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Introduction 

Recent findings have ignited a rejuvenated interest in phyto-

principles and herbal therapy. This paradigm shift is not farfetched with 

the deploring trend of epidemics and pandemics, despite the vigorous 

techniques that are now, easily applicable to drug discovery. 

Unfortunately, the deteriorating economies particularly, of the low and 

middle-income countries (LMICs) have left the globe one step behind 

in addressing the emerging health issues.1, 2, 3, 4 The COVID-19 

(coronavirus disease 2019), a recent pandemic led to global travel 

restrictions and minimal economic activities.5 Herbal therapy and 

nutraceuticals are now a big market in many countries because of their 

cost and accessibility.6, 7 Some of the phytochemical constituents of the 

beneficial herbs have been isolated and elucidated. Among these 

constituents are the saponin molecules found in the soapbark tree (Q. 

saponoria) of the family Quillajaeceae.8, 9, 10, 11 The soapbark tree has 

been reported for its beneficial application in the pharmaceutical, health 

and agricultural sectors.12, 13 The aqueous extract of the bark of this plant 

has been demonstrated to be bioactive. The bioactive has been 

associated with the possession of saponin in the inner layer of the bark.14 

Some of the reported saponins from this herb which are collectively 

known as quillaja saponins include QS-21, QS-17 and QS-7.14 Although 

some of these saponins have been associated with known beneficial 

bioactivities, others are still lacking in the available data that may 

provide their structural clarity.14, 15 
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Such clarity could provide an understandable guide to the mechanism 

of their bioactivity and application(s). Therefore, this study was aimed 

at providing further lucidity to one of the previously identified saponin 

constituents of the aqueous extract of the soapbark tree, using gas-liquid 

chromatography (GLC), mass spectrometry (MS) and nuclear magnetic 

resonance (NMR) techniques.   

 
Materials and Methods 

Materials 

All solvents and reagents used were of analytical grade obtained from 

the British Drug Houses (BDH) Chemical Company. Reference 

standards for glucose, fructose, rhamnose, glucuronic acid, galactose, 

xylose, arabinose, and lactose were obtained from the open market; the 

pure saponin fraction sample from the commercial extract product of Q. 

saponoria: Quil-A was obtained by semi-preparative RP-HPLC 

procedure and identified as described in our prior study.8, 16 Model 3920 

Gas Liquid Chromatography (GLC) (Perkin-Elmer, Germany); Model 

5985 B GC/MS/DS GLC-Mass Spectrometer (MS) (Hewlett-Packard. 

USA); Macromass VG Quattro II MS/MS (Quadrupole-Hexapole-

Quadrupole) (Macromass, UK); and INOVA 400 MHz Nuclear 

Magnetic Resonance (NMR) spectrometer (Varian, USA); and ultra-

low temperature freezer MDF-150C118 (Antech, Germany) was 

applied in the structural elucidation. 

Methods 

Alditol acetate derivatization 

Acid hydrolysis: Ten milligrams of the dried saponin sample were 

dissolved in 2 mL of 2 M trifluoroacetic acid (TFA), mixed using the 

vortex and kept at 100o C. The mixture was evaporated to dryness on a 

Rotary Evaporator RE-1100 (Bibby Scientific, UK) after 12 hours; and 

the residue recovered.17-21 

To the above hydrolysis residue, 2 mL saturated aqueous solution of 

sodium borohydride (NaBH4) was introduced. Two drops of glacial 

acetic acid and 2 mL of acetic anhydride in pyridine at a 1:1 ratio, were 

added to the mixture. The mixture was then kept at 90 to 100oC for 8 

hours before evaporating to dryness on the rotary evaporator.17, 19 The 
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obtained residue (3.45 mg) was kept in the ultra-low temperature freezer 

at -70o C for subsequent use. 

