Tropical Journal of Natural Product Research

Available online at https://www.tjnpr.org

Original Research Article

Anti-Inflammatory and Analgesic Activities of Aqueous Extracts from *Stigma maydis*: In Silico and In Vivo Investigations

Andri Tilaqza^{1*}, Merlita Herbani², Anwar¹, Iif Hanifa Nurrosyidah³

¹Pharmacy Department, Faculty of Medicine, University of Islam Malang, Malang 65411, Indonesia ²Medical Department, Faculty of Medicine, University of Islam Malang, Malang 65411, Indonesia ³Health Department, Faculty of Vocational Studies, Universitas Airlangga, Surabaya 60115, Indonesia

ARTICLE INFO

ABSTRACT

Article history: Received 20 October 2024 Revised 07 November 2024 Accepted 09 November 2024 Published online 01 December 2024

Copyright: © 2024 Tilaqza *et al.* This is an openaccess article distributed under the terms of the <u>Creative Commons</u> Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Chronic inflammation is a major global health concern, leading to diseases like cardiovascular disorders, cancer, diabetes, and kidney failure. The long-term use of nonsteroidal antiinflammatory drugs (NSAIDs) to manage inflammation is associated with adverse effects. The present study evaluated the anti-inflammatory and analgesic properties of an aqueous extract from Stigma maydis (SAE), a traditional herb known for its medicinal benefits. Aqueous extract was prepared from Stigma maydis and subjected to phytochemical screening. Physicochemical and pharmacokinetic properties of SAE were predicted using pkCSM and Swiss-ADME platforms. In silico molecular docking was performed on SAE's phytoconstituents. The anti-inflammatory activity of SAE was evaluated in rats using carrageenan-induced paw edema, with doses of 125, 250, and 500 mg/kg and mefenamic acid as a reference. Analgesic activity was assessed through the Randall-Selitto assay. The results revealed the presence of flavonoids, saponins, alkaloids, terpenoids, and phenolic compounds. In silico analysis identified several active constituents, such as pelargonidin and apigenidin, which exhibited a high binding affinity for cyclooxygenase-2, a key target for anti-inflammatory drugs. The extracts at doses of 125, 250, and 500 mg/kg significantly (p < 0.5) reduced paw edema, with inflammation percentages of 21.63, 22.64, and 24.69%, respectively, compared to the negative control group. The 500 mg/kg dose of SAE exhibited the most pronounced effects, although it was less potent than the positive control. The Result of the study revealed that Stigma maydis aqueous extract exhibited anti-inflammatory and analgesic properties with minimal side effects, warranting further research to understand its mechanisms of action and clinical applications.

Keywords: Stigma maydis, Inflammation, Phytochemical screening, Molecular docking, in silico, in vivo.

Introduction

Nowadays, inflammatory chronic disorders are acknowledged as a leading cause of mortality worldwide. Conditions such as coronary heart disease, stroke, cancer, diabetes mellitus, kidney failure, and metabolic dysfunction-associated steatotic liver disease all stem from persistent inflammation.1 Pain is the primary symptom of inflammation,² which contributes to higher morbidity rates and significantly reduces patients' quality of life.³ The use of nonsteroidal anti-inflammatory drugs (NSAIDs) has increased as a result of the increasing prevalence of inflammation. Prolonged use of NSAIDs increases the risk of adverse effects, including gastrointestinal issues, kidney disorders, and cardiovascular complications.^{4,5} Therefore, researchers are investigating natural products with fewer side effects. Stigma maydis is an herbal plant traditionally used to treat inflammation, hyperglycemia, kidney stones, and urinary tract infections.6,7

Based on several studies, *Stigma maydis* can treat diseases such as hypertension, diabetes mellitus, and inflammation.^{8,9} *Stigma maydis* contains flavonoids, phenolic acids, alkaloids, anthocyanins, and polysaccharides, which have a role in reducing inflammation.^{6,7,10}

*Corresponding author. E mail: <u>andri.tilaqza@unisma.ac.id</u> Tel: +6281333302775

