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Introduction 

Insulin resistance is a condition in which the body’s cells 

become less sensitive to the effects of insulin, a hormone responsible 

for regulating blood sugar. It is a hallmark of type 2 diabetes (T2D) and 

metabolic syndrome. This condition can be influenced by various 

factors, including genetics, environment, and lifestyle.1,2 Recent 

research indicates that the expression of certain genes plays a crucial 

role in the development of insulin resistance. Under normal conditions, 

insulin binds to insulin receptors on the cell surface, activating a series 

of signals that allow glucose to enter cells for energy use. In insulin 

resistance, this signaling is impaired, causing glucose to remain in the 

bloodstream and ultimately leading to elevated blood sugar levels.3 

Gene expression plays a significant role in insulin resistance.  
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The Insulin Receptor (IR) gene encodes the insulin receptor located on 

the cell surface, and mutations or decreased expression of this gene can 

reduce cellular sensitivity to insulin, resulting in insulin resistance.4 IR 

substrate (IRS-1 and IRS-2), the two major isoforms of the IR substrate, 

help mediate insulin signaling after insulin binds to its receptor. 

Reduced expression or mutations in IRS genes can disrupt the insulin 

signaling pathway, contributing to insulin resistance.5 Peroxisome 

Proliferator-Activated Receptor Gamma (PPARγ), a transcription 

factor that regulates the expression of genes related to lipid and glucose 

metabolism, enhances insulin sensitivity by promoting fatty acid 

storage in adipose tissue and reducing lipotoxicity. Genetic variations 

that reduce PPARγ activity are associated with insulin resistance.6  AKT 

serine/threonine kinase 2 (AKT2) is a protein kinase involved in the 

insulin signaling pathway, and mutations or decreased expression of 

AKT2. It can reduce the phosphorylation and activity of downstream 

proteins necessary for glucose uptake by cells, contributing to insulin 

resistance.7 Glucose Transporter Type 4 (GLUT4), an insulin-induced 

glucose transporter primarily found in muscle and adipose tissues, also 

plays a crucial role in regulating glucose uptake. Reduced expression or 

function of GLUT4 leads to decreased glucose uptake by these cells, 

which is a key characteristic of insulin resistance.8 These findings 

collectively highlight the complexity of gene expression involved in 

insulin resistance and emphasize the need for targeted gene expression-

based therapeutic strategies. Based on these facts, research on gene 

expression markers or Differentially Expressed Genes (DEG) analysis 

is essential to determine effective therapeutic targets for insulin 

resistance. Gallic acid (GA) is a phenolic compound found in various 
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Insulin resistance is a critical factor in developing metabolic disorders like type 2 diabetes, posing 

challenges for effective treatment. Identifying molecular targets to reverse or mitigate insulin 

resistance is a key focus in therapeutic research. Advances in genomics and bioinformatics have 

enabled researchers to explore differentially expressed genes (DEGs) as potential biomarkers and 

therapeutic targets. This study aims to identify potential therapeutic targets for overcoming insulin 

resistance based on the analysis of (DEGs). Gallic acid (GA) and its derivatives were then tested 

against these identified targets using in silico methods. DEGs were analyzed from two Gene 

Expression Omnibus (GEO) datasets: GSE13070 (human adipose tissue with insulin resistance 

and insulin sensitivity) and GSE24422 (TNF-induced and non-induced adipocyte cell culture). 

The identified DEGs were then compared to find common DEGs, which were subsequently 

analyzed to identify hub-genes. Cross-validation using neural network and principal component 

analysis (PCA) on gene expression values revealed that the identified hub-genes, including IRS1, 

PCK1, GYS1, PTRPF, ACACB, and PIK3R2, can serve as biomarkers for insulin resistance (area 

under the curve, AUC 0.956 and sensitivity 1.00). The search for upstream regulatory proteins 

(URPs) of the hub-genes in the Comparative Toxicogenomics Database (CTD) indicated that the 

activities of TNF, PPARA, and AHR could influence the expression of several hub-genes, namely 

IRS1, PCK1, and ACACB. The activity prediction analysis, which was based on SkelSpheres 

molecular descriptors and confirmed by molecular docking, suggests that caffeoyl gallic acid may 

be a candidate compound for overcoming insulin resistance by inhibiting TNFA and activating 