Methylation of the alditol acetate derivatives 

Two milligrams of the alditol acetate residue obtained above, dissolved 

in 2 mL of dimethyl sulfoxide were mixed with 2 mL of methylsulfonyl 

carbanion in a small flask using a magnetic stirrer. The mixture was 

stirred under a nitrogen stream for 10 minutes at room temperature.19 

An excess of methyl iodide was added and further stirred for 20 

minutes. The reaction mixture was diluted to twice its volume with 

water, and extracted twice with the same volume of chloroform. The 

extract was washed with water severally and evaporated in a vacuum 

using the freeze dryer. Obtained residue was dissolved in a 2 ml one-to-

one mixture of ether-petroleum, and washed with water to remove 

traces of dimethyl sulfoxide.17 The solution was then evaporated under 

streams of nitrogen, leaving 0.078 mg of the methylated residue that 

was preserved at -70o C in an ultra-low temperature freezer for further 

use.  

Preparation of synthetic Alditol acetate derivatives from reference 

monosaccharides  

Adopting the procedures as described above, ten milligrams of each 

sugar (reference standard) was used to derive their respective alditol 

acetate residue. These derivatives were used as the respective internal 

standards for the GLC evaluation.17, 19 

GLC and GC-MS analyses  

Instrumentation: The preconditioned fused silica capillary GLC column 

of dimensions 0.32 mm id x 25 m containing 3% OV-17 (Chompack) 

and Perkin- Elmer model gas chromatograph with a hydrogen flame 

detector was used for the GLC experiments. The GLC-packed column 

of 1.5 % silar 7CP on Gas Chrom Q (specifications: 100-120 mesh; 2 

mm id x 183 cm) obtained from Chrompack was used for the GC-MS 

analyses. Sample preparation: One milligram of the alditol acetate 

derivative (of saponin sample or reference monosaccharides) was 

dissolved in 1 mL of hexane and 1 mg of the methylated residue was 

dissolved in 1 mL of chloroform for their respective GLC and GC-MS 

analyses.  

Chromatogram and spectra development: Applying the stationary phase 

column as stated above, the GC was developed using the Perkin-Elmer 

Model 3920 GLC operated isothermally and conditioned at 

temperatures varied at a rate of 4o C/min from 190 to 220o C with the 

mobile phase flow rate maintained at 40 mL/min.19 The hexane mobile 

phase was used for the GLC analysis of the alditol derivatives and data 

were interpreted for each monosaccharide unit using the chromatogram 

peaks obtained for the respective internal (reference) standards. The 

assigned monosaccharide units were further supported by the respective 

retention time of the alditol acetate derivatives of the reference 

monosaccharides. 

Using chloroform mobile phase for the GC-MS analyses of the 

methylated derivatives, the GC-MS stationary phase column (cited 

above) was conditioned at a temperature program ranging from 170° C 

(delay 2 min) to 250° C.17 All the GC-MS spectra for the permethylated 

alditol acetates were obtained using the Hewlett-Packard Model 5985 

B GC/MS/DS. The MSD (mass spectra detector) is equipped with a dual 

electron impact-chemical ionization (EI-CI) source that has a 

membrane separator set at a source temperature of 160o C and an 

ionizing voltage of 70 eV. CI spectra were recorded at a source pressure 

of 120 Pa, using methane as reagent and carrier gas, at a source 

temperature of 150° C, and ionization voltage of 230 eV. Data were 

interpreted online using the National Institute of Standards and 

Technology (NIST) MS data library. 

Mass spectroscopy (MS) of saponin fraction 

Instrumentation: The Macromass VG Quattro II MS/MS (Quadrupole-

Hexapole-Quadrupole) instrument fitted with electrospray ionization 

(ESI) source was used for the MS and space tandem mass spectrometric 

(MS/MS) analyses of the saponin fraction. In consistence with previous 

reports, the ionization temperature and voltage were conditioned at 200o 

C and 70 eV.17 Sample preparation: A sufficient amount of the saponin 

fraction was dissolved with 10mM ammonium acetate 10 % solution to 

obtain a 1 mg/mL solution. The solution was ultra-sonicated, filtered 

through a sintered glass filter funnel, and used for spectra development.  

