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Introduction 

 Candidiasis, particularly vaginal candidiasis, is a common 

fungal infection affecting women, especially in tropical regions like 

Indonesia, where warm and humid conditions promote fungal growth.1–

3 Despite the availability of antifungal treatments, resistance to these 

therapies and their associated side effects have become pressing 

concerns, underscoring the need for alternative treatment options.4 In 

this context, traditional medicinal plants offer a promising avenue for 

discovering new antifungal agents, with Indonesia’s rich biodiversity 

presenting numerous candidates for study.5 Among these, Curcuma 

longa (turmeric) and Piper betle (betel leaf) are well-known for their 

medicinal properties. turmeric has been extensively studied for its 

antioxidant, anti-inflammatory, and even anticancer activities, while its 

potential antifungal activity is an emerging area of interest.6-7 Similarly, 

betel leaf has demonstrated antifungal effects, with caryophyllene 

identified as a key active compound in preliminary studies.8-9 These 

plants, widely used in traditional medicine, contain a variety of 

bioactive compounds, many of which remain uncharacterized in terms 

of their potential to treat fungal infections. 10-11  
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In particular, compounds such as curcumin from turmeric and 

caryophyllene from betel leaf have shown potential in inhibiting fungal 

pathogens like Candida albicans (C. albicans). However, these plants 

likely contain other, yet-to-be-identified compounds that could possess 

antifungal properties.12 Identifying these novel compounds is critical, 

as they may offer new therapeutic strategies for overcoming the 

limitations of current antifungal treatments. To aid in the discovery of 

these novel compounds, this study applies machine learning (ML), a 

branch of artificial intelligence (AI), to predict antifungal activity from 

chemical compound datasets.13 ML has proven valuable in drug 

discovery by analyzing large datasets to identify promising leads based 

on molecular descriptors.14 Datasets such as Directory of Useful Decoys 

(DUD-E) docking (http://dude.docking.org/) provide crucial 

information on protein inhibitors, including decoy compounds that 

assist in developing robust predictive models for drug discovery.15 This 

study focuses on the cytochrome P450 EryK enzyme in C. albicans, 

which plays a key role in the biosynthesis of ergosterol, a critical 

component of the fungal cell membrane.16-17 Inhibiting EryK disrupts 

ergosterol synthesis, leading to membrane instability and fungal cell 

death, making it a promising target for antifungal therapies.17–20 By 

leveraging machine learning to explore compounds from turmeric and 

betel leaf, this research aims to identify novel inhibitors of the EryK 

enzyme, potentially leading to the discovery of effective antifungal 

agents for the treatment of candidiasis. 

Materials and Method 

Data mining and fingerprint extraction 

In this study, machine learning was employed to predict inhibitors of 

the EryK cytochrome P450 enzyme from compounds within turmeric 

and betel leaf. Compound data for these plants were retrieved from the 

Knapsack Core Database (http://www.knapsackfamily.com/) using the 
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relevant keywords.21 RDKit, an open-source Python software, was used 

to extract SMILES structures from all compounds, which were then 

utilized to generate PubChem fingerprints.22 These fingerprints, 

consisting of 881 substructures, were assigned binary values of either 

one or zero. 

Subsequently, the DUD-E docking platform was used to generate a 

decoy dataset, including known antifungal small-molecule protein 

inhibitors currently available on the market.15 The platform also 

provided decoy compounds to serve as non-active controls. Machine 

learning models were then constructed, incorporating both active and 

inactive substances. Before model development, fingerprint extraction 

for each substructure was performed using the RDKit fingerprint 

extractor. 

Machine learning model development 

The Python library Scikit-learn provided the framework for 

constructing various machine learning models.23 Jupyter notebooks 

served as the development environment for writing and implementing 

the model code.24 Lazypredict 

(https://lazypredict.readthedocs.io/_/downloads/en/latest/pdf/) was 

used to compare 27 classification models, with 10-fold cross-validation 

applied to ensure robustness. The model with the highest AUC/ROC 

score was selected for further analysis. 

In addition to AUC/ROC, the following metrics were calculated: 

Accuracy: The proportion of correct predictions (both active and 

inactive compounds). 

 

Sensitivity: The ability to correctly identify active compounds 

 

Specificity: The ability to correctly identify inactive compounds. 