PPARA. 
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plants, including tea, grapes, and nuts. GA and its derivatives, such as 

methyl gallate, propyl gallate, and epigallocatechin gallate (EGCG), 

exhibit various biological activities, including antioxidant, 

antimicrobial, anti-inflammatory, and antidiabetic effects.9–12 GA is 

known to ameliorate insulin resistance, partly through the modulation 

of gene expression involved in insulin signaling and glucose 

metabolism. GA activates AMP-activated protein kinase (AMPK), 

which in turn stimulates peroxisome proliferator-activated receptor 

gamma coactivator 1-alpha (PGC1α), enhancing mitochondrial 

function and energy expenditure.13 GA is also known to enhance 

adipocyte differentiation and adiponectin expression, a hormone that 

increases insulin sensitivity, by upregulating Fatty Acid-Binding 

Protein 4 (FABP4).14 Protocatechuic acid (PCA), a polyphenol similar 

to GA, significantly increases levels of GLUT-4, IRS-1, IRS-2, PPAR-

γ, P-AMPK, and P-Akt in C2C12 myotubes, HepG2 cells, and 3T3-L1 

adipocytes, thereby improving glucose uptake and insulin signaling.15 

Additionally, GA has been observed to ameliorate symptoms of 

polycystic ovary syndrome (PCOS) by reducing testosterone, LH, and 

inflammatory cytokines, while increasing estrogen levels and the 

expression of mRNA for Cyp11a1, Cyp19A1, KITL, PTGS2, and 

Adipo R1, which are associated with insulin sensitivity and metabolic 

balance.16 Therefore, GA and its derivatives are predicted to provide 

therapeutic effects for T2D by modulating the expression of genes 

associated with insulin resistance. 

The objective of this research is to analyze differentially expressed 

genes (DEGs) associated with insulin resistance and identify key gene 

targets that could be modulated to restore insulin sensitivity. This study 

aims to address the gap in knowledge regarding specific gene 

expression markers for insulin resistance, offering a novel insight into 

potential therapeutic targets. In this study, DEG analysis was performed 

on human genome mRNA microarray data from adipose tissues of 

human subjects with insulin resistance and insulin sensitivity 

(GSE13070) available in the Gene Expression Omnibus (GEO) 

database. The identified DEGs were then compared with DEGs 

obtained from gene expression data of adipocytes derived from Human 

Mesenchymal Stem Cells (hMSC) treated with tumor necrosis factor 

(TNF) to induce insulin resistance (GSE24422). This comparison aimed 

to find common DEGs between the two datasets so that gene expression 

targets affected by new therapeutic agents at the in vitro level could be 

extrapolated to tissue levels in human subjects. Based on the common 

DEGs found, hub-genes were determined as targets to be influenced by 

the activity of GA and its derivatives through in silico methods. 

 

Materials and Methods 

In general, this study was divided into three stages. The first stage 

involved identifying common DEGs from two GEO datasets: 

GSE13070, which was human genome mRNA microarray data from 

adipose tissue of subjects with insulin resistance and insulin sensitive, 

and GSE24422, which was gene expression profiling data from mRNA 

microarrays of adipocyte cell cultures derived from Human 

Mesenchymal Stem Cells (hMSC) treated with TNF. The second stage 

involved analyzing hub-genes from the common DEGs to identify 

target proteins whose activities would be affected. The third stage 

involved predicting the protein activity values (IC50 or EC50) using 

molecular descriptors and machine learning methods, and confirming 

the results with molecular docking. 

 

Identification of Common DEGs 

The DEG analysis between the two GEO datasets was performed using 

GEO2R (https://www.ncbi.nlm.nih.gov/geo/geo2r/).17 Each dataset 

was analyzed separately, with each sample group arranged according to 

its experimental conditions. In GEO2R, p-value correction was 

performed using the Benjamini and Hochberg method 18 with adjusted 

P value < 0.05..The results of the DEG analysis from both datasets were 

then used to find common DEGs with the same regulation using Orange 

v3.37.0 (University of Ljubljana, 2024) in the ‘Merge Data’ widget.19 

Subsequently, the involvement of the common DEGs in the Kyoto 

Encyclopedia of Genes and Genomes (KEGG) signaling pathways 

related to insulin resistance (hsa04931) was analyzed using Enrichr.20,21  

 