MS Spectra development: Using the direct inlet (DI) technique, 1 mL 

of the sample was introduced into the source unit of the mass 

spectrophotometer with the aid of the sample cup and DI probe (which 

was heated once inserted into the instrument). The source unit was kept 

at 300o C. Ten microliters of the sample were injected into the ESI. A 

cone voltage-induced dissociation (CVID) was applied, increasing from 

50 to 200 KV. Spectra scans were obtained from 300 to 3000 m/z. 

Collision-induced dissociation (space) MS/MS (CID-MS/MS): Low-

energy collision-induced dissociation tandem space mass spectrometry 

(CID-MS/MS) experiment was performed using the same technique as 

described for the MS spectra development. However, argon was used as 

the collision gas in the space tandem collision cell. The cone voltage 

was set at 25kV and the collision energy at 180 eV. 

NMR spectrometric analysis 

Instrumentation: The Varian INOVA 400 MHz NMR which has a 

console equipped with one high-band (1H/19F) channel and two 

broadband-band channels was pre-conditioned for the experiment. The 

instrument was configured and optimized for 1H sensitivity. 

Sample preparation: A sufficient quantity of the saponin fraction was 

dissolved in deuterated methanol (CD3OD) to approximately 0.4%w/v  

solution at room temperature. The solution was vortexed for 1 minute 

at 400 rpm using the Basic Vortex Mixer 3067-71 (Thermo Scientific©, 

India). Aided by a teat, the solution was filtered using a glass cotton 

wool-fitted Pasteur pipette (previously washed with CD3OD) into a 

clean 5 mm outer diameter NMR sample tube. 

NMR Spectra development: The sample containing tube, closed with a 

Teflon tape-wrapped cap and held in the spinner, was placed in the 

sample depth gauge. Analysis was carried out with the 5 mm triple 

resonance inverse probe, and the NMR spectra (proton frequency 400 

MHz) were recorded. The chemical shifts were reported in ppm 

referenced against the solvent peaks and the coupling constants (JH-H) 

in Hetz (Hz). Also, the Heteronuclear Multiple Bond Correlation 

(HMBC) experiment, at delay times between 50 and 70 ms, was also 

performed. 

 

Results and Discussion 

Prior data have been reported on the isolation of saponins from the 

soapbark tree using RP-Chromatography with mobile systems of 

increasing polarity.  The available data in this study are substantial 

contributions to the elucidation of the chemical structure of one of the 

saponins that were identified.8  

GLC and GC-MS 

GC-MS experiments are used to provide data on the glycone 

substituents. The obtained peaks for the alditol acetate and 

permethylated derivatives of the saponin glycone units provide 

supporting evidence(s) on the number, types and configuration of the 

constituting saccharide units, as well as the type of saponin.24, 25 In such 

experiments, it is typical to hydrolyze the glycosidic linkages in other 

to release the constituting saccharide units of the glycone moiety. The 

obtained alditol acetates of the saccharide units, as in this study, present 

the monosaccharide derivatives in the open chain Fischer (projection) 

conformation which lacks the expression of epimerism common with 

simple sugars, due to the possession of chiral center(s).24 

Alditol acetate derivatization 

Acetylation of the alditols eliminates the anomeric centers and chirality 

typical of the ring forms of simple sugars. Thus, this presented the 

monosaccharides in the open-chain form that ultimately simplifies the 

GLC-chromatogram to a single peak for each sugar unit derivative.25 In 

this form, they were stable, quantifiable and storable.  The gas 
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chromatogram of the alditol acetate was used to identify the sugar 