 

These metrics offered a comprehensive assessment of the models, with 

the trade-offs between sensitivity and specificity carefully considered. 

The selected model was then used to predict antifungal activity in 

compounds from turmeric and betel leaf. 

Molecular docking from predicted active compound and interaction 

analysis 

Following the machine learning prediction of potentially active 

antifungal substances within turmeric and betel leaf, a molecular 

docking investigation was conducted to assess their binding affinities. 

PLANTS 1.1 software was utilized for this purpose.25 This program 

leverages an innovative approach called an "artificial ant colony" to 

simulate how these ants find optimal paths. In the context of docking, 

the "ants" explore different conformations of the predicted active 

compounds within the target protein's binding pocket, ultimately 

identifying the conformation with the lowest energy state.26 PLANTS 

employs two scoring functions (PLANTSCHEMPLP and 

PLANTSPLP) to evaluate these docked poses, balancing accuracy with 

computational efficiency.25 

After the docking simulations, PRODIGY software was used to 

calculate the binding affinity (ΔG) of the docked poses.27 This program 

analyzes protein-ligand interactions at the atomic level, providing a 

more detailed assessment compared to traditional methods that rely 

solely on residue contacts (https://bianca.science.uu.nl/prodigy/cryst). 

The key advantages of PRODIGY-LIG include its user-friendliness, 

broad applicability to various protein-ligand complexes, and its 

demonstrated effectiveness.28 

Druglikeness and ADMET (Absorption, Distribution, Metabolism, 

Excretion and toxicity) analysis 

A commonly used metric to assess drug-likeness is Lipinski's rule of 

five. This rule considers four key properties: Maximum of five 

hydrogen bond donors (bonds between hydrogen and oxygen or 

nitrogen atoms), ten or fewer hydrogen bond acceptors (all nitrogen or 

oxygen atoms), molecular weight less than 500 Daltons, LogP value no 

greater than 4.15.29 By evaluating these properties, researchers can gain 

insights into how well a potential drug candidate might be absorbed, 

distributed, metabolized, and excreted within the body.  Toxtree 

software is employed to evaluate the toxicity of each compound.30 The 

threshold for toxicological concern is often referred to as the Threshold 

of Toxicological Concern (TTC). TTC determines a safe exposure level 

for all substances, below which there is no significant risk to human 

health.30 Blood-brain barrier (BBB) and human intestinal absorption 

(HIA) analyses are often integrated with toxicity assessments to predict 

the number of compounds that can be absorbed by the gastrointestinal 

tract (GI). Alongside toxicity analysis, BBB and HIA analyses help to 

estimate how many compounds can be absorbed from the gut and 

whether they can cross the blood-brain barrier. This combined approach 

aids in identifying potential drug candidates.31 

Tanimoto similarity for chemical structure and binding site similarity 

calculation 

Following successful molecular docking simulations, the potential 

antifungal compounds identified from turmeric and betel leaf were 

subjected to further analysis. PyPLIF, a Python library, was employed 

to convert the interaction information obtained from the docking 

simulations into a format suitable for similarity analysis.32 This 

conversion process involves generating a unique "fingerprint" for each 

compound using Python interaction fingerprinting (IFP). This 

fingerprint essentially captures the key interaction patterns between the 

compound and the target protein. 

Next, Pyplif-HIPPOS, another Python library, was utilized to compare 

the fingerprints of the potential antifungal compounds with those of 

known reference ligands that are already bound to the protein.33 Pyplif-

HIPPOS calculates a similarity score for each comparison, allowing 

researchers to identify potential antifungal compounds that exhibit 

interaction patterns similar to established antifungal agents. This 

approach helps prioritize promising candidates for further investigation. 

Results and Discussion 

Data mining and fingerprint extraction 

A total of 180 compounds were collected from the Knapsack database 

using the keyword turmeric. Additionally, 37 compounds were 

collected using the keyword betel leaf. For training and testing 

purposes, active small molecules were collecting from 25 publications 

that mentioned drugs for candidiasis and their similar subtstructure in 

PubChem (https://pubchem.ncbi.nlm.nih.gov/) while decoy dataset was 

compiled from DUD-E. This dataset included 1387 active compounds 

and 1579 decoy compounds. These active and decoy compounds were 

then employed to develop a model after fingerprint extracting using 

pubchem fingerprint. The entire dataset comprised 2936 compounds, 

with approximately 75% designated for training and 25% reserved for 

testing.  