Citation: Tilaqza A, Herbani M, Anwar¹, Nurrosyidah IH. Anti-Inflammatory and Analgesic Activities of Aqueous Extracts from *Stigma maydis*: *In Silico* and *In Vivo* Investigations. Trop J Nat Prod Res. 2024; 8(11): 9270 – 9280. <u>https://doi.org/10.26538/tjnpr/v8i11.42</u>

Official Journal of Natural Product Research Group, Faculty of Pharmacy, University of Benin, Benin City, Nigeria

The extraction technique used significantly impacts the bioavailability of these compounds. Research has shown that water extraction, commonly used to obtain *Stigma maydis* extract, has significantly increased the amounts of flavonoids and phenolic compounds.¹¹ The method improves the extraction of beneficial phytochemicals and aligns with the traditional practice of recommending aqueous formulations for their safety and efficacy.¹² Research on the analgesic and anti-inflammatory properties of *Stigma maydis* is still limited, particularly regarding aqueous extracts obtained using aqueous solvents with the ultrasonic-assisted extraction (UAE) method and concentrated through freeze-drying. The present study evaluated the anti-inflammatory and analgesic activities of aqueous extracts from *Stigma maydis* through *in silico* modeling and *in vivo* experimentation.

Materials and Methods

Source and extraction of plant materials

Stigma maydis simplicial powder was obtained from the Laboratory of UPT Materia Medika Batu, Jl. Lahor 87, Pasanggrahan, Batu, East Java, Indonesia (-7.86754, 112.51924), with identification number 074/653/102.20-A/2022. The simplicial powder was extracted using the UAE method, employing water as a solvent for 15 minutes. The ratio of simplicial powder to water used was 1:10, and the solvent was removed using a freeze-dryer.

Source of animals

The study involved male Wistar rats that weighed between 150 and 200 grams and were 8 to 10 weeks old. All the animals were kept in standard

husbandry conditions and fasted for 16 to 18 hours before treatment. The procedures used in this study were approved by the Ethical Research Commission of the Medical Faculty at the University of Islam Malang, Indonesia (049/LE.001/X/03/2022).

Phytochemical screening of Stigma maydis aqueous extract

The identification of various classes of phytoconstituents in Stigma maydis aqueous extract (SAE) was performed following standard procedures.¹³ These tests aimed to detect the presence of alkaloids, flavonoids, phenols, triterpenoids, and saponins.

Prediction of the physicochemical and pharmacokinetic properties of Stigma maydis phytoconstituents

The physicochemical and pharmacokinetic properties of Stigma maydis phytoconstituents were carried out using the pkCSM website (https://biosig.lab.uq.edu.au/pkcsm/) and the Swiss-ADME website (http://www.swissadme.ch/).

In silico analysis

The macromolecular protein target, cyclooxygenase-2 (COX-2) (PDB ID: 5IKR), was obtained from the Protein Data Bank website (https://www.rcsb.org/). Data on the chemical compounds of Stigma maydis were sourced from Dr. Duke's Phytochemical and Ethnobotanical Databases (https://phytochem.nal.usda.gov/). The PubChem website (https://pubchem.ncbi.nlm.nih.gov/) was used to retrieve the 3D structure of the ligands. Molecular docking analysis was conducted using PyRx 0.8 software (Sarkis, USA), with grid dimensions set to x: y: z = 10.3861: 7.9228: 11.1667. The molecular docking results were visualized using Discovery Studio Visualizer V21.1.0.20298 (Dassault Systèmes Biovia Corp., France). The analysis of the molecular docking results included bond energy (ΔG) and the inhibition constant (Ki). The inhibition constant was derived from the binding energy (ΔG) using Equation 1.