residues (Figure 1). The peaks and data interpretation using the internal 

standards indicated the presence of rhamnose (Rha), fucose (Fuc), 

galactose (Gal), glucuronic acid (GluA), and glucose (Glu) in the order 

of their retention times, as the monosaccharides that make up the glycon 

moieties. This was further corroborated by the GLC-chromatogram 

obtained for the respective standards. In all instances, the pattern of the 

peaks identified for the sugar units was consistent with earlier reports 

for the derivatives: rhamnitol pentaacetate, fucitol pentaacetate 

galactitol hexaacetate, tetraacetylgluconic acid, and glucitol 

hexaacetate respectively.18, 22, 24 Similar monosaccharide constituents 

were reported for the quillaja saponins however, the absence of xylose 

in this study clearly suggests a departure from the norm associated with 

quillaja saponins that possess quillaic acid aglycone.26 The internal 

standards were essentially included in this study to resolve 

identification difficulties inherent with the non-reproducibility of the 

correction factor of peak areas obtained by the ionization detectors, for 

alditol acetate derivatives from different sugars especially, when 

capillary columns are used. This is common, but may not be restricted 

to the flame-ionization detector alone.25, 27, 28 

 

 
Figure 1: The identification of the monosaccharide residues of 

the pure fraction using the GC peaks of the alditol acetate 

derivatives. 

Methylation of the alditol acetate derivatives 

The sensitivity of sugar analysis is increased by the formation of 

permethylates of the alditol acetates. This is because the active 

hydrogen in the acetate is replaced by an alkylsilyl unit like the 

trimethylsilyl. In effect, the replacement reduces the propensity to form 

hydrogen bonding and increase volatility though, the thermal stability 

is maintained.29 As such, the signal is increased with the silylation of 

the alditol acetates.25, 29 

GC-MS peaks of the permethylated alditol acetates indicate the 

presence and linkage of glycone moieties. This was a suitable approach 

to resolve the absolute configuration of the monosaccharides in this 

study, as it proffers the position of the glycosidic linkages between sugar 

residues.30 The absolute configuration of the silyated derivatives as 

identified by the primary m/z spectra analysis using the NIST-library is 

indicated in Table 1. The obtained data confirms the absence of xylose. 

Further interpretation of data in combination with previous reports 

suggests the presence of a bisdesmosidic glycosidic structure with a 

disaccharide at C-3 and trisaccharide at C-28 of the aglycone nucleus. 

Three types of aglycones have been associated with the quillaja 

saponins: quillaic acid, gypsogenin and phytolaccinic acid. However, 

reports on the structural elucidation of the saponins have shown that the 

absence of xylose may potentially indicate the possession of a 

phytolaccinic (sometimes called phytolaccagenic) acid aglycone 

nucleus.31, 32    

Mass Spectrometry 

In recent times, the generation of parent and daughter ions in mass 

spectrometry has formed a major part in providing structural clarity or 

identification of molecules. Molecular ions (parent ions) have been 

shown to be closely related to their parent molecule with regard to the 

m/z ratio. Dissociation of the energetically unstable molecular ions into 

charged fragments (daughter ions) can occur in a pattern that is 

consistent with specific bond characteristics, typical of a particular 

molecule. As such, the application of the MS and MS-space-tandem 

techniques in this study was geared to provide clarity to the molecular 

structure of the saponin fraction. CVID-MS (Figure 2) and the CID-

MS/MS (Figure 3) data indicated typical peaks and fragmentation 

patterns which suggests that the daughter ions are probable products of 

the parent ion from the pure saponin fraction. 

 

 
Figure 2: CVID of the pure fraction which indicates the 

increasing number of daughter ions and the progressive decrease 

of the size of the peak appearing at 1560 m/z with increasing 

CV from 50 KV at “a” through b, c, d to e, at 200 KV. 