Machine learning model development  

Following evaluation by Lazypredict, the Support Vector Classifier 

(SVC) model emerged as the top performer compared to other models 

considered.  This model was then subjected to parameter tuning, a 

process that optimizes its performance.  Consequently, the SVC model 

achieved impressive metrics, including sensitivity (0.97), specificity 

(0.87), accuracy (0.92), and AUC/ROC score (0.96) (Table 1). To 

further validate these findings, a k-fold cross-validation with five splits 

was employed.  In this technique, the data is divided into multiple 

subsets (folds). The model is then iteratively trained on one fold and 

tested on the remaining folds.  This process is repeated for all folds.  

The k-fold cross-validation yielded consistently strong results for the 

SVC model, with an average training score of 0.914 and an average 

testing score of 0.906.  This robust performance across various data 

https://lazypredict.readthedocs.io/_/downloads/en/latest/pdf/
https://bianca.science.uu.nl/prodigy/cryst
https://pubchem.ncbi.nlm.nih.gov/
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partitions solidified the SVC model as the optimal choice for predicting 

active compounds within turmeric and betel leaf.  

Table 1: The Score of each of models in Lazypredit for Cytochrome P450 EryK Protein 

No Model Accuracy Balanced Accuracy ROC AUC F1 Score 

1 SVC 0.92 0.92 0.92 0.92 

2 Ridge Classifier CV 0.9 0.9 0.9 0.9 

3 Ridge Classifier 0.89 0.9 0.9 0.89 

4 Linear Discriminant Analysis 0.89 0.89 0.89 0.89 

5 LGBM Classifier 0.89 0.89 0.89 0.89 

6 NuSVC 0.89 0.89 0.89 0.89 

7 XGB Classifier 0.89 0.89 0.89 0.89 

8 AdaBoost Classifier 0.89 0.89 0.89 0.89 

9 Passive Aggressive Classifier 0.88 0.88 0.88 0.88 

10 Perceptron 0.88 0.88 0.88 0.88 

11 KNeighbors Classifier 0.88 0.88 0.88 0.88 

12 Random Forest Classifier 0.88 0.88 0.88 0.88 

13 Extra Trees Classifier 0.88 0.88 0.88 0.88 

14 Bagging Classifier 0.88 0.88 0.88 0.88 

15 Logistic Regression 0.86 0.86 0.86 0.86 

16 Bernoulli NB 0.85 0.85 0.85 0.85 

17 Nearest Centroid 0.85 0.85 0.85 0.85 

18 Decision Tree Classifier 0.85 0.85 0.85 0.85 

19 Calibrated Classifier CV 0.85 0.85 0.85 0.85 

20 SGD Classifier 0.84 0.84 0.84 0.84 

21 Quadratic Discriminant Analysis 0.83 0.83 0.83 0.83 

22 Linear SVC 0.83 0.83 0.83 0.83 

23 Extra Tree Classifier 0.83 0.83 0.83 0.83 

24 Gaussian NB 0.78 0.78 0.78 0.77 

25 Label Spreading 0.68 0.68 0.68 0.67 

26 Label Propagation 0.68 0.68 0.68 0.67 

27 Dummy Classifier 0.52 0.5 0.5 0.35 

The machine learning model identified 21 compounds from turmeric 

and 15 compounds from betel leaf with potential Cytochrome P450 

EryK Protein inhibitory activity. 

Molecular docking from predicted active compound 

All compounds predicted to inhibit the Cytochrome P450 EryK protein 

were analyzed using molecular docking software to assess their 

potential binding within the protein's binding pocket. The protein 

structure of Cytochrome P450 EryK (PDB: 2XFH) was used, which 

includes a reference ligand bound to the protein with the PubChem code 

2812. 