Hub-Genes Analysis and Validation 

From the DEGs mapped to each signaling pathway, hub-genes were 

determined using Cytoscape v3.10.2 (National Human Genome 

Research Institute, 2024).22  Hub-genes are genes that have many 

interactions with other genes.23 The raw expression data of the resulting 

hub-genes were then retrieved from the 'Series Matrix File(s)' in each 

GSE. This raw data was then analyzed using Orange v3.37.0 for cross-

validation with Principal Component Analysis (PCA) and machine 

learning methods. Cross-validated hub-genes were then analyzed for 

their upstream regulatory proteins (URPs) using the Comparative 

Toxicogenomics Database (CTD).24  Upstream regulators  are any 

molecules (including proteins) that can influence the expression of 

other molecules (e.g., genes/mRNA). 

 

Prediction of Activity of GA and its Derivatives on Hub-gene-related 

Proteins and In Silico Interaction Confirmation 

Various active compounds related to URPs can be obtained from the 

ChEMBL database using DataWarrior v6.1.0 (openmolecules, 2024).25 

ChEMBL is a manually curated database containing bioactive chemical 

entities with drug-like properties.26 In DataWarrior, active compound 

data can include IC50 or EC50 values tested on URPs related to common 

DEGs or hub-genes. To predict the activity values of GA against these 

URPs, a predictive model must first be created using the activity data 

of compounds against URPs. Each active and inactive compound 

against URPs from ChEMBL is clustered into one several groups based 

on structural similarity using SkelSpheres descriptors. SkelSpheres-

based similarity essentially measures how many identical circular 

fragments or atom groups (hybridization) exist between two molecules 

compared to the total number of circular fragments in both molecules.26  

In this study, a SkelSpheres-based similarity of 90% was set. A 

representative compound from each group was then selected for use as 

training data. The remaining compounds were used as testing data, 

whose activity was predicted using support vector regression (SVR) in 

DataWarrior. The correlation coefficient (R-square, R2) value of the 

actual vs. predicted logIC50 or logEC50 plot was then determined, and 

the model was considered valid if R2 > 0.5.27 Once the model is valid, 

the activity prediction of GA derivatives against URPs is performed in 

the same manner as the activity prediction on testing data. The 

structures of GA and its derivatives were obtained from the PUBCHEM 

database.28 GA derivatives predicted to have the best activity can then 

have their interactions with URPs confirmed using molecular docking. 

The crystal structures of URPs, retrieved from the RCSB PDB database, 

are imported into Molegro Virtual Docker (MVD v.7.0.0, Molexus Aps, 

2019, free trial). For molecular docking purposes, all water molecules 

were removed, and corrections are made to any mismatched amino acid 

residues. Ligand preparation was carried out in Molegro Virtual Docker 

(MVD) by minimizing the ligand using the "Ligand Energy Inspector" 

tool to find the most stable conformation or the one with the lowest 

energy. The validity of the model and molecular docking parameters is 

determined with a Root Mean Square Deviation (RMSD) value < 2Å.29 

Subsequently, molecular docking was performed on the 3D structure of 

the ligand (GA derivatives) against the crystal structure of the protein 

(upstream regulators protein, URP)  repeated 20 times using the MVD. 

In this docking process, parameters such as energy values, including 

MolDock Score, Rerank Score, and Hbond, were measured. To evaluate 

the binding strength between the ligand and the receptor protein, the 

Rerank Score is often used as a common parameter.30 

 

Statistical Analysis 

The p-values for the DEG analysis were derived using the GEO2R tool 

accessible via the GEO platform. Metrics such as the Area Under the 

Curve (AUC), Classification Accuracy (CA), Precision (Prec), 

Sensitivity (Recall), and Specificity were calculated using Orange 

v3.37.0. 

 

Results and Discussion 

Identification of Common DEGs 

The results of the Differentially Expressed Genes (DEG) analysis using 

GEO2R from the two datasets (GSE13070 and GSE24422) can be 

visualized with a volcano plot, as shown in Figure 1. A volcano plot is 
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a visualization tool used to display the statistical significance and the 

magnitude of effect (fold change, FC) of each gene. In Figure 1(a), it 

can be observed that the DEG analysis effectively distinguishes adipose 

tissue between subjects with insulin resistance and insulin sensitive 

(GSE13070), although the number of DEGs is smaller compared to non-

DEGs (adj.P.Val < 0.05). In contrast, the results of the DEG analysis 

for the hMSC with TNF vs. hMSC (GSE24422) shown in Figure 1(b) 

reveal a larger number of DEGs compared to non-DEGs (adj.P.Val < 

0.05). 