CVID-MS of the Saponin Fraction 

Spectra data (Figure 2a) of the saponin fraction obtained at a cone 

voltage of 50 KV was clean with little or no noise at approximately m/z 

1560. At the induction of cone voltage dissociation (CVID-MS) by 

increasing the cone voltage (CV) step wisely, different sets of typical 

daughter ions were observed at the CV of 100 (Figure 2b), 150 (Figure 

2c), 175 (Figure 2d) and 200 KVs (Figure 2e). Following the increasing 

number of peaks obtained as the CV was increased, it was obvious that 

most of the proceeding signals (daughter ions) emanated from the 

molecular ion observed at m/z 1560. Interpreting the obtained spectra 

peaks in Figure 2c, d, e in collaboration with prior reported studies 

suggests the presence of aglycone ions (A-ion) at m/z 853; 791; and 513 

which are typical of the phytolaccinic acid and sugar units at C-3; 

phytolaccinic acid and C-3 sugar unit with the absence of O-acetyl unit 

at C-23, and loss of carbon dioxide with H2O from the glucuronic acid 

residue; and phytolaccinic acid with the absence of O-acetyl unit at C-

23 respectively.33,34, 35 The signal at m/z 629 which can also occur at 651 

in sodiated positive mode, and 715 which is typical of galactose, have 

been reported for S13, a quillaja saponin that possesses a phytolaccinic 

acid aglycone. 33, 34, 35, 36 
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Figure 3: Low-energy collision-induced dissociation tandem 

space mass spectrometry (CID-MS/MS) of the pure fraction, 

indicating a series of daughter ions which are probable 

fragmentation products of the parent ion occurring at 1560 m/z. 

CID-MS/MS space tandem of the Saponin Fraction 

The CID-MS/MS Spectra signals at m/z 628.07 and 715.17 in Figure 3 

further reinforced the suggestion of a phytolaccinic acid aglycone due 

to its archetypal form. Previous reports have shown that monohexoses 

exhibit base peaks due to deprotonated molecular ions [M – H] ̶  at 

approximately m/z 179. 33 Under high-pH conditions as applied in the 

isolation of the saponin fraction used in this study,8 the 

monosaccharides may undergo retro-aldolization reactions, yielding 

stable α-dicarbonyl compounds. 37, 38, 39, 40 Thus, the peak signals in the 

low m/z range of Figure 3 are likely attributable to deprotonated by-

products from monohexose.41 Usually, the m/z 101.15 is a deprotonated 

radical typical of fructose with the 1, 3 linkage that may also appear at 

m/z 100. However, similar signals for glucose have been shown to 

overlap those observed for fructose with minor differences only in their 

relative intensities.41, 42 The peak at m/z 157 has been previously 

reported for the glucuronyl unit with the loss of H2O at the negative ion 

mode.41, 43 

NMR Spectrometric Analysis 

Evidence provided by the chemical shifts (Figures 4 and 5) and the 

configuration of the five anomeric protons (Table 2), as well as, prior 

literature data,22, 23 provided the fundamental information for the 

proposed structure (Figure 6). The interpretation of the 1H NMR spectra 

in Figure 4, supported by reported data in prior studies, showed that the 

saponin fraction is a bisdesmosidic compound that has two different 

saccharide linkages located at two terminals: disaccharide at C-3 

indicated at a chemical shift of 3.86, and trisaccharide with no apparent 

proton signal at C-28. Also, indicated are five anomeric protons (Table 

2) which resonated as doublets.33, 44 These proton signals and 

configuration, as supported by their coupling distances, for the pyranose 

sugar residues are consistent with previous reports.32 Proton peak 

resonates appearing as singlets were recorded at the chemical shifts of 

5.6 and 9.5 ppm for the olefinic and aldehyde protons attached to the C-

12 and C-23 of the aglycone, respectively. The substitution positions of 

the acyl groups were further elucidated with the three-bond 

heteronuclear connectivity observed as cross-peaks. Data indicated a 

carbonyl at 1.16 ppm in the HMBC spectrum corresponding to the 

proton peak at C-24 (Figure 5). Correlational observation of the 1H-

HMBC in a similar report confirmed the disaccharide β-D-Galp-(1→2)-

β-D-GlcpA and trisaccharide α-L-Rhap-(1→2)-[β-D-Glcp- (1→3)]-β-

D-Fucp residues are linked to C-3 and C-28, respectively. Comparing 

the chemical shifts and the pattern of the cross-peaks to previously 

reported quillaja saponins, data suggests the absence of the quillaic acid 

aglycone.45, 46  

 
Figure 4: NMR spectra of the pure fraction from 1-10 ppm 

indicating the 1H peaks due to the phytolaccinic acid (Pa), 

carbonyl, sugar anomeric and olefinic protons. 