Before analyzing compounds predicted by the machine learning model, 

a re-docking process is employed to validate the molecular docking 

software, PLANTS 1.1. This involves re-docking a known reference 

ligand (PubChem code: 2812) already bound to the Cytochrome P450 

The EryK protein (PDB: 2XFH) can be used to evaluate docking 

software accuracy. This is done by performing re-docking simulations 

of a known ligand 1000 times. The Root Mean Square Deviation 

(RMSD) of the ligand's position in each result is then calculated. A low 

RMSD (ideally below 2 Å) indicates that the software can accurately 

reproduce known binding interactions, thus providing confidence in its 

ability to assess predicted active compounds. In other words, the 

software's accuracy is assessed by comparing the re-docked ligand's 

position with a reference ligand using RMSD. A low RMSD value 

suggests the software's ability to reliably predict binding interactions 

for new compounds. 

The successful re-docking of the reference ligand for the Cytochrome 

P450 EryK protein (performed 1000 times) validates the ability of 

PLANTS 1.1 software to accurately reproduce known binding 

interactions. In this process, all re-docked ligand poses showed RMSD 

values consistently below 2 Ångstroms compared to the reference pose 

(Suppl Figure 1). This paves the way for the confident use of PLANTS 

1.1 to analyze the potential binding of compounds predicted to be active 

by the machine learning model. 

Following validation, the predicted active compounds from the machine 

learning model were subjected to molecular docking simulations using 

the validated software. The docking score and binding affinity score of 

selected compounds from turmeric and betel leaf are shown in Table 2 

and Table 3 below. 
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The results of molecular docking analysis revealed interesting trends in 

the binding affinities of compounds from turmeric and betel leaf. 

Arachidic acid, gitoxigenin, tauroursodeoxycholic acid, glycocholic 

acid, beta-stigmasterol, (-)-beta-sitosterol, and 7-hydroxy-1,7-bis(4-

hydroxy-3-methoxyphenyl)-1-heptene-3,5-dione from turmeric 

displayed lower binding affinity scores compared to the reference 

ligand, indicating potentially strong interactions with the protein.  

Table 2: Docking and binding affinity score (∆G) for the predicted compound as an inhibitor for Cytochrome P450 EryK Protein from 

Curcuma longa 

Compound Docking_score 
Binding affinity  

(∆G) Kcal/mol 

Hexadecanal -96.951 -8.21 

Palmitic acid -99.9729 -8.34 

Octadecanamide -109.021 -8.49 

Dihydrosphingosine -116.904 -8.57 

alpha-Linolenic acid -102.835 -8.67 

Nerolidyl propionate -105.276 -8.76 

Octadecanoic acid -103.365 -8.78 

1,5-Dihydroxy-1,7-bis(4-hydroxy-3-methoxyphenyl)-4,6-heptadien-3-one -97.0613 -8.81 

Dihydrocurcumin -95.1483 -8.82 

Linoleic acid -103.17 -8.87 

1,7-Bis(4-hydroxy-3-methoxyphenyl)-3,5-heptanedione -95.1344 -8.88 

8,11-Octadecadienoic acid -103.445 -8.88 

Oleic acid -101.255 -8.92 

Curcumin -92.6657 -8.92 

7-Hydroxy-1,7-bis(4-hydroxy-3-methoxyphenyl)-1-heptene-3,5-dione -90.6087 -9.17 

Arachidic acid -106.846 -9.18 

Gitoxigenin -86.536 -9.39 

Tauroursodeoxycholic acid -95.2822 -9.74 

Glycocholic acid -93.4788 -9.92 

beta-Stigmasterol -104.578 -10.13 

(-)-beta-Sitosterol -100.409 -10.9 

Reference_ligand (Pubchem CID: 2812) -77.1437 -8.97 

 

Table 3: Docking and binding affinity score (∆G) for the predicted compound as an inhibitor for Cytochrome P450 EryK Protein from 

Piper betle 

Compound Docking_score Binding affinity (∆G) Kcal/mol 

Riboflavin -86.8635 -6.98 

Cineole -63.8568 -7.13 

Thiamin -88.0711 -7.31 

eugenol-methyl-ether -72.5855 -7.59 

Piperine -86.1873 -8.07 

Caryophyllene -79.8837 -8.17 

Piperlonguminine -88.6462 -8.21 

cepharadione a -78.1528 -8.23 

Cadinene -83.9878 -8.24 

octadecanoic acid -103.095 -8.91 

dotriacontanoic acid -119.888 -10.74 

Triacontane -115.492 -10.81 

(-)-beta-sitosterol -100.057 -10.86 
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beta-sitosterol palmitate -117.959 -12.5 

beta-carotene -113.959 -14.29 

Reference_ligand (Pubchem CID: 2812) -77.1437 -8.97 

 