A total of 2,831 DEGs from the GSE13070 dataset and 281 DEGs from 

the GSE24422 dataset were then analyzed to identify common DEGs. 

Common DEGs are those with the same regulation across two or more 

datasets and are often used to identify shared cellular signaling 

pathways occurring between the datasets.31 The results of the common 

DEG search are presented in Table 1. Table 1 shows that there are 88 

common DEGs with consistent regulation between the two datasets. It 

can be observed that most of the common DEGs are upregulated 

(log2FC > 0). Assuming no post-transcriptional modifications occur, 

the protein expression corresponding to these common DEGs is also 

likely to be overexpressed in the insulin-resistant condition. The 

mapping results of the 88 common DEGs to the KEGG pathway related 

to insulin resistance (hsa04931) are shown in Table 2. 

 

 

 

 
(a) (b) 

Figure 1. Volcano plot of GSE13070 (a); and volcano plot of GSE24422 (b) 
 

 
Figure 2. The interaction network of common DEGs in the KEGG pathway related to insulin resistance (hsa04931). Nodes in red 

represent common DEGs that connect two or more signaling pathways (hub-genes). 
 

Hub-Genes Analysis and Validation 

If the genes listed in Table 2 are depicted within the common DEG 

interaction network, hub-genes are identified as shown in Figure 2. 

Figure 2 reveals that insulin receptor substrate 1 (IRS1), 

phosphatidylinositol 3-kinase regulatory subunit beta (PIK3R2), 

phosphoenolpyruvate carboxykinase (PCK1), glycogen [starch] 

synthase (GYS1), protein tyrosine phosphatase-receptor type F 

(PTRPF), and acetyl-CoA carboxylase 2 (ACACB) are hub-genes. 

These can be further explored as potential markers and therapeutic 

targets for insulin resistance. Based on Table 1, it is observed that, under 

insulin-resistant conditions, IRS1, PCK1, GYS1, PTRPF, and ACACB 

are underexpressed, while PIK3R2 is overexpressed. To assess whether 

these hub-genes could serve as markers for insulin resistance, the PCA 

analysis, confusion matrix, and cross-validation results are presented in 

Figure 3, Table 3, and Table 4. Table 4 shows the cross-validation 

results on the GSE13070 dataset using neural network model. The area 

under the curve (AUC) is 0.956, the classification accuracy (CA) is 

0.905, the sensitivity (Recall) is 1.000, and the specificity is 0.667. 

These values indicate that the six common DEGs can accurately predict 

the insulin-resistant condition 100% of the time (sensitivity = 1.000), 

but they can only predict 66.7% of the subjects with insulin sensitive 

(specificity = 0.667). 

Figure 4 displays the results for URP searching of the five hub-genes, 

excluding PIK3R2, in the Comparative Toxicogenomics Database 

(CTD). As shown in Figure 4, several URPs can influence the 

expression of multiple genes simultaneously (marked by red and green  
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Table 1. Regulation of Common DEGs between GSE24422 and GSE13070 

Symbol 
log2(FC) 

GSE24422 

log2(FC) 

GSE13070 
Symbol 

log2(FC) 

GSE24422 

log2(FC) 

GSE13070 
Symbol 

log2(FC) 

GSE24422 

log2(FC) 