 $Ki = \exp(\frac{\Delta G}{RT})$ (Equation 1) Where T is the temperature (298.15 K) and R is the universal gas constant (1.985×10⁻³ kcal mol⁻¹K⁻¹).¹⁴

Assessment of the anti-inflammatory effect of Stigma maydis aqueous extract

The evaluation of the anti-inflammatory effect was conducted using rats with carrageenan induction.^{15,16} Male Wistar rats (n = 6 per group) were administered distilled water as the negative control, mefenamic acid (45 mg/kg) as the positive control, and SAE at doses of 125, 250, and 500 mg/kg as the treatment groups. All treatments were administered orally one hour before 0.1 ml of 1% carrageenan (w/v) was injected into the right hind paw. The paw edema was measured before induction and 1 hour after carrageenan injection using a plethysmometer for 5 hours (Ugo Basile 57140, Stoelting, Italy). The percentage inhibition of paw edema was calculated using Equation 2.

 $A\% = \left(\frac{P_t - P_c}{P_t}\right) \times 100$ (Equation 2) Where A% is the percentage inhibition of paw edema, P_t is the mean of AUC AUC paw edema of the treatment group, and Pc is the mean of AUC paw edema of the control group; AUC: Area under curve.

Evaluation of the analgesic potency of the Stigma maydis aqueous extract

The analgesic potency of SAE was evaluated using the Randall-Selitto assay.¹⁶ Five groups, each consisting of six animals, were established. The groups received treatments orally, including SAE (at doses of 125, 250, and 500 mg/kg), mefenamic acid (at 45 mg/kg), and distilled water as the negative control. The pain threshold was measured in all groups using a Randall-Selitto analgesiometer (Ugo Basile 57215, Stoelting, Italy) before, 30, 60, 120, 150, 180, 210, 240, and 300 minutes after treatment. Pain threshold values in the treatment groups were compared to those in the negative control group. The percentage inhibition of pain was calculated using Equation 3.

$$P\% = \left(\frac{T_t - T_c}{T_t}\right) \times 100 \dots (Equation 3)$$

Where; P% is the percentage of pain inhibition, Tt is the mean of the pain threshold of the treatment group, and Tc is the mean of the AUC pain threshold of the control group; AUC: Area under control.

Statistical analysis

Data were statistically analyzed and presented as mean \pm standard deviation (SD). Analysis of Variance (ANOVA) was performed using Statistical Package for Social Sciences (SPSS; version 16) software, followed by the LSD post hoc test. Statistical significance was set at p < 0.05.

Results and Discussion

The phytochemical contents of the Stigma maydis aqueous extract The results (Table 1) of the phytochemical screening of SAE revealed flavonoids, saponins, alkaloids, terpenoids, and phenol. The presence of flavonoids in SAE may suggest potential antioxidant activity, which can help reduce oxidative stress and neutralize free radicals. Flavonoids are also known for their cardiovascular protective and antiinflammatory effects. Phenols, a class of antioxidants, further enhance the extract's capacity to combat oxidative damage and potentially contribute to its anti-aging effects.^{17,18} Saponins are recognized for their cholesterol-lowering effects, immune-supporting benefits, and antimicrobial properties. Alkaloids have many pharmacological effects, like pain relief, anti-oxidant, and anti-inflammation.^{19,20} These compounds indicate that SAE may offer a range of therapeutic benefits, including antioxidant, antimicrobial, anti-inflammatory, and potential cardiovascular effects. Further studies are required to explore the specific mechanisms of action and possible uses of these phytochemicals in medicine.

Table 1: Phytochemical screening of *Stigma maydist* aquoeus

	extract	
Phytochemical	SAE	-
Flavonoid	+	
Alkaloid	+	
Saponin	+	
Phenol	+	
Terpenoid	+	

+: presence; -: absence of tested phytochemicals; SAE: Stigma maydis aqueous extract

Prediction of physicochemical and pharmacokinetic properties of the phytoconstituents