Similarly, dotriacontanoic acid, triacontane, (-)-beta-sitosterol, beta-

sitosterol palmitate, and beta-carotene from betel leaf exhibited lower 

binding affinity scores than the reference ligand. Curcumin and 

caryophyllene, often cited as antifungal agents, demonstrated binding 

affinities close to the reference ligand, with curcumin at -8.92 kcal/mol 

and caryophyllene at -8.17 kcal/mol, differing by less than 1 kcal/mol. 

Binding affinity, measured through computational tools, refers to the 

strength of interactions between small molecules and target proteins. 

Lower scores indicate stronger and more favorable interactions within 

the protein's binding pocket. 

Druglikeness and ADMET (Absorption, Distribution, Metabolism, 

Excretion, and Toxicity) Analysis 

Compounds passing Lipinski's Rule of Five included 

dihydrosphingosine, curcumin, dihydrocurcumin, 

tauroursodeoxycholic acid, 1,7-bis(4-hydroxy-3-methoxyphenyl)-3,5-

heptanedione, 1,5-dihydroxy-1,7-bis(4-hydroxy-3-methoxyphenyl)-

4,6-heptadien-3-one, 7-hydroxy-1,7-bis(4-hydroxy-3-methoxyphenyl)-

1-heptene-3,5-dione, gitoxigenin, and glycocholic acid from turmeric 

(Figure 1). From betel leaf, compounds included caryophyllene, 

cadinene, piperine, cepharadione A, piperlonguminine, cineole, and 

eugenol-methyl-ether (Figure 2). Tauroursodeoxycholic acid, 7-

hydroxy-1,7-bis(4-hydroxy-3-methoxyphenyl)-1-heptene-3,5-dione, 

and glycocholic acid exhibited higher binding affinities than the 

reference ligand in turmeric, while all compounds from betel leaf that 

passed Lipinski's rule showed higher affinities compared to the 

reference ligand. Cadinene displayed the highest binding affinity of -

8.24 kcal/mol compared to the reference ligand's -8.97 kcal/mol. 

 

 

 

Figure 1: Lipinski rule of 5 for the Selected compound from Curcuma longa 

 

Figure 2: Lipinski rule of 5 for the Selected compound from Piper betle 

 

In turmeric, gitoxigenin, linoleic acid, palmitic acid, alpha-linolenic 

acid, dihydrosphingosine, octadecanamide, 1,7-bis(4-hydroxy-3-

methoxyphenyl)-3,5-heptanedione, and nerolidyl propionate were 

analyzed for GI absorption and BBB permeability. High GI absorption 

indicates good oral bioavailability, while good BBB permeability 

signifies the ability to cross the blood-brain barrier. Structural analysis 

using Toxtree Cramer rules identified dihydrosphingosine and 1,7-

bis(4-hydroxy-3-methoxyphenyl)-3,5-heptanedione as exhibiting 

intermediate (Class II) toxicity, whereas octadecanamide was classified 

as high (Class III) toxicity. Linoleic acid, palmitic acid, alpha-linolenic 

acid, 8,11-octadecadienoic acid, and nerolidyl propionate were 

identified as low (Class I) toxicity compounds with better GI absorption 

and BBB permeation, all having near-similar scores to the reference 

ligand, differing by less than -1 kcal/mol. 
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Carcinogenicity and mutagenicity analysis with Toxtree indicated no 

carcinogenicity for linoleic acid, palmitic acid, alpha-linolenic acid, 

8,11-octadecadienoic acid, and nerolidyl propionate (Table 4). Cramer 

rule analysis classified octadecanoic acid, triacontane, dotriacontanoic 

acid, cadinene, caryophyllene, thiamin, and eugenol-methyl-ether as 

low (Class I) toxicity from betel leaf (Table 5), although thiamin and 

eugenol-methyl-ether exhibited structural alerts for carcinogenicity, 

while the others showed negative results. 