GSE13070 

AZGP1 -0.825 -2.921 PTPRF* -0.615 -0.685 NEXN 0.836 1.034 

CASQ2 -1.265 -2.535 TJP2 -0.487 -0.562 SLC15A3 0.846 1.281 

GPAT3 -2.433 -2.188 LRPPRC -0.636 -0.496 SLCO2B1 0.896 2.859 

AZGP1 -0.715 -2.124 ADAM9 0.341 0.886 NRP2 0.922 1.151 

FASN -0.433 -1.683 MAP1B 0.341 0.91 CCL13 0.937 1.572 

PHGDH -0.553 -1.427 SAMHD1 0.363 1.181 LTBP2 0.952 1.539 

YME1L1 -1.277 -1.407 RNASET2 0.399 1.109 ITGAV 0.969 0.794 

LRIG1 -1.013 -1.33 MSC-AS1 0.408 0.931 OSBPL3 1.004 0.987 

ACACB* -0.37 -1.263 BMP2K 0.417 1.291 TYMS 1.081 1.256 

PXMP2 -0.554 -1.223 CD28 0.421 1.397 BIRC3 1.092 0.944 

CLMN -0.823 -1.211 GNB4 0.436 0.609 P2RX7 1.115 1.725 

PCK1* -0.644 -1.194 SLC18B1 0.436 0.749 PIK3R2* 1.131 2.422 

CDKN2C -0.948 -1.19 SEC24D 0.437 0.651 LY96 1.14 1.181 

SLC16A7 -1.538 -1.094 RTN2 0.447 1.049 HLA-DRA 1.188 1.208 

IRS1* -0.575 -1.073 PALLD 0.492 1.249 CYBA 1.223 1.112 

STBD1 -0.685 -1.049 SHTN1 0.548 1.093 TFPI 1.247 0.796 

PPP1R16A -0.573 -1.037 UCHL1 0.552 1.611 PRSS23 1.263 0.88 

ADAMTS9 -0.503 -1.021 SLAMF8 0.564 2.861 KYNU 1.263 1.884 

ACADM -0.66 -0.949 CALU 0.566 0.855 ALDH1A3 1.331 1.719 

CYB5A -0.37 -0.941 HLA-DQB1 0.567 0.95 SRPX2 1.341 1.81 

TM7SF2 -0.989 -0.926 IL1RN 0.622 3.428 PTGFR 1.434 1.611 

GYS1* -0.529 -0.892 CCL19 0.632 1.68 TIMP1 1.525 1.177 

ALDH6A1 -0.522 -0.871 DAB2 0.644 0.903 C1S 1.698 0.966 

CS -0.435 -0.83 VMP1 0.657 2.082 CYP1B1 1.838 1.132 

NPR1 -0.561 -0.767 GLIPR1 0.673 1.565 EFEMP1 1.888 1.043 

CENPV -0.427 -0.754 FAM20A 0.773 2.483 CTSS 2.122 1.583 

TXLNG -0.421 -0.741 ITIH5 0.803 1.209 MYOF 2.239 0.988 

SMURF1 -0.565 -0.735 THBS1 0.812 2.891 FHL2 2.246 0.835 

* The hub-gene symbols obtained from the hub-gene analysis are shown in Figure 2. 

Table 2. Mapping of Common DEGs to the KEGG Pathway Related to Insulin Resistance 

Term Genes 

Insulin signaling pathway GYS1, IRS1, FASN, PIK3R2, PCK1, ACACB,PTPRF 

Insulin resistance GYS1, IRS1, PIK3R2, PCK1, ACACB, PTPRF 

PI3K-Akt signaling pathway GYS1, IRS1, GNB4, ITGAV,  PIK3R2, PCK1, THBS1 

Fatty acid biosynthesis FASN, ACACB 

Type II diabetes mellitus (T2D) IRS1, PIK3R2 

TNF signaling pathway PIK3R2, BIRC3 

mTOR signaling pathway IRS1, PIK3R2 

Glycolysis / Gluconeogenesis PCK1 

 

nodes), including peroxisome proliferator-activated receptor alpha 

(PPARA), aryl hydrocarbon receptor (AHR), tumor necrosis factor 

(TNF), insulin (INS), and noggin (NOG). Since all five common 

differentially expressed genes (IRS1, PCK1, GYS1, PTRPF, and 

ACACB) are similarly regulated (downregulated) under insulin 

resistance conditions, only URPs that exert an upregulatory effect on 

the common DEGs will be further analyzed, specifically TNF, AHR, 

and PPARA. The URP targets on the common DEGs (hub-genes) are 



                               Trop J Nat Prod Res, December 2024; 8(12):9476 - 9485                 ISSN 2616-0684 (Print) 

                                                                                                                                                  ISSN 2616-0692 (Electronic)  
 

7480 

 © 2024 the authors. This work is licensed under the Creative Commons Attribution 4.0 International License 

shown in Table 5. Among the three URPs, based on the availability of 

data in ChEMBL for predictive model construction and validation, 

PPARA and TNF were selected as the URP targets whose activity 

changes will be predicted using GA and its derivatives. 

