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					ABSTRACT  

					ARTICLE INFO  

					Insulin resistance is a critical factor in developing metabolic disorders like type 2 diabetes, posing  

					challenges for effective treatment. Identifying molecular targets to reverse or mitigate insulin  

					resistance is a key focus in therapeutic research. Advances in genomics and bioinformatics have  

					enabled researchers to explore differentially expressed genes (DEGs) as potential biomarkers and  

					therapeutic targets. This study aims to identify potential therapeutic targets for overcoming insulin  

					resistance based on the analysis of (DEGs). Gallic acid (GA) and its derivatives were then tested  

					against these identified targets using in silico methods. DEGs were analyzed from two Gene  

					Expression Omnibus (GEO) datasets: GSE13070 (human adipose tissue with insulin resistance  

					and insulin sensitivity) and GSE24422 (TNF-induced and non-induced adipocyte cell culture).  

					The identified DEGs were then compared to find common DEGs, which were subsequently  

					analyzed to identify hub-genes. Cross-validation using neural network and principal component  

					analysis (PCA) on gene expression values revealed that the identified hub-genes, including IRS1,  

					PCK1, GYS1, PTRPF, ACACB, and PIK3R2, can serve as biomarkers for insulin resistance (area  

					under the curve, AUC 0.956 and sensitivity 1.00). The search for upstream regulatory proteins  

					(URPs) of the hub-genes in the Comparative Toxicogenomics Database (CTD) indicated that the  

					activities of TNF, PPARA, and AHR could influence the expression of several hub-genes, namely  

					IRS1, PCK1, and ACACB. The activity prediction analysis, which was based on SkelSpheres  

					molecular descriptors and confirmed by molecular docking, suggests that caffeoyl gallic acid may  

					be a candidate compound for overcoming insulin resistance by inhibiting TNFA and activating  

					PPARA.  
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					The Insulin Receptor (IR) gene encodes the insulin receptor located on  

					the cell surface, and mutations or decreased expression of this gene can  

					Introduction  

					Insulin resistance is a condition in which the body’s cells  

					become less sensitive to the effects of insulin, a hormone responsible  

					for regulating blood sugar. It is a hallmark of type 2 diabetes (T2D) and  

					metabolic syndrome. This condition can be influenced by various  

					factors, including genetics, environment, and lifestyle.1,2 Recent  

					research indicates that the expression of certain genes plays a crucial  

					role in the development of insulin resistance. Under normal conditions,  

					insulin binds to insulin receptors on the cell surface, activating a series  

					of signals that allow glucose to enter cells for energy use. In insulin  

					resistance, this signaling is impaired, causing glucose to remain in the  

					bloodstream and ultimately leading to elevated blood sugar levels.3  

					Gene expression plays a significant role in insulin resistance.  

					reduce cellular sensitivity to insulin, resulting in insulin resistance.4 IR  

					substrate (IRS-1 and IRS-2), the two major isoforms of the IR substrate,  

					help mediate insulin signaling after insulin binds to its receptor.  

					Reduced expression or mutations in IRS genes can disrupt the insulin  

					signaling pathway, contributing to insulin resistance.5 Peroxisome  

					Proliferator-Activated Receptor Gamma (PPARγ), a transcription  

					factor that regulates the expression of genes related to lipid and glucose  

					metabolism, enhances insulin sensitivity by promoting fatty acid  

					storage in adipose tissue and reducing lipotoxicity. Genetic variations  

					that reduce PPARγ activity are associated with insulin resistance.6 AKT  

					serine/threonine kinase 2 (AKT2) is a protein kinase involved in the  

					insulin signaling pathway, and mutations or decreased expression of  

					AKT2. It can reduce the phosphorylation and activity of downstream  

					proteins necessary for glucose uptake by cells, contributing to insulin  

					resistance.7 Glucose Transporter Type 4 (GLUT4), an insulin-induced  

					glucose transporter primarily found in muscle and adipose tissues, also  

					plays a crucial role in regulating glucose uptake. Reduced expression or  

					function of GLUT4 leads to decreased glucose uptake by these cells,  

					which is a key characteristic of insulin resistance.8 These findings  

					collectively highlight the complexity of gene expression involved in  

					insulin resistance and emphasize the need for targeted gene expression-  

					based therapeutic strategies. Based on these facts, research on gene  

					expression markers or Differentially Expressed Genes (DEG) analysis  

					is essential to determine effective therapeutic targets for insulin  

					resistance. Gallic acid (GA) is a phenolic compound found in various  
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					plants, including tea, grapes, and nuts. GA and its derivatives, such as  