 

 

 

Table 4. ADME and Toxicity prediction of predicted ligand inhibitor for Cytochrome P450 EryK protein from Curcuma longa 

Pubchem_id Compound Name GI Absorption BBB Creamer Carcinogenicity 

10467 Arachidic acid Low No Low (Class I) Negative 

5280450 Linoleic acid High Yes Low (Class I) Negative 

445639 Oleic acid High No Low (Class I) Negative 

985 Palmitic acid High Yes Low (Class I) Negative 

5281 Octadecanoic acid High No Low (Class I) Negative 

969516 Curcumin High No High (Class III) Negative 

222284 (-)-beta-Sitosterol Low No High (Class III) Negative 

5280794 beta-Stigmasterol Low No High (Class III) Negative 

5280934 alpha-Linolenic acid High Yes Low (Class I) Negative 

91486 Dihydrosphingosine High Yes Intermediate (Class II) Negative 

984 Hexadecanal High No Low (Class I) Structural Alert 

for genotoxic 

carcinogenicity 

10140 Glycocholic acid High No High (Class III) Negative 

31292 Octadecanamide High Yes High (Class III) Negative 

10429233 Dihydrocurcumin High No High (Class III) Negative 

124072 1,7-Bis(4-hydroxy-3-methoxyphenyl)-3,5-heptanedione High Yes Intermediate (Class II) Negative 

13888134 1,5-Dihydroxy-1,7-bis(4-hydroxy-3-methoxyphenyl) 

-4,6-heptadien-3-one 

High No High (Class III) Negative 

9848818 Tauroursodeoxycholic acid Low No High (Class III) Negative 

131752799 7-Hydroxy-1,7-bis(4-hydroxy-3-methoxyphenyl) 

-1-heptene-3,5-dione 

High No High (Class III) Negative 

5312487 8,11-Octadecadienoic acid High Yes Low (Class I) Negative 

348482 Gitoxigenin High No High (Class III) Negative 

81573 Nerolidyl propionate High Yes Low (Class I) Negative 

 

Table 5. ADME and Toxicity prediction of predicted ligand inhibitor for Cytochrome P450 EryK protein from Piper betle 

Pubchem_id compound name GI Absorption BBB creamer_ Carcinogenicity 

5281 octadecanoic acid High No Low (Class I) Negative 

12535 Triacontane Low No Low (Class I) Negative 

638024 Piperine High Yes High (Class III) Structural Alert for nongenotoxic 

carcinogenicity and Structural Alert for 

genotoxic carcinogenicity 

222284 (-)-beta-sitosterol Low No High (Class III) Negative 

94577 cepharadione a High Yes High (Class III) Structural Alert for nongenotoxic 

carcinogenicity and Structural Alert for 

genotoxic carcinogenicity 

13747834 beta-sitosterol palmitate Low No High (Class III) Negative 

19255 dotriacontanoic acid Low No Low (Class I) Negative 
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5320621 piperlonguminine High Yes High (Class III) Structural Alert for nongenotoxic 

carcinogenicity and Structural Alert for 

genotoxic carcinogenicity 

5280489 beta-carotene Low No Intermediate (Class 

II) 

Negative 

3032853 cadinene Low No Low (Class I) Negative 

5281515 caryophyllene Low No Low (Class I) Negative 

2758 cineole High Yes High (Class III) Negative 

7127 eugenol-methyl-ether High Yes Low (Class I) Structural Alert for nongenotoxic 

carcinogenicity and Structural Alert for 

genotoxic carcinogenicity 

493570 riboflavin Low No High (Class III) Structural Alert for genotoxic 

carcinogenicity 

1130 thiamin High No Low (Class I) Structural Alert for genotoxic 

carcinogenicity 

Tanimoto Similarity for Chemical Structure and Binding Site Similarity 

Calculation 

Tanimoto similarity calculations using Python interaction 

fingerprinting (IFP) did not identify any compounds in turmeric or betel 

leaf with over 10% structural similarity to the reference ligand 

(PubChem ID: 2812) (Table 6-7). However, at least 50% of the amino 

acids involved in compound binding exhibited similarity to the binding 

site of the reference ligand (Table 8). Glycocholic acid and gitoxigenin 

showed the highest binding site similarity (50%) in turmeric, while 

cadinene and caryophyllene exhibited the same in betel leaf (Table 9). 