Table 2 presents the predicted properties of the phytoconstituents found in the chemical composition of SAE. Out of the 44 compounds in SAE, 42 met the Lipinski criteria, while 2 did not. The profile of the physicochemical properties was assessed based on Lipinski criteria, namely less than 500 Daltons for molecular mass, high lipophilicity (expressed as Log P <5), hydrogen bond donors <5, and hydrogen bond acceptors $<10^{21,22,23}$ Compounds with a molecular mass of more than 500 Daltons have low permeability to the intestinal tract and bloodbrain barrier (BBB). The log P value affects a compound's ability to cross the plasma membrane, its distribution, and its affinity for plasma proteins, thereby influencing the drug's bioavailability. The most frequent cause of low bioavailability of drugs through the oral route is low permeability. The optimal log P value of a drug candidate is <5. The hydrogen bond donor value is <5, and the acceptor is <10, indicating that the molecule can be well absorbed. The score exceeded the criteria, indicating that the chemical dissolves in polar solvents via hydrogen bonding.^{23,24} In drug candidate research, Lipinski's Rule of Five helps predict and exclude molecules likely to exhibit poor pharmacological properties, thereby conserving valuable drug

		Physicochemic	al properties			
Phytoconstituents	MW	Log P	HBA	HBD	Lipinski	
1 ny toconstituents	≤ 500	≤5	≤ 10	≤5	requirement	
Alpha-terpineol	154.25	2.51	1	1	Yes	
Apiforol	274.27	1.64	5	4	Yes	
Apigenidin	290.70	3.24	4	3	Yes	
Betaine	117.15	-2.19	2	0	Yes	
Beta-ionone	192.30	2.77	1	0	Yes	
Beta-sitosterol	414.71	5.05	1	1	Yes	
Butan-1-ol	74.12	1.57	1	1	Yes	
Carvacrol	150.22	2.24	1	1	Yes	
Chlorogenic-Acid	354.31	-0.42	9	6	Yes	
Cinnamic-acid-ethyl-ester	176.21	2.23	2	0	Yes	
Cyanidin	287.24	0.77	6	5	Yes	
Daucosterol	576.85	5.17	6	4	No	
Decan-1-ol	158.28	2.99	1	1	Yes	
Decan-2-ol	158.28	3.08	1	1	Yes	
Ergosterol	396.65	4.81	1	1	Yes	
Gamma-nonalactone	156.22	2.33	2	0	Yes	
Geosmin	182.30	2.66	0	1	Yes	
Geraniol	154.25	2.52	1	1	Yes	
Hept-4-en-2-ol	114.19	2.22	1	1	Yes	
Heptan-2-ol	116.20	2.29	1	1	Yes	
Hex-1-en-3-ol	100.16	1.94	1	1	Yes	
Hordenine	165.23	2.11	3	1	Yes	
Limonene	136.23	2.72	0	0	Yes	
Luteoforol	290.27	1.28	6	5	Yes	
Malic-acid	134.09	-0.01	5	3	Yes	
Oleanolic-acid	456.70	3.94	3	2	Yes	
Palmitic-acid	256.42	3.85	2	1	Yes	
Pelargonidin	271.25	3.2	4	4	Yes	
Pyrrole	67.09	0.00	0	1	Yes	
Rhamnose	138.21	2.63	1	0	Yes	
Stigmasterol	412.69	5.08	1	1	Yes	
Tartaric-acid	150.09	-0.29	6	4	Yes	
Thymol	150.22	2.32	1	1	Yes	
Vitexin	432.38	1.63	10	7	Yes	
1,2,3-trimethyl-benzene	120.19	2.22	0	0	Yes	
1,2,4-trimethyl-benzene	120.19	2.28	0	0	Yes	
1,2-dimethyl-4-ethyl-benzene	134.22	2.51	0	0	Yes	
1,8-cineol	154.25	2.58	1	0	Yes	
2-methyl-butan-1-ol	88.15	1.80	1	1	Yes	
2-methyl-pentan-3-one	100.16	1.84	1	0	Yes	
2-methyl-propan-1-ol	74.12	1.56	1	1	Yes	
2-pentyl-furan	138.21	2.63	1	0	Yes	
3'-methoxymaysin	590.53	1.76	14	7	No	
3-methyl-butan-1-ol	88.15	1.78	1	1	Yes	