Table 3. Confusion Matrix of Insulin Resistance vs Sensitive 

Clustering Using Neural Networks Based on Hub-Genes 

Expression 

  Predicted  

  
insulin 

resistant 

insulin 

sensitive 
∑ 

Actual 

insulin 

resistant 
15 0 15 

 
insulin 

sensitive 
2 4 6 

 ∑ 17 4 21 

Table 4. Cross Validation of Data Clustering (Insulin 

Resistance vs Sensitive) Using Neural Networks Based on Hub-

Genes Expression 

Model AUC CA Sensitivity Specificity 

Neural Network 0.956 0.905 1.000 0.667 

 

Prediction of Activity of GA and its Derivatives on Hub-gene-related 

Proteins and In Silico Interaction Confirmation 

Based on the information in Table 5, GA and its derivatives will be 

predicted in silico for their activity as TNF inhibitors and PPARA 

activators (agonists). Prior to this, the IC50 prediction model for TNFA 

and the EC50 prediction model for PPARA were validated using 

compound data obtained from ChEMBL. The results of the model 

validation are presented in Figure 5. It is shown that the R-square (R2) 

values obtained for both predictive models are greater than 0.5. With 

R2 > 0.5, the LogIC50 prediction model based on SkelSpheres 

descriptors using the SVR model is considered valid.24 Therefore, this 

predictive model can be used to predict the activity of gallic acid (GA) 

and its derivatives as TNFA inhibitors and PPARA activators 

(agonists). A total of 98 GA compounds and their derivatives from 

PUBCHEM were predicted for their IC50 against TNFA and EC50 

against PPARA. Table 6 shows that the 10 GA derivative compounds 

with the lowest IC50 and EC50 values predominantly fall within the 

'Good activity' criteria (EC50 or IC50 < 1-20 µM).32 It can be concluded 

that these compounds have the potential to influence the expression of 

hub-genes (ACACB, IRS1, and PCK1) involved in insulin resistance. 

The interactions of five active compounds from Table 6 with TNFA and 

PPARA were then confirmed using molecular docking. The docking 

method validation and the GA-based docking process can be found in 

Table 7. As shown in Table 7, the redocking of the native ligand 

(UTJ_201 [A]) as a TNFA inhibitor (PDB ID: 6X81 [A]) and AZ2_469 

[A] as a PPARA activator (PDB ID: 1I7G_[A]) yielded RMSD values 

of < 2Å. Therefore, the docking method is considered valid. 

Subsequently, the molecular docking method can be used to predict the 

interaction between compounds/ligands listed in Table 6 with TNFA 

protein (PDB ID: 6X81 [A]) and PPARA (PDB ID: 1I7G_[A]). The 

results of this molecular docking process can be seen in Table 8. 

As shown in Table 8, based on docking scores and rerank scores, Gallic 

acid 5,6-dihydroxy-3-carboxyphenyl ester (CID_44592636), 

hamamelofuranose-2'5'-digallate (CID_44584241), and Caffeoyl gallic 

acid (CID_140567676) are confirmed to have a higher affinity for the 

TNFA protein than the native ligand (UTJ_201).  

 

 

 

Figure 3. Principal Component 1 (PC1) and PC2 constructed 

from the expression values of hub- genes (IRS1, PIK3R2, 

PCK1, GYS1, PTRPF, and ACACB). 
 

 
Figure 4. The URPs are represented by green, red, and blue 

nodes. Yellow nodes indicate shared DEG that are the targets of 

regulatory changes ( increase expression; | inhibit/decrease 

expression) 
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IC50Table 5. Upstream Regulatory Protein (URPs) of DEG and Their Target Activities 
 

URP Genes expression target 

(upregulation) 

URP activity target References (PMID) 

PPARA ACACB, PCK1 Activator (agonist) 19124612; 16197558 

AHR PCK1, IRS1 inhibitor 20181658; 34848246 

TNF PCK1, IRS1 inhibitor 17327424; 12732648 

 

Figure 5. Validation of the predictive model for compounds in the ChEMBL database as TNFA inhibitors (a) and PPARA activators (b) 

Table 6. Predicted activity of GA and its derivatives against TNF-alpha and PPARA proteins 

Activity 

Rangking 

(TNFA) 

Compound name IC50 Predicted 

(M) 

Criteria [32] 