					methyl gallate, propyl gallate, and epigallocatechin gallate (EGCG),  

					exhibit various biological activities, including antioxidant,  

					antimicrobial, anti-inflammatory, and antidiabetic effects.9–12 GA is  

					known to ameliorate insulin resistance, partly through the modulation  

					of gene expression involved in insulin signaling and glucose  

					metabolism. GA activates AMP-activated protein kinase (AMPK),  

					which in turn stimulates peroxisome proliferator-activated receptor  

					gamma coactivator 1-alpha (PGC1α), enhancing mitochondrial  

					function and energy expenditure.13 GA is also known to enhance  

					adipocyte differentiation and adiponectin expression, a hormone that  

					increases insulin sensitivity, by upregulating Fatty Acid-Binding  

					Protein 4 (FABP4).14 Protocatechuic acid (PCA), a polyphenol similar  

					to GA, significantly increases levels of GLUT-4, IRS-1, IRS-2, PPAR-  

					γ, P-AMPK, and P-Akt in C2C12 myotubes, HepG2 cells, and 3T3-L1  

					adipocytes, thereby improving glucose uptake and insulin signaling.15  

					Additionally, GA has been observed to ameliorate symptoms of  

					polycystic ovary syndrome (PCOS) by reducing testosterone, LH, and  

					inflammatory cytokines, while increasing estrogen levels and the  

					expression of mRNA for Cyp11a1, Cyp19A1, KITL, PTGS2, and  

					Adipo R1, which are associated with insulin sensitivity and metabolic  

					balance.16 Therefore, GA and its derivatives are predicted to provide  

					therapeutic effects for T2D by modulating the expression of genes  

					associated with insulin resistance.  

					The objective of this research is to analyze differentially expressed  

					genes (DEGs) associated with insulin resistance and identify key gene  

					targets that could be modulated to restore insulin sensitivity. This study  

					aims to address the gap in knowledge regarding specific gene  

					expression markers for insulin resistance, offering a novel insight into  

					potential therapeutic targets. In this study, DEG analysis was performed  

					on human genome mRNA microarray data from adipose tissues of  

					human subjects with insulin resistance and insulin sensitivity  

					(GSE13070) available in the Gene Expression Omnibus (GEO)  

					database. The identified DEGs were then compared with DEGs  

					obtained from gene expression data of adipocytes derived from Human  

					Mesenchymal Stem Cells (hMSC) treated with tumor necrosis factor  

					(TNF) to induce insulin resistance (GSE24422). This comparison aimed  

					to find common DEGs between the two datasets so that gene expression  

					targets affected by new therapeutic agents at the in vitro level could be  

					extrapolated to tissue levels in human subjects. Based on the common  

					DEGs found, hub-genes were determined as targets to be influenced by  

					the activity of GA and its derivatives through in silico methods.  

					Hub-Genes Analysis and Validation  

					From the DEGs mapped to each signaling pathway, hub-genes were  

					determined using Cytoscape v3.10.2 (National Human Genome  

					Research Institute, 2024).22 Hub-genes are genes that have many  

					interactions with other genes.23 The raw expression data of the resulting  

					hub-genes were then retrieved from the 'Series Matrix File(s)' in each  

					GSE. This raw data was then analyzed using Orange v3.37.0 for cross-  

					validation with Principal Component Analysis (PCA) and machine  

					learning methods. Cross-validated hub-genes were then analyzed for  

					their upstream regulatory proteins (URPs) using the Comparative  

					Toxicogenomics Database (CTD).24 Upstream regulators are any  

					molecules (including proteins) that can influence the expression of  

					other molecules (e.g., genes/mRNA).  

					Prediction of Activity of GA and its Derivatives on Hub-gene-related  

					Proteins and In Silico Interaction Confirmation  

					Various active compounds related to URPs can be obtained from the  

					ChEMBL database using DataWarrior v6.1.0 (openmolecules, 2024).25  

					ChEMBL is a manually curated database containing bioactive chemical  

					entities with drug-like properties.26 In DataWarrior, active compound  

					data can include IC50 or EC50 values tested on URPs related to common  

					DEGs or hub-genes. To predict the activity values of GA against these  

					URPs, a predictive model must first be created using the activity data  

					of compounds against URPs. Each active and inactive compound  

					against URPs from ChEMBL is clustered into one several groups based  

					on structural similarity using SkelSpheres descriptors. SkelSpheres-  

					based similarity essentially measures how many identical circular  

					fragments or atom groups (hybridization) exist between two molecules  

					compared to the total number of circular fragments in both molecules.26  

					In this study, a SkelSpheres-based similarity of 90% was set. A  

					representative compound from each group was then selected for use as  

					training data. The remaining compounds were used as testing data,  

					whose activity was predicted using support vector regression (SVR) in  

					DataWarrior. The correlation coefficient (R-square, R2) value of the  

					actual vs. predicted logIC50 or logEC50 plot was then determined, and  

					the model was considered valid if R2 > 0.5.27 Once the model is valid,  

					the activity prediction of GA derivatives against URPs is performed in  

					the same manner as the activity prediction on testing data. The  

					structures of GA and its derivatives were obtained from the PUBCHEM  

					database.28 GA derivatives predicted to have the best activity can then  

					have their interactions with URPs confirmed using molecular docking.  