Table 2: Physicochemical properties of Stigma maydis phytoconstituents

MW: molecular weight; Log P: calculated logarithm of the octanol-water partition coefficient; HBA: hydrogen bond acceptor; HBD: hydrogen bond donor

development resources. Additionally, pharmacokinetic profiling is essential to identify potentially promising drug candidates.^{22,23,24}

The predicted pharmacokinetic profile of compounds in SAE is presented in Table 3. Among them, 30 compounds showed high intestinal absorption, indicating good absorption and permeability within the gastrointestinal tract.^{22,25} Twenty-seven compounds can permeate the BBB. A BBB is a microvascular unit that selectively regulates drug permeability in the brain. With the growing number of drug targets for central nervous system (CNS) diseases, it is essential to prioritize and accurately predict which compounds in the company's database should be screened for desirable properties.^{25,26} Thirty-seven SAE compounds did not bind to the P-glycoprotein substrate (P-gp). Pgp is a transmembrane glycoprotein that transports hazardous compounds from the cell to the extracellular space. It also actively exports various compounds, which can significantly reduce or eliminate their activity.^{25,27} Due to its ability to alter drug penetration rates, the level of P-gp expression correlates with the degree of drug resistance.²⁵ The metabolic parameters analyzed included the potential inhibition of cytochrome P450, an enzyme responsible for metabolizing a wide range of drug compounds. Inhibition of cytochrome P450 enzymes can alter a drug's pharmacokinetics, making it essential to evaluate whether a compound affects these enzymes. The five major cytochrome P450 isoforms involved in drug metabolism are CYP1A2, CYP2C19, CYP2C9, CYP2C6, and CYP3A.^{25,28} Thirty-three compounds in SAE did not inhibit the five main isoforms of cytochrome P450. Total clearance reflects the excretion profile and is a pharmacokinetic indicator that measures the rate at which compounds are eliminated from the body. For all phytoconstituents, the clearance rate was low. A clearance rate above 15 ml/min/kg is considered high, while a rate between 5 and 15 ml/min/kg is considered moderate.²⁹

Ligand	Intestinal absorption	BBB permeatio n	P-gp Substr ate	Cyp1 A2 inhibit or	Cyp2C1 9 inhibito r	Cyp2C9 inhibito r	Cyp2D6 inhibito r	Cyp3 A4 inhibit or	Clearan ce Total
Alpha-terpineol	High	Yes	No	No	No	No	No	No	1.219
Apiforol	High	No	Yes	No	No	No	No	No	0.181
Apigenidin	High	No	Yes	Yes	No	No	No	No	0.626
Betaine	Low	No	Yes	No	No	No	No	No	0.326
Beta-ionone	High	Yes	No	No	No	No	No	No	1.315
Beta-sitosterol	Low	No	No	No	No	No	No	No	0.628
Butan-1-ol	High	Yes	No	No	No	No	No	No	0.375
Carvacrol	High	Yes	No	Yes	Yes	No	No	No	0.207
Chlorogenic-Acid	Low	No	No	No	No	No	No	No	0.307
Cinnamic-acid-ethyl-ester	High	Yes	No	No	No	No	No	No	0.843
Cyanidin	High	No	Yes	Yes	No	No	No	No	0.532
Daucosterol	Low	No	No	No	No	No	No	No	0.689
Decan-1-ol	High	Yes	No	No	No	No	No	No	1.641
Decan-2-ol	High	Yes	No	No	No	No	No	No	1.598
Ergosterol	Low	No	No	No	No	Yes	No	No	0.564
Gamma-nonalactone	High	Yes	No	No	No	No	No	No	1.363
Geosmin	High	Yes	No	No	No	No	No	No	1.112
Geraniol	High	Yes	No	No	No	No	No	No	0.437
Hept-4-en-2-ol	High	Yes	No	No	No	No	No	No	0.406
Heptan-2-ol	High	Yes	No	No	No	No	No	No	1.483
Hex-1-en-3-ol	High	Yes	No	No	No	No	No	No	0.416
Hordenine	High	Yes	No	Yes	No	No	No	No	0.907
Limonene	Low	Yes	No	No	No	Yes	No	No	0.213
Luteoforol	High	No	Yes	No	No	No	No	No	0.023
Malic-acid	High	No	No	No	No	No	No	No	0.81
Oleanolic-acid	Low	No	No	No	No	No	No	No	-0.081
Palmitic-acid	High	Yes	No	No	No	No	No	No	1.763
Pelargonidin	High	No	Yes	Yes	No	No	Yes	No	0.569
Pyrrole	High	Yes	No	No	No	No	No	No	0.665
Rhamnose	High	No	Yes	No	No	No	No	No	0.577