1 Caffeoyl gallic acid (CID_140567676)* 2.68 Good activity 

2 Methylenedigallic acid (CID_68372) 2.80 Good activity 

3 Gallic acid 5,6-dihydroxy-3-carboxyphenylester (CID_44592636 ) 3.03 Good activity 

4 2-C-((Galloyloxy)methyl)-D-ribose 5-gallate (CID_21145076) 3.20 Good activity 

5 Hamamelofuranose 2'5'-digallate (CID_44584241 ) 3.25 Good activity 

90 Gallic Acid (CID_370) 45.85 Moderate activity 

Activity 

Rangking 

(PPARA) 

Compound name* EC50 Predicted 

(M) 

Criteria [32] 

1 Methylenedigallic acid (CID_68372) 0.92 Excellent activity 

2 3,4,5-Tris(acetyloxy)benzoic acid (CID_95088 ) 1.22 Good activity 

3 Rhodanine-gallic acid (CID_129848640) 1.22 Good activity 

4 Maloyl gallic acid (CID_155490657 ) 1.30 Good activity 

5 Caffeoyl gallic acid (CID_140567676 )* 1.41 Good activity 

80 Gallic Acid (CID_370) 7.18 Good activity 

* Compounds with confirmed good activity criteria have a docking score lower than or close to the native ligand docking score of the TNFA and PPARA 

proteins

Meanwhile, as PPARA activators, none of the GA derivatives in Table 

8 have docking scores or rerank scores better than the native ligand 

(AZ2_469), which is a PPARA agonist. However, all five compounds 

have negative docking and rerank scores, indicating that their 

interaction with PPARA may occur spontaneously, although not as 

favorably as AZ2_469. Caffeoyl gallic acid (CID_140567676) is the 

GA derivative that most closely approaches the docking score and 

rerank score of AZ2_469. This compound also has better docking and 

rerank scores compared to the native TNFA ligand (PDB ID: 6X81 

[A]). These results were further supported by examining the interactions 

 

   
(a)                                                                                         (b) 
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between Caffeoyl gallic acid and TNFA and PPARA. As shown in 

Figure 6, the interaction of Caffeoyl gallic acid with TNFA and PPARA 

occurs through hydrogen bonding and electrostatic interactions, 

indicating a strong affinity of Caffeoyl gallic acid for both proteins.  

 

Figure 6.  Amino acid residue interactions of TNFA with the native ligand UTJ_201 (a) and Caffeoyl gallic acid (c); Amino acid residue 

interactions of PPARA with the native ligand AZ2_469 (c) and Caffeoyl gallic acid (d). Blue dashed lines represent hydrogen bonds, and 

red dashed lines represent steric-electrostatic interactions 
 

Table 7. Validation of the Molecular Docking Method 

Pose Ligand Protein MolDock 

Score 

Rerank Score RMSD HBond 

[05]UTJ_201[A] TNFA (PDB ID: 6X81 [A]) -56.737 -43.254 1.548 0.000 

[02]AZ2_469 [A] PPARA (PDB ID: 1I7G [A]) -133.106 -110.911 1.069 -6.831 

With its dual potential as a TNFA inhibitor and PPARA activator, 

Caffeoyl gallic acid (CID_140567676) is a promising GA derivative 

that could be explored as a drug candidate to combat insulin resistance. 

Hub-genes refer to genes that play a central role in regulation and 

interaction within gene networks. They are often highly connected with 

other genes and significantly influence various biological processes and 

diseases. For instance, in Adamantinomatous craniopharyngioma 

(ACP), hub-genes have been specifically identified as important 

markers for early diagnosis and as new therapeutic targets.33 In non-

small cell lung cancer (NSCLC), eight hub-genes associated with the 

cell cycle pathway have been identified as significant markers for poor 

prognosis in lung adenocarcinoma.34 In this study, six DEG (IRS1, 

PIK3R2, PCK1, GYS1, PTRPF, and ACACB) were identified as hub-

genes and have the potential to be used as therapeutic targets. 

Assuming no post-transcriptional modifications occur, only PIK3R2 

from the six hub-genes would have higher protein levels in the adipose 

tissue of subjects with insulin resistance compared to those with insulin 

sensitive. Phosphoinositide-3-Kinase Regulatory Subunit 2 (PIK3R2) 

is a regulator of the enzyme Phosphoinositide 3-kinase (PI3K), which 

is known to play a crucial role in regulating glucose uptake, suggesting 

its potential involvement in the development of diabetes mellitus. 