Linoleic acid, palmitic acid, alpha-linolenic acid, 8,11-octadecadienoic 

acid, and nerolidyl propionate displayed IFP similarities ranging from 

18-20% compared to the reference ligand, while cadinene and 

caryophyllene, classified as low toxicity, exhibited 50% IFP similarity. 

Table 6: Tanimoto similarity of structure selected compound from Curcuma longa with reference ligand (pubchem id: 2812) 

Pubchem_id Compound Tanimoto similarity (%) 

10467 Arachidic acid 2.1 

5280450 Linoleic acid 3.6 

445639 Oleic acid 1.9 

985 Palmitic acid 2.1 

5281 Octadecanoic acid 2.1 

969516 Curcumin 6.5 

222284 (-)-beta-Sitosterol 3.7 

5280794 beta-Stigmasterol 2.4 

5280934 alpha-Linolenic acid 3.6 

91486 Dihydrosphingosine 0.0 

984 Hexadecanal 0.0 

10140 Glycocholic acid 1.1 

31292 Octadecanamide 0.0 

10429233 Dihydrocurcumin 5.7 

124072 1,7-Bis(4-hydroxy-3-methoxyphenyl)-3,5-heptanedione 3.8 

13888134 1,5-Dihydroxy-1,7-bis(4-hydroxy-3-methoxyphenyl)-4,6-heptadien-3-one 4.1 

9848818 Tauroursodeoxycholic acid 0.0 

131752799 7-Hydroxy-1,7-bis(4-hydroxy-3-methoxyphenyl)-1-heptene-3,5-dione 4.1 

5312487 8,11-Octadecadienoic acid 3.6 

348482 Gitoxigenin 5.1 

81573 Nerolidyl propionate 1.5 

The amino acids used in docking poses for cadinene and caryophyllene 

were found to be about 50% similar to the reference ligand (Table 9), 

indicating similar interactions with the protein. In turmeric, gitoxigenin 

and glycocholic acid exhibited more interactions, including additional 
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hydrogen bonds. Compounds showing better GI absorption, BBB 

permeability, and low toxicity—linoleic acid, palmitic acid, alpha-

linolenic acid, 8,11-octadecadienoic acid, and nerolidyl propionate—

demonstrated few differences in interactions. This study highlights the 

widespread use of traditional medicine within Indonesian civilization 

for managing health and treating illnesses. However, a critical gap in 

knowledge persists regarding the safety and efficacy of these medicinal 

plants. This lack of scientific understanding presents a significant 

challenge, as it hinders the development of evidence-based practices 

and raises concerns about potential adverse effects. The example of 

turmeric and meniran exemplifies this point. Though commonly used 

in Southeast Asia for its medicinal properties, the precise chemical 

compounds responsible for its potential health benefits remain 

unidentified.  

 

 

Supplementary Figure 1: Calculated RMSD of 1000 times re-docking of the reference ligand 

Further research is necessary to elucidate these mechanisms of action 

and conduct rigorous clinical trials to confirm the safety and efficacy of 

turmeric and betel leaf, particularly regarding its purported anticancer 

properties. 

Table 7: Tanimoto similarity of structure selected compound from Piper betle with reference ligand (pubchem id: 2812) 

Pubchem_id Compound Tanimoto similarity (%) 

5281 octadecanoic acid 2.1 

12535 triacontane 0.0 

638024 piperine 6.0 

222284 (-)-beta-sitosterol 3.7 

94577 cepharadione a 8.8 

13747834 beta-sitosterol palmitate 3.2 

19255 dotriacontanoic acid 2.1 

5320621 piperlonguminine 4.2 

5280489 beta-carotene 1.6 

3032853 cadinene 1.7 

5281515 caryophyllene 3.3 

2758 cineole 0.0 

7127 eugenol-methyl-ether 5.6 

493570 riboflavin 5.4 

1130 thiamin 4.3 

Employed a machine learning approach to predict potential Cytochrome 

P450 EryK protein inhibitors from natural sources. t and betel leaf were 

investigated using in silico methods to identify promising candidates. 

Following compound selection from public databases (Knapsack) and 

fingerprint generation using RDKit, machine learning models were 

developed and compared. The SVC model emerged as the most 

effective in predicting active compounds36. 