Stigmasterol	Low	No	No	No	No	Yes	No	No	0.618
Tartaric-acid	Low	No	No	No	No	No	No	No	0.885
Thymol	High	Yes	No	Yes	No	No	No	No	0.211
Vitexin	Low	No	No	No	No	Yes	No	No	0.444
1,2,3-trimethyl-benzene	Low	Yes	No	No	No	No	No	No	0.283
1,2,4-trimethyl-benzene	Low	Yes	No	No	No	No	No	No	0.28
1,2-dimethyl-4-ethyl-	Low	Vac	No	No	No	No	Vac	No	0.304
benzene	Low	168	INO	INO	NO	INO	168	INO	0.304
1,8-cineol	High	Yes	No	No	No	No	No	No	1.009
2-methyl-butan-1-ol	High	Yes	No	No	No	No	No	No	0.386
2-methyl-pentan-3-one	High	Yes	No	No	No	No	No	No	0.45
2-methyl-propan-1-ol	High	No	No	No	No	No	No	No	0.33
2-pentyl-furan	High	Yes	No	Yes	No	No	No	No	0.456
3'-methoxymaysin	Low	No	No	No	No	No	No	No	-0.217
3-methyl-butan-1-ol	High	Yes	No	No	No	No	No	No	0.36

Molecular docking of phytoconstituents of Stigma maydis on COX-2 Cyclooxygenase-2 (PDB ID: 5IKR) is the target receptor to assess antiinflammatory and analgesic activity (Figure 1). Molecular docking was validated to assess the accuracy of the docking method used. The validation parameter, RMSD (Root Mean Square Deviation), measures the difference in the ligand pose before and after redocking. The validation process was successful if the program could return the ligand pose from redocking to the original pose with an RMSD value <2 Å.14,29 In the present study, the validation process was considered successful, as the RMSD value obtained was 1.852 Å, as shown in Figure 1. The computational docking studies revealed that no compounds had a free binding affinity (ΔG) and inhibition constant (Ki) equal to or greater than the positive control drug. The ΔG and Ki of SAE compounds ranged from -8.1 to 62.7 kcal/mol and 1.191 to 2519.692x1045 µM. Table 4 summarizes the docking results for the phytoconstituents and reference drug. Pelargonidin exhibited the best binding conformation with the cyclooxygenase-2 receptor, showing a ΔG of -8.1 kcal/mol. It was followed by apigenidin (-8.0 kcal/mol), apiforol (-7.8 kcal/mol), luteoforol (-7.7 kcal/mol), cyanidin (-7.3 kcal/mol), and chlorogenic acid (-6.8 kcal/mol) (Table 4). The ΔG reflects the strength of the interaction between the ligand and receptor. A lower ΔG indicates a more stable compound-receptor complex.^{14,22,29} In the present study, the ΔG of the top 6 compounds was close to those of the positive control drug (-8.1 kcal/mol), which confirmed that these phytochemicals might have potential analgesic and anti-inflammatory activities.

Other parameters analyzed were amino acid interactions between ligands and receptors. Amino acid interactions influence the bond energy between the ligand and receptor, thereby affecting the stability of the molecule's geometric configuration.^{22,30} Six SAE compounds with free binding energies close to positive control drugs were checked

for similarities in their amