare no conflict of interest.

Authors' Declaration

The authors hereby declare that the work presented in this article are original and that any liability for claims relating to the content of this article will be borne by them.

Acknowledgements

We want to acknowledge Universitas Airlangga for giving us access to the Scopus database for this research. This work was funded by Universitas Airlangga through the KLN Grant Scheme (contract number 1141/UN3.14/LT/2019) on behalf of M.R.

References

- Holdsworth D. Traditional Medicinal Plants of Brunei Darussalam Part I. Bukit Udal. Int J Pharmacogn. 1991; 29(4):245-250. https://doi.org/10.3109/13880209109082889
- Mohiddin MYBH, Chin W, Holdsworth D. Traditional Medicinal Plants of Brunei Darussalam Part II Sengkurong. Int J Pharmacogn. 1991; 29(4):252-258. https://doi.org/10.3109/13880209109082891
- Mohiddin MYBH, Chin W, Holdsworth D. Traditional Medicinal Plants of Brunei Darussalam Part III. Sengkurong. Int J Pharmacogn. 1992; 30(2):105-108. https://doi.org/10.3109/13880209209053967
- 4. Biswas P, Anand U, Saha SC, Kant N, Mishra T, Masih H, Bar A, Pandey DK, Jha NK, Majumder M, Das N, Gadekar VS, Shekhawat MS, Kumar M, Radha, Proćków J, de la Lastra JMP, Dey A. Betelvine (*Piper betle L.*): A comprehensive insight into its ethnopharmacology, phytochemistry, and pharmacological, biomedical and therapeutic attributes. J Cell Mol Med. 2022; 26(11):3083-3119. https://doi.org/10.1111/jcmm.17323
- 5. Sun X, Chen W, Dai W, Xin H, Rahmand K, Wang Y, Zhang J, Zhang S, Xu L, Han T. Piper sarmentosum Roxb .: A review on its botany, traditional uses, phytochemistry, and pharmacological 2020; activities. J Ethnopharmacol. 263:112897. https://doi.org/10.1016/j.jep.2020.112897 perspectives. Oral Oncol. 2001; 37(6):477-492. https://doi.org/10.1016/s1368-8375(01)00003-3
- Kudva AK, Rao S, Rao P, Periera R, Bhandari G, Mathew JM, Ashwini K, Pais MLJ, Swamy MK, Baliga MS. *Piper betle* Linn. in Cancer: Past, Present, and Future. In: Akhtar M, Swamy M, editors. Anticancer plants: Properties and Application. Springer: Singapore; 2018. pp. 327-347. https://doi.org/10.1007/978-981-10-8548-2_14
- Sari LM, Wulandari D, Bustami A, Subita GP, Auerkari EI. Tannin Screening, Phenolic Compounds Analysis, and Antiproliferative Activity of Areca Nut Extract by Decreasing Ki-67 Protein in Oral Squamous Carcinoma Cell Lines. Trop J Nat Prod Res. 2020; 4(9):563-570. https://doi.org/10.26538/tjnpr/v4i9.12
- 20. Usman S, Jamal A, Teh MT, Waseem A. Major Molecular Signaling Pathways in Oral Cancer Associated with Therapeutic

- Gong Y, Li HX, Guo RH, Widowati W, Kim YH, Yang SY, Kim YR. Anti-allergic Inflammatory Components from the Leaves of *Piper crocatum* Ruiz & Pav. Biol Pharm Bull. 2021; 44(2):245-250. https://doi.org/10.1248/bpb.b20-00726
- Gogoi R, Sarma N, Begum T, Chanda SK, Lekhak H, Sastry GH, Lal M. Agarwood (*Aquilaria malaccensis* L.) a quality fragrant and medicinally significant plant based essential oil with pharmacological potentials and genotoxicity. Ind Crops Prod. 2023; 197:116535. https://doi.org/10.1016/j.indcrop.2023.116535
- Debela DT, Muzazu SG, Heraro KD, Ndalama MT, Mesele BW, Haile DC, Kitui SK, Manyazewal T. New approaches and procedures for cancer treatment: Current perspectives. SAGE Open Med. 2021; 9:20503121211034366. https://doi.org/10.1177/20503121211034366
- Yuan H, Ma Q, Ye L, Piao G. The Traditional Medicine and Modern Medicine from Natural Products. Molecules. 2016; 21(5):559. https://doi.org/10.3390/molecules21050559
- Pratama MRF, Praditapuspa EN, Widiyana AP, Kesuma D, Poerwono H, Widiandani T, Rudyanto M, Siswodihardjo S. Bibliometric Analysis of Research on *Boesenbergia rotunda*, Pinostrobin, and Their Derivatives: Dominance of Southeast Asian Researchers. Rev Cub Inf Cienc Salud. 2023; 34:e2423.
- Poerwono H, Rudyanto M. Bibliometric Study of Microwave-Assisted Synthesis of Flavanone Derivatives. Borneo J Pharm. 2023; 6(4):339–348. https://doi.org/10.33084/bjop.v6i4.5602
- Bramer WM, de Jonge GB, Rethlefsen ML, Mast F, Kleijnen J. A systematic approach to searching: an efficient and complete method to develop literature searches. J Med Libr Assoc. 2018; 106(4):531-541. https://doi.org/10.5195/jmla.2018.283
- Burnham JF. Scopus database: a review. Biomed Digit Lib. 2006; 3:1. https://doi.org/10.1186/1742-5581-3-1
- Ward MH, deKok TM, Levallois P, Brender J, Gulis G, Nolan BT, VanDerslice J, International Society for Environmental Epidemiology. Workgroup report: Drinking-water nitrate and health--recent findings and research needs. Environ Health Perspect. 2005; 113(11):1607-1614. https://doi.org/10.1289/ehp.8043
- Dai C, Chen Q, Wan T, Liu F, Gong Y, Wang Q. Literary runaway: Increasingly more references cited per academic research article from 1980 to 2019. PloS One. 2021; 16(8):e0255849. https://doi.org/10.1371/journal.pone.0255849
- Li YC, Cheng AJ, Le LY, Huang YC, Chang JTC. Multifaceted Mechanisms of Areca Nuts in Oral Carcinogenesis: The Molecular Pathology from Precancerous Condition to Malignant Transformation. J Cancer. 2019; 10(17):4054-4062. https://doi.org/10.7150/jca.29765
- 17. Jeng JH, Chang MC, Hahn LJ. Role of areca nut in betel quidassociated chemical carcinogenesis: current awareness and future

Resistance. Front Oral Health. 2021; 1:603160. https://doi.org/10.3389/froh.2020.603160

- Zhang N, Xue S, Song J, Zhou X, Zhou D, Liu X, Hong Z, Xu D. Effects of various artificial agarwood-induction techniques on the metabolome of *Aquilaria sinensis*. BMC Plant Biol. 2021; 21(1):591. https://doi.org/10.1186/s12870-021-03378-8
- Wang S, Yu Z, Wang C, Wu C, Guo P, Wei J. Chemical Constituents and Pharmacological Activity of Agarwood and Aquilaria Plants. Molecules. 2018; 23(2):342. https://doi.org/10.3390/molecules23020342
- Buddhan R, Manoharan S, Elanchezhiyan C, Muralinaidu R, Karthik M. Myrtenal Modulates the Immunoexpression of Cell Proliferative, Angiogenic and Invasive Markers in DMBA-Induced Hamster Oral Carcinogenesis. Trop J Nat Prod Res. 2020; 4(9):550-557. <u>https://doi.org/10.26538/tjnpr/v4i9.10</u>

- 24. Wilder EI, Walters WH. Using Conventional Bibliographic Databases for Social Science Research: Web of Science and Scopus are not the Only Options. Sch Assess Rep. 2021; 3(1):4. http://dx.doi.org/10.29024/sar.36
- Lee HC, Yin PH, Yu TN, Chang YD, Hsu WC, Kao SY, Chi CW, Liu TY, Wei YH. Accumulation of mitochondrial DNA deletions in human oral tissues -- effects of betel quid chewing and oral cancer. Mutat Res. 2001; 493(1-2):67-74. https://doi.org/10.1016/s1383-5718(01)00160-7
- Liao G, Mei WL, Dong WH, Li W, Wang P, Kong FD, Gai CJ, Song XQ, Dai HF. 2-(2-Phenylethyl)chromone derivatives in artificial agarwood from *Aquilaria sinensis*. Fitoterapia. 2016; 110:38-43. https://doi.org/10.1016/j.fitote.2016.01.011
- 27. Wu SJ, Chen YJ, Shieh TY, Chen CM, Wang YY, Lee KT, Lin YM, Chien PH, Chen PH. Association study between novel CYP26 polymorphisms and the risk of betel quid-related malignant oral disorders. Sci World J. 2015; 2015:160185. https://doi.org/10.1155/2015/160185
- Tsou HH, Ko HT, Chen CT, Wang TW, Lee CH, Liu TY, Wang HT. Betel quid containing safrole enhances metabolic activation of tobacco specific 4-(methylnitrosamino)-1-(3-pyridyl)-1butanone (NNK). Environ Pollut. 2019; 251:13-21. https://doi.org/10.1016/j.envpol.2019.04.080
- Mullins CH, Boyd CJ, Lindeman B. Factors Associated with the Highest and Lowest Cited Research Articles in General Surgery

Journals. J Surg Res. 2020; 250:39-44. https://doi.org/10.1016/j.jss.2019.12.014

- Sharma M, Sarin A, Gupta P, Sachdeva S, Desai AV. Journal impact factor: its use, significance and limitations. World J Nucl Med. 2014; 13(2):146. https://doi.org/10.4103/1450-1147.139151
- Chen L, Chen H, Cai C, Yuan J, Gai C, Liu S, Mei W, Dai H. Seven new 2-(2-phenethyl)chromone derivatives from agarwood of *Aquilaria walla*. Fitoterapia. 2023; 165:105421. https://doi.org/10.1016/j.fitote.2022.105421
- Yeung AWK, Heinrich M, Kijjoa A, Tzvetkov NT, Atanasov AG. The ethnopharmacological literature: An analysis of the scientific landscape. J Ethnopharmacol. 2020; 250:112414. https://doi.org/10.1016/j.jep.2019.112414
- Kifli N, Wint Z, Jaini NH, Hamid MA, Linda YYL. Prevalence on the Use of Traditional Medicine in Brunei Darussalam. J Homeopath Ayurvedic Med. 2014; 3(155):2167. http://dx.doi.org/10.4172/2167-1206.1000155
- Aarons GA, Seijo C, Green AE, Moullin JC, Hasson H, Schwarz UVT, James S, Ehrhart MG, Ducarroz S, Sevdalis N, Willging C. Fostering international collaboration in implementation science and research: a concept mapping exploratory study. BMC Res Notes. 2019; 12(1):778. https://doi.org/10.1186/s13104-019-4800-4