The molecular docking analysis conducted on compounds derived from 

turmeric and betel leaf has provided valuable insights into their binding 

affinities and potential therapeutic applications. The findings aim to 
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compare these results with existing literature to validate observations 

and highlight significant differences or similarities. 

Binding Affinity Comparisons 

It was observed that curcumin and caryophyllene exhibited higher 

binding affinity values compared to reference ligands, suggesting 

strong interactions with target proteins. These findings align with 

previous studies demonstrating the potent anti-inflammatory properties 

of both compounds37. Conversely, certain compounds like arachidic 

acid from turmeric displayed lower binding affinities but still showed 

promise for therapeutic use due to strong interactions with other targets. 

Similarly, dotriacontanoic acid demonstrated potent inhibitory effects 

on inflammatory mediators, underscoring its potential therapeutic 

applications similar to those observed by Dar et al. 38 

Structural Variations Impact 

The varied binding affinities could be explained by structural variations 

among compound molecules. For instance, beta-stigmasterol was found 

to display weaker binding compared to curcumin but may offer unique 

therapeutic benefits through alternative pathways that have not yet been 

fully explored39. Further investigation into conformational dynamics 

could provide deeper insights into these complex interactions. 

Table 8: IFP similarity of structure selected compound from Curcuma longa with reference ligand (pubchem id: 2812) 

Pubchem_id Compound IFP similarity (%) 

984 Hexadecanal 27 

985 Palmitic acid 18 

5281 Octadecanoic acid 15 

10140 Glycocholic acid 50 

10467 Arachidic acid 20 

31292 Octadecanamide 15 

81573 Nerolidyl propionate 17 

91486 Dihydrosphingosine 8 

96516 Curcumin 27 

124072 1,7-Bis(4-hydroxy-3-methoxyphenyl)-3,5-heptanedione 30 

222284 (-)-beta-Sitosterol 36 

348482 Gitoxigenin 50 

445639 Oleic acid 20 

5280450 Linoleic acid 18 

5280794 beta-Stigmasterol 23 

5280934 alpha-Linolenic acid 18 

5312487 8,11-Octadecadienoic acid 20 

9848818 Tauroursodeoxycholic acid 44 

10429233 Dihydrocurcumin 33 

13888134 1,5-Dihydroxy-1,7-bis(4-hydroxy-3-methoxyphenyl)-4,6-heptadien-3-one 33 

131752799 7-Hydroxy-1,7-bis(4-hydroxy-3-methoxyphenyl)-1-heptene-3,5-dione 13 

 

Table 9: IFP similarity of structure selected compound from Piper betle with reference ligand (pubchem id: 2812) 

Pubchem_id Compound IFP similarity (%) 

1130 thiamin 44 

2758 cineole 25 

5281 octadecanoic acid 18 

7127 eugenol-methyl-ether 38 

12535 triacontane 21 

19255 dotriacontanoic acid 21 

94577 cepharadione a 29 

222284 (-)-beta-sitosterol 36 

493570 riboflavin 40 

638024 piperine 44 
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3032853 cadinene 50 

5280489 beta-carotene 33 

5281515 caryophyllene 50 

5320621 piperlonguminine 33 

13747834 beta-sitosterol palmitate 30 

 

 

Conclusions 

This study highlights the potential of natural products from turmeric and 

betel leaf as inhibitors of Cytochrome P450 EryK protein, utilizing a 

combined in silico approach for compound identification through 

molecular docking and machine learning. Although curcumin and 

caryophyllene showed strong binding interactions, variations in binding 

affinities among other compounds underscore the complexity of their 

mechanisms. Limitations regarding oral bioavailability were noted, 

along with the need for further investigations in in vitro and in vivo 

settings to validate efficacy and safety. Overall, this work contributes 

to the development of evidence-based natural therapies while enhancing 

our understanding of protein-ligand interactions. The discovery of 

novel protein targets by curcumin warrants further biochemical 

characterization. Long-term toxicity assays are recommended to 

enhance the understanding of safe usage in medical treatments, while 

also exploring potential synergistic effects when combined with other 

therapeutic agents like beta-caryophyllene, which showed promising 

anti-inflammatory properties despite relatively small differences in 

binding affinity scores (−8.92 kcal/mol for curcumin and −8.17 

kcal/mol for caryophyllene). 
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