Metabolic signaling is largely mediated by the recruitment of dimeric 
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(p85-p110) PI3K to IRS, stimulating PKC activation through PDK1, 

and enhancing glucose uptake.35 The p85β protein, the regulatory 

subunit of PI3K encoded by PIK3R2, plays a complex role in 

modulating PI3K activity and signaling. Under normal conditions, p85 

stabilizes the catalytic subunit p110 (encoded by the isoform genes 

PIK3CA, PIK3CB, PIK3CD, and PIK3CG) in class IA PI3K and 

induces its activity.36  Overexpression of p85β can disrupt this balance. 

Excess free p85β protein competes with the p85-p110 heterodimer to 

bind phosphotyrosine residues on insulin receptor substrates (e.g., 

IRS1), thereby reducing the stability of the interaction.37 However, the 

regulatory mechanisms of PIK3R2 expression remain largely 

unknown.38 This makes PIK3R2 unsuitable as a therapeutic target for 

insulin resistance in this study. 

 

Table 8. Docking Score and Rerank Score of the Native Ligand and GA Derivatives against TNFA and PPARA 

TNFA (PDB ID: 6X81 [A]) 
   

Pose Ligand MolDock Score Rerank Score HBond 

[00]Gallic acid 5,6-dihydroxy-3-carboxyphenylester 

(CID_44592636 ) 

-77.031 -67.582 -7.300 

[01]Hamamelofuranose 2'5'-digallate (CID_44584241 ) -94.557 -67.110 -6.668 

[01]Caffeoyl gallic acid (CID_140567676) -67.281 -59.612 -7.864 

[01UTJ_201 [A] -68.348 -58.145 -2.500 

[0]2-C-((Galloyloxy)methyl)-D-ribose 5-gallate 

(CID_21145076) 

-80.008 -58.118 -6.635 

[03] Methylenedigallic acid (CID_68372) -60.960 -55.215 -12.089 

PPARA (PDB ID: 1I7G [A]) 
   

Pose Ligand MolDock Score Rerank Score HBond 

[00]AZ2_469 [A] -142.551 -118.758 -5.971 

[00]Caffeoyl gallic acid (CID_140567676 ) -123.253 -104.969 -7.860 

[09]Methylenedigallic acid (CID_68372) -88.937 -81.796 -13.270 

[00]Rhodanine-gallic acid (CID_129848640 ) -96.035 -78.597 -5.8101 

[03]3,4,5-Tris(acetyloxy)benzoic acid (CID_95088 ) -89.586 -75.182 -3.373 

[09]Maloyl gallic acid (CID_155490657 ) -76.132 -43.229 -4.8591 

IRS1 (Insulin Receptor Substrate 1) is the primary mediator of insulin 

action, transmitting signals from the insulin receptor to downstream 

effectors such as AKT, where its dysregulation can reduce glucose 

uptake.5 ACACB (Acetyl-CoA Carboxylase Beta) is involved in fatty 

acid metabolism, and its dysregulation may contribute to lipid 

accumulation and insulin resistance.39  Meanwhile, the dysregulation of 

Phosphoenolpyruvate Carboxykinase 1 (PCK1) in adipose tissue is 

known to increase plasma free fatty acids, further enhancing insulin 

resistance.40 Caffeoyl gallic acid has the potential to downregulate these 

three genes through inhibition of TNFA activity and activation 

(agonism) of PPARA. The interaction of Caffeoyl gallic acid with 

TNFA is even stronger compared to UTJ_201 or [4-(isoquinolin-8-

yl)phenyl]acetonitrile, its native ligand. UTJ_201 is an isoquinoline 

alkaloid, and several isoquinoline alkaloids, such as fangchinoline and 

isotetrandrine, have been found to inhibit the production of 

proinflammatory cytokines, including TNFα.41 

 

 

 

Conclusion 

This study identified IRS1, PCK1, GYS1, PTRPF, ACACB, and 

PIK3R2 as hub-genes and potential biomarkers for insulin resistance 

with high accuracy and sensitivity. The regulatory proteins TNF, 

PPARA, and AHR were found to influence these hub-genes, and 

activity prediction suggests that caffeoyl gallic acid may address insulin 

resistance by inhibiting TNFA and activating PPARA. Further research 

should focus on experimental validation through in vitro and in vivo 

testing to confirm the effectiveness of Caffeoyl gallic acid in combating 

insulin resistance. 
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