 
Figure 5: The Heteronuclear Multiple Bond Correlation 

(HMBC) spectra of the pure fraction. The peak at 1.16 ppm 

indicates correlational interaction of carbon 4 of the aglycone 

with the carbonyl (carbon at position 24) proton. 

Table 1: The sugar residues of the pure fraction as identified by their permethylated alditol acetate derivatives and fragment m/z peaks 

S/N Identified Monosaccharide Permethylated alditol acetate derivatives (NIST) Fragment ion 

peaks (m/z) 

1 Fucose (Fucp) 1,5-di-O-acetyl-2,3,4-tri-O -methyl-fucitol 131.05 

2 Rhamnose (Rhap) 1,5-di-O-acétyl-2,3,4-tri-O -méthyl-rhamnitol 175.12 

3 Glucuronic acid (GlcAp) 1,5,6-tri-O-acetyl-2,3,4-tri-O -methyl-6-d 2-glucitol 192.01 

4 Galactose (Galp) 1,5-di-O-acetyl-2,3,4-tri-O-methyl-galactitol 233.25 

5 Glucose (Glcp) 1,5-di-O-acetyl-2,3,4-tri-O-methyl-glucitol 205.01 

 

Table 2: Configuration and the coupling constants of the sugar anomeric protons at their assigned 1H NMR chemical shift (δ) 
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S/N Residue 1H NMR Chemical shift (δ) ppm JH-H Coupling 

Hz 
Sugar Configuration 

1.  GlcA-1 4.42 dJ = 6.24 β -Dp 

2.  Gal-1 4.57 dJ = 6.10   β -Dp 

3.  Fuc-1 5.34 dJ = 6.24 α –Lp 

4.  Glu-1 4.50 dJ = 1.50  β -Dp 

5.  Rha-1 4.99 dJ = 6.29 α –Lp 

 

 
Figure 6: The proposed structure for the pure saponin fraction- 

3β, 23α-oxo-30-methoxy-30-oxoolean-12-en-28-oic acid 
 

However, evidence shows consistency with a saponin which possesses 

a phytolaccinic acid aglycone as proposed by the structure in Figure 6.31, 

32, 47, 48, 49, 50 The obtained m/z spectra of the A-ions of the saponin 

fraction were consistent with ion fragments associated with 3β, 23α-

Dihydroxy-30-methoxy-30-oxoolean-12-en-28-oic acid, also known as 

phytolaccinic or phytolaccagenic acid. The aglycone nucleus which is 

the basis for the proposed structure in this study has been reported for 

phytolaccagenin saponin in Phytolacca americana.31, 51, 52, 53  

Prior investigation has associated the immunogenic and adjuvant 

activities of some quillaja saponins with the presence of the carbonyl 

unit (at C-23) that is linked to the C-4 as shown in this study.54 This 

finding may explain the reported adjuvant activity of the saponin 

fraction in the earlier study.16 

 

Conclusion 

The structural complements of the 1H NMR chemical shifts in this study 

support the concept that has been reported by previous studies for 

saponins. However, the presence of the carbonyl (aldehyde) proton peak 

at C-23 indicates a 23-oxo-phytolaccinic acid aglycone which is a 

deviation from the 23-O-acetylphytolaccinic acid aglycone as reported 

for such saponins containing non-quillaic acid aglycone. Previous 

reports on similar non-quillaic saponin isolated from Q. saponoria lack 

the carbonyl moiety as identified in this study. As such, provided 

evidence supports further studies to elaborate on the activity of the 

saponin fraction for academic benefit and also, the ultimate application 

of the herbal principle.  
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