					The crystal structures of URPs, retrieved from the RCSB PDB database,  

					are imported into Molegro Virtual Docker (MVD v.7.0.0, Molexus Aps,  

					2019, free trial). For molecular docking purposes, all water molecules  

					were removed, and corrections are made to any mismatched amino acid  

					residues. Ligand preparation was carried out in Molegro Virtual Docker  

					(MVD) by minimizing the ligand using the "Ligand Energy Inspector"  

					tool to find the most stable conformation or the one with the lowest  

					energy. The validity of the model and molecular docking parameters is  

					determined with a Root Mean Square Deviation (RMSD) value < 2Å.29  

					Subsequently, molecular docking was performed on the 3D structure of  

					the ligand (GA derivatives) against the crystal structure of the protein  

					(upstream regulators protein, URP) repeated 20 times using the MVD.  

					In this docking process, parameters such as energy values, including  

					MolDock Score, Rerank Score, and Hbond, were measured. To evaluate  

					the binding strength between the ligand and the receptor protein, the  

					Rerank Score is often used as a common parameter.30  

					Materials and Methods  

					In general, this study was divided into three stages. The first stage  

					involved identifying common DEGs from two GEO datasets:  

					GSE13070, which was human genome mRNA microarray data from  

					adipose tissue of subjects with insulin resistance and insulin sensitive,  

					and GSE24422, which was gene expression profiling data from mRNA  

					microarrays of adipocyte cell cultures derived from Human  

					Mesenchymal Stem Cells (hMSC) treated with TNF. The second stage  

					involved analyzing hub-genes from the common DEGs to identify  

					target proteins whose activities would be affected. The third stage  

					involved predicting the protein activity values (IC50 or EC50) using  

					molecular descriptors and machine learning methods, and confirming  

					the results with molecular docking.  

					Identification of Common DEGs  

					Statistical Analysis  

					The DEG analysis between the two GEO datasets was performed using  

					GEO2R (https://www.ncbi.nlm.nih.gov/geo/geo2r/).17 Each dataset  

					was analyzed separately, with each sample group arranged according to  

					its experimental conditions. In GEO2R, p-value correction was  

					performed using the Benjamini and Hochberg method 18 with adjusted  

					P value < 0.05..The results of the DEG analysis from both datasets were  

					then used to find common DEGs with the same regulation using Orange  

					v3.37.0 (University of Ljubljana, 2024) in the ‘Merge Data’ widget.19  

					Subsequently, the involvement of the common DEGs in the Kyoto  

					Encyclopedia of Genes and Genomes (KEGG) signaling pathways  

					related to insulin resistance (hsa04931) was analyzed using Enrichr.20,21  

					The p-values for the DEG analysis were derived using the GEO2R tool  

					accessible via the GEO platform. Metrics such as the Area Under the  

					Curve (AUC), Classification Accuracy (CA), Precision (Prec),  

					Sensitivity (Recall), and Specificity were calculated using Orange  

					v3.37.0.  

					Results and Discussion  

					Identification of Common DEGs  

					The results of the Differentially Expressed Genes (DEG) analysis using  

					GEO2R from the two datasets (GSE13070 and GSE24422) can be  

					visualized with a volcano plot, as shown in Figure 1. A volcano plot is  
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					a visualization tool used to display the statistical significance and the  

					magnitude of effect (fold change, FC) of each gene. In Figure 1(a), it  

					can be observed that the DEG analysis effectively distinguishes adipose  

					tissue between subjects with insulin resistance and insulin sensitive  

					(GSE13070), although the number of DEGs is smaller compared to non-  

					DEGs (adj.P.Val < 0.05). In contrast, the results of the DEG analysis  

					for the hMSC with TNF vs. hMSC (GSE24422) shown in Figure 1(b)  

					reveal a larger number of DEGs compared to non-DEGs (adj.P.Val <  

					0.05).  

					pathways occurring between the datasets.31 The results of the common  

					DEG search are presented in Table 1. Table 1 shows that there are 88  

					common DEGs with consistent regulation between the two datasets. It  

					can be observed that most of the common DEGs are upregulated  

					(log2FC > 0). Assuming no post-transcriptional modifications occur,  

					the protein expression corresponding to these common DEGs is also  

					likely to be overexpressed in the insulin-resistant condition. The  

					mapping results of the 88 common DEGs to the KEGG pathway related  

					to insulin resistance (hsa04931) are shown in Table 2.  

					A total of 2,831 DEGs from the GSE13070 dataset and 281 DEGs from  

					the GSE24422 dataset were then analyzed to identify common DEGs.  

					Common DEGs are those with the same regulation across two or more  

					datasets and are often used to identify shared cellular signaling  

					(a)  

					(b)  

					Figure 1. Volcano plot of GSE13070 (a); and volcano plot of GSE24422 (b)  

					Figure 2. The interaction network of common DEGs in the KEGG pathway related to insulin resistance (hsa04931). Nodes in red  

					represent common DEGs that connect two or more signaling pathways (hub-genes).  

					Hub-Genes Analysis and Validation  

					If the genes listed in Table 2 are depicted within the common DEG  

					interaction network, hub-genes are identified as shown in Figure 2.  

					analysis, confusion matrix, and cross-validation results are presented in  

					Figure 3, Table 3, and Table 4. Table 4 shows the cross-validation  

					results on the GSE13070 dataset using neural network model. The area  

					under the curve (AUC) is 0.956, the classification accuracy (CA) is  

					0.905, the sensitivity (Recall) is 1.000, and the specificity is 0.667.  

					These values indicate that the six common DEGs can accurately predict  

					the insulin-resistant condition 100% of the time (sensitivity = 1.000),  

					but they can only predict 66.7% of the subjects with insulin sensitive  

					(specificity = 0.667).  

					Figure 4 displays the results for URP searching of the five hub-genes,  

					excluding PIK3R2, in the Comparative Toxicogenomics Database  

					(CTD). As shown in Figure 4, several URPs can influence the  

					expression of multiple genes simultaneously (marked by red and green  

					Figure  

					2

					reveals that insulin receptor substrate  

					1

					(IRS1),  

					phosphatidylinositol 3-kinase regulatory subunit beta (PIK3R2),  

					phosphoenolpyruvate carboxykinase (PCK1), glycogen [starch]  

					synthase (GYS1), protein tyrosine phosphatase-receptor type  

					(PTRPF), and acetyl-CoA carboxylase 2 (ACACB) are hub-genes.  

					These can be further explored as potential markers and therapeutic  

					targets for insulin resistance. Based on Table 1, it is observed that, under  

					insulin-resistant conditions, IRS1, PCK1, GYS1, PTRPF, and ACACB  

					are underexpressed, while PIK3R2 is overexpressed. To assess whether  

					these hub-genes could serve as markers for insulin resistance, the PCA  

					F
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					Table 1. Regulation of Common DEGs between GSE24422 and GSE13070  

					log2(FC)  

					GSE24422  

					-0.825  

					-1.265  

					-2.433  

					-0.715  

					-0.433  

					-0.553  

					-1.277  

					-1.013  

					-0.37  

					log2(FC)  

					GSE13070  

					-2.921  

					-2.535  

					-2.188  

					-2.124  

					-1.683  

					-1.427  

					-1.407  

					-1.33  

					log2(FC)  

					GSE24422  

					-0.615  

					-0.487  

					-0.636  

					0.341  

					0.341  

					0.363  

					0.399  

					0.408  

					0.417  

					0.421  

					0.436  

					0.436  

					0.437  

					0.447  

					0.492  

					0.548  

					0.552  

					0.564  

					0.566  

					0.567  

					0.622  

					0.632  

					0.644  

					0.657  

					0.673  

					0.773  

					0.803  

					0.812  

					log2(FC)  

					GSE13070  

					-0.685  

					-0.562  

					-0.496  

					0.886  

					0.91  

					log2(FC)  

					GSE24422  

					0.836  

					0.846  

					0.896  

					0.922  

					0.937  

					0.952  

					0.969  

					1.004  

					1.081  

					1.092  

					1.115  

					1.131  

					1.14  

					log2(FC)  

					GSE13070  

					1.034  

					1.281  

					2.859  

					1.151  

					1.572  

					1.539  

					0.794  

					0.987  

					1.256  

					0.944  

					1.725  

					2.422  

					1.181  

					1.208  

					1.112  

					0.796  

					0.88  

					Symbol  

					Symbol  

					Symbol  

					AZGP1  

					CASQ2  

					GPAT3  

					AZGP1  

					FASN  

					PTPRF*  

					TJP2  

					NEXN  

					SLC15A3  

					SLCO2B1  

					NRP2  

					LRPPRC  

					ADAM9  

					MAP1B  

					SAMHD1  

					RNASET2  

					MSC-AS1  

					BMP2K  

					CD28  

					CCL13  

					LTBP2  

					ITGAV  

					OSBPL3  

					TYMS  

					PHGDH  

					YME1L1  

					LRIG1  

					1.181  

					1.109  

					0.931  

					1.291  

					1.397  

					0.609  

					0.749  

					0.651  

					1.049  

					1.249  

					1.093  

					1.611  

					2.861  

					0.855  

					0.95  

					ACACB*  

					PXMP2  

					CLMN  

					-1.263  

					-1.223  

					-1.211  

					-1.194  

					-1.19  

					-0.554  

					-0.823  

					-0.644  

					-0.948  

					-1.538  

					-0.575  

					-0.685  

					-0.573  

					-0.503  

					-0.66  

					BIRC3  

					P2RX7  

					PIK3R2*  

					LY96  

					GNB4  

					PCK1*  

					SLC18B1  

					SEC24D  

					RTN2  

					CDKN2C  

					SLC16A7  

					IRS1*  

					-1.094  

					-1.073  

					-1.049  

					-1.037  

					-1.021  

					-0.949  

					-0.941  

					-0.926  

					-0.892  

					-0.871  

					-0.83  

					HLA-DRA  

					CYBA  

					1.188  

					1.223  

					1.247  

					1.263  

					1.263  

					1.331  

					1.341  

					1.434  

					1.525  

					1.698  

					1.838  

					1.888  

					2.122  

					2.239  

					2.246  

					PALLD  

					SHTN1  

					UCHL1  

					SLAMF8  

					CALU  

					STBD1  

					PPP1R16A  

					ADAMTS9  

					ACADM  

					CYB5A  

					TM7SF2  

					GYS1*  

					TFPI  

					PRSS23  

					KYNU  

					ALDH1A3  

					SRPX2  

					PTGFR  

					TIMP1  

					C1S  

					1.884  

					1.719  

					1.81  

					-0.37  

					HLA-DQB1  

					IL1RN  

					-0.989  

					-0.529  

					-0.522  

					-0.435  

					-0.561  

					-0.427  

					-0.421  

					-0.565  

					3.428  

					1.68  

					1.611  

					1.177  

					0.966  

					1.132  

					1.043  

					1.583  

					0.988  

					0.835  

					CCL19  

					ALDH6A1  

					CS  

					DAB2  

					0.903  

					2.082  

					1.565  

					2.483  

					1.209  

					2.891  

					VMP1  

					CYP1B1  

					EFEMP1  

					CTSS  

					NPR1  

					-0.767  

					-0.754  

					-0.741  

					-0.735  

					GLIPR1  

					FAM20A  

					ITIH5  

					CENPV  

					TXLNG  

					SMURF1  

					MYOF  

					FHL2  

					THBS1  

					* The hub-gene symbols obtained from the hub-gene analysis are shown in Figure 2.  

					Table 2. Mapping of Common DEGs to the KEGG Pathway Related to Insulin Resistance  

					Term  

					Genes  

					Insulin signaling pathway  

					Insulin resistance  

					GYS1, IRS1, FASN, PIK3R2, PCK1, ACACB,PTPRF  

					GYS1, IRS1, PIK3R2, PCK1, ACACB, PTPRF  

					PI3K-Akt signaling pathway  

					Fatty acid biosynthesis  

					GYS1, IRS1, GNB4, ITGAV, PIK3R2, PCK1, THBS1  

					FASN, ACACB  

					IRS1, PIK3R2  

					PIK3R2, BIRC3  

					IRS1, PIK3R2  

					PCK1  

					Type II diabetes mellitus (T2D)  

					TNF signaling pathway  

					mTOR signaling pathway  

					Glycolysis / Gluconeogenesis  

					nodes), including peroxisome proliferator-activated receptor alpha  

					(PPARA), aryl hydrocarbon receptor (AHR), tumor necrosis factor  

					(TNF), insulin (INS), and noggin (NOG). Since all five common  

					differentially expressed genes (IRS1, PCK1, GYS1, PTRPF, and  

					ACACB) are similarly regulated (downregulated) under insulin  

					resistance conditions, only URPs that exert an upregulatory effect on  

					the common DEGs will be further analyzed, specifically TNF, AHR,  

					and PPARA. The URP targets on the common DEGs (hub-genes) are  
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					shown in Table 5. Among the three URPs, based on the availability of  

					data in ChEMBL for predictive model construction and validation,  

					PPARA and TNF were selected as the URP targets whose activity  

					changes will be predicted using GA and its derivatives.  

					As shown in Table 8, based on docking scores and rerank scores, Gallic  

					acid 5,6-dihydroxy-3-carboxyphenyl ester (CID_44592636),  

					hamamelofuranose-2'5'-digallate (CID_44584241), and Caffeoyl gallic  

					acid (CID_140567676) are confirmed to have a higher affinity for the  

					TNFA protein than the native ligand (UTJ_201).  

					Table 3. Confusion Matrix of Insulin Resistance vs Sensitive  

					Clustering Using Neural Networks Based on Hub-Genes  

					Expression  

					Predicted  

					insulin  

					insulin  

					∑

					resistant  

					sensitive  

					insulin  

					15  

					0

					15  

					Actual  

					resistant  

					insulin  

					2

					4

					6

					sensitive  

					∑

					17  

					4

					21  

					Table 4. Cross Validation of Data Clustering (Insulin  

					Resistance vs Sensitive) Using Neural Networks Based on Hub-  

					Genes Expression  

					Figure 3. Principal Component 1 (PC1) and PC2 constructed  

					from the expression values of hub- genes (IRS1, PIK3R2,  

					PCK1, GYS1, PTRPF, and ACACB).  

					Model  

					AUC  

					CA  

					Sensitivity Specificity  

					1.000 0.667  

					Neural Network 0.956 0.905  

					Prediction of Activity of GA and its Derivatives on Hub-gene-related  

					Proteins and In Silico Interaction Confirmation  

					Based on the information in Table 5, GA and its derivatives will be  

					predicted in silico for their activity as TNF inhibitors and PPARA  

					activators (agonists). Prior to this, the IC50 prediction model for TNFA  

					and the EC50 prediction model for PPARA were validated using  

					compound data obtained from ChEMBL. The results of the model  

					validation are presented in Figure 5. It is shown that the R-square (R2)  

					values obtained for both predictive models are greater than 0.5. With  

					R2 > 0.5, the LogIC50 prediction model based on SkelSpheres  

					descriptors using the SVR model is considered valid.24 Therefore, this  

					predictive model can be used to predict the activity of gallic acid (GA)  

					and its derivatives as TNFA inhibitors and PPARA activators  

					(agonists). A total of 98 GA compounds and their derivatives from  

					PUBCHEM were predicted for their IC50 against TNFA and EC50  

					against PPARA. Table 6 shows that the 10 GA derivative compounds  

					with the lowest IC50 and EC50 values predominantly fall within the  

					'Good activity' criteria (EC50 or IC50 < 1-20 µM).32 It can be concluded  

					that these compounds have the potential to influence the expression of  

					hub-genes (ACACB, IRS1, and PCK1) involved in insulin resistance.  

					The interactions of five active compounds from Table 6 with TNFA and  

					PPARA were then confirmed using molecular docking. The docking  

					method validation and the GA-based docking process can be found in  

					Table 7. As shown in Table 7, the redocking of the native ligand  

					(UTJ_201 [A]) as a TNFA inhibitor (PDB ID: 6X81 [A]) and AZ2_469  

					[A] as a PPARA activator (PDB ID: 1I7G_[A]) yielded RMSD values  

					of < 2Å. Therefore, the docking method is considered valid.  

					Subsequently, the molecular docking method can be used to predict the  

					interaction between compounds/ligands listed in Table 6 with TNFA  

					protein (PDB ID: 6X81 [A]) and PPARA (PDB ID: 1I7G_[A]). The  

					results of this molecular docking process can be seen in Table 8.  

					Figure 4. The URPs are represented by green, red, and blue  

					nodes. Yellow nodes indicate shared DEG that are the targets of  

					regulatory changes ( increase expression; | inhibit/decrease  

					expression)  
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					IC50Table 5. Upstream Regulatory Protein (URPs) of DEG and Their Target Activities  

					URP  

					Genes expression target  

					(upregulation)  

					ACACB, PCK1  

					PCK1, IRS1  

					URP activity target  

					References (PMID)  

					PPARA  

					AHR  

					Activator (agonist)  

					inhibitor  

					19124612; 16197558  

					20181658; 34848246  

					17327424; 12732648  

					TNF  

					PCK1, IRS1  

					inhibitor  

					(a)  

					(b)  

					Figure 5. Validation of the predictive model for compounds in the ChEMBL database as TNFA inhibitors (a) and PPARA activators (b)  

					Table 6. Predicted activity of GA and its derivatives against TNF-alpha and PPARA proteins  

					Activity  

					Compound name  

					IC50 Predicted  

					Criteria [32]  

					Rangking  

					(M)  

					(TNFA)  

					1

					Caffeoyl gallic acid (CID_140567676)*  

					Methylenedigallic acid (CID_68372)  

					2.68  

					2.80  

					Good activity  

					Good activity  

					Good activity  

					Good activity  

					Good activity  

					Moderate activity  

					Criteria [32]  

					2

					3

					Gallic acid 5,6-dihydroxy-3-carboxyphenylester (CID_44592636 )  

					2-C-((Galloyloxy)methyl)-D-ribose 5-gallate (CID_21145076)  

					Hamamelofuranose 2'5'-digallate (CID_44584241 )  

					Gallic Acid (CID_370)  

					3.03  

					4

					3.20  

					5

					3.25  

					90  

					45.85  

					Activity  

					Compound name*  

					EC50 Predicted  

					(M)  

					Rangking  

					(PPARA)  

					1

					2

					Methylenedigallic acid (CID_68372)  

					3,4,5-Tris(acetyloxy)benzoic acid (CID_95088 )  

					Rhodanine-gallic acid (CID_129848640)  

					Maloyl gallic acid (CID_155490657 )  

					Caffeoyl gallic acid (CID_140567676 )*  

					Gallic Acid (CID_370)  

					0.92  

					1.22  

					1.22  

					1.30  

					1.41  

					7.18  

					Excellent activity  

					Good activity  

					Good activity  

					Good activity  

					Good activity  

					Good activity  

					3

					4

					5

					80  

					* Compounds with confirmed good activity criteria have a docking score lower than or close to the native ligand docking score of the TNFA and PPARA  

					proteins  

					Meanwhile, as PPARA activators, none of the GA derivatives in Table  

					8 have docking scores or rerank scores better than the native ligand  

					(AZ2_469), which is a PPARA agonist. However, all five compounds  

					have negative docking and rerank scores, indicating that their  

					interaction with PPARA may occur spontaneously, although not as  

					favorably as AZ2_469. Caffeoyl gallic acid (CID_140567676) is the  

					GA derivative that most closely approaches the docking score and  

					rerank score of AZ2_469. This compound also has better docking and  

					rerank scores compared to the native TNFA ligand (PDB ID: 6X81  

					[A]). These results were further supported by examining the interactions  
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					between Caffeoyl gallic acid and TNFA and PPARA. As shown in  

					Figure 6, the interaction of Caffeoyl gallic acid with TNFA and PPARA  

					occurs through hydrogen bonding and electrostatic interactions,  

					indicating a strong affinity of Caffeoyl gallic acid for both proteins.  

					Figure 6. Amino acid residue interactions of TNFA with the native ligand UTJ_201 (a) and Caffeoyl gallic acid (c); Amino acid residue  

					interactions of PPARA with the native ligand AZ2_469 (c) and Caffeoyl gallic acid (d). Blue dashed lines represent hydrogen bonds, and  

					red dashed lines represent steric-electrostatic interactions  

					Table 7. Validation of the Molecular Docking Method  

					Pose Ligand  

					Protein  

					MolDock  

					Score  

					Rerank Score  

					RMSD  

					HBond  

					[05]UTJ_201[A]  

					[02]AZ2_469 [A]  

					TNFA (PDB ID: 6X81 [A])  

					PPARA (PDB ID: 1I7G [A])  

					-56.737  

					-133.106  

					-43.254  

					1.548  

					1.069  

					0.000  

					-110.911  

					-6.831  

					With its dual potential as a TNFA inhibitor and PPARA activator,  

					Caffeoyl gallic acid (CID_140567676) is a promising GA derivative  

					that could be explored as a drug candidate to combat insulin resistance.  

					Hub-genes refer to genes that play a central role in regulation and  

					interaction within gene networks. They are often highly connected with  

					other genes and significantly influence various biological processes and  

					diseases. For instance, in Adamantinomatous craniopharyngioma  

					(ACP), hub-genes have been specifically identified as important  

					markers for early diagnosis and as new therapeutic targets.33 In non-  

					small cell lung cancer (NSCLC), eight hub-genes associated with the  

					cell cycle pathway have been identified as significant markers for poor  

					prognosis in lung adenocarcinoma.34 In this study, six DEG (IRS1,  

					PIK3R2, PCK1, GYS1, PTRPF, and ACACB) were identified as hub-  

					genes and have the potential to be used as therapeutic targets.  

					Assuming no post-transcriptional modifications occur, only PIK3R2  

					from the six hub-genes would have higher protein levels in the adipose  

					tissue of subjects with insulin resistance compared to those with insulin  

					sensitive. Phosphoinositide-3-Kinase Regulatory Subunit 2 (PIK3R2)  

					is a regulator of the enzyme Phosphoinositide 3-kinase (PI3K), which  

					is known to play a crucial role in regulating glucose uptake, suggesting  

					its potential involvement in the development of diabetes mellitus.  

					Metabolic signaling is largely mediated by the recruitment of dimeric  
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					(p85-p110) PI3K to IRS, stimulating PKC activation through PDK1,  

					and enhancing glucose uptake.35 The p85β protein, the regulatory  

					subunit of PI3K encoded by PIK3R2, plays a complex role in  

					modulating PI3K activity and signaling. Under normal conditions, p85  

					stabilizes the catalytic subunit p110 (encoded by the isoform genes  

					PIK3CA, PIK3CB, PIK3CD, and PIK3CG) in class IA PI3K and  

					induces its activity.36 Overexpression of p85β can disrupt this balance.  

					Excess free p85β protein competes with the p85-p110 heterodimer to  

					bind phosphotyrosine residues on insulin receptor substrates (e.g.,  

					IRS1), thereby reducing the stability of the interaction.37 However, the  

					regulatory mechanisms of PIK3R2 expression remain largely  

					unknown.38 This makes PIK3R2 unsuitable as a therapeutic target for  

					insulin resistance in this study.  

					Table 8. Docking Score and Rerank Score of the Native Ligand and GA Derivatives against TNFA and PPARA  

					TNFA (PDB ID: 6X81 [A])  

					Pose Ligand  

					MolDock Score  

					Rerank Score  

					HBond  

					[00]Gallic acid 5,6-dihydroxy-3-carboxyphenylester  

					(CID_44592636 )  

					-77.031  

					-67.582  

					-7.300  

					[01]Hamamelofuranose 2'5'-digallate (CID_44584241 )  

					[01]Caffeoyl gallic acid (CID_140567676)  

					[01UTJ_201 [A]  

					-94.557  

					-67.281  

					-67.110  

					-59.612  

					-6.668  

					-7.864  

					-68.348  

					-80.008  

					-58.145  

					-58.118  

					-2.500  

					-6.635  

					[0]2-C-((Galloyloxy)methyl)-D-ribose 5-gallate  

					(CID_21145076)  

					[03] Methylenedigallic acid (CID_68372)  

					-60.960  

					-55.215  

					-12.089  

					PPARA (PDB ID: 1I7G [A])  

					Pose Ligand  

					MolDock Score  

					-142.551  

					Rerank Score  

					-118.758  

					HBond  

					-5.971  

					-7.860  

					[00]AZ2_469 [A]  

					[00]Caffeoyl gallic acid (CID_140567676 )  

					-123.253  

					-104.969  

					[09]Methylenedigallic acid (CID_68372)  

					-88.937  

					-96.035  

					-89.586  

					-81.796  

					-78.597  

					-75.182  

					-13.270  

					-5.8101  

					-3.373  

					[00]Rhodanine-gallic acid (CID_129848640 )  

					[03]3,4,5-Tris(acetyloxy)benzoic acid (CID_95088 )  

					[09]Maloyl gallic acid (CID_155490657 )  

					-76.132  

					-43.229  

					-4.8591  

					IRS1 (Insulin Receptor Substrate 1) is the primary mediator of insulin  

					action, transmitting signals from the insulin receptor to downstream  

					effectors such as AKT, where its dysregulation can reduce glucose  

					uptake.5 ACACB (Acetyl-CoA Carboxylase Beta) is involved in fatty  

					acid metabolism, and its dysregulation may contribute to lipid  

					accumulation and insulin resistance.39 Meanwhile, the dysregulation of  

					Phosphoenolpyruvate Carboxykinase 1 (PCK1) in adipose tissue is  

					known to increase plasma free fatty acids, further enhancing insulin  

					resistance.40 Caffeoyl gallic acid has the potential to downregulate these  

					three genes through inhibition of TNFA activity and activation  

					(agonism) of PPARA. The interaction of Caffeoyl gallic acid with  

					TNFA is even stronger compared to UTJ_201 or [4-(isoquinolin-8-  

					yl)phenyl]acetonitrile, its native ligand. UTJ_201 is an isoquinoline  

					alkaloid, and several isoquinoline alkaloids, such as fangchinoline and  

					isotetrandrine, have been found to inhibit the production of  

					proinflammatory cytokines, including TNFα.41  

					Conclusion  

					This study identified IRS1, PCK1, GYS1, PTRPF, ACACB, and  

					PIK3R2 as hub-genes and potential biomarkers for insulin resistance  

					with high accuracy and sensitivity. The regulatory proteins TNF,  

					PPARA, and AHR were found to influence these hub-genes, and  

					activity prediction suggests that caffeoyl gallic acid may address insulin  

					resistance by inhibiting TNFA and activating PPARA. Further research  

					should focus on experimental validation through in vitro and in vivo  

					testing to confirm the effectiveness of Caffeoyl gallic acid in combating  

					insulin resistance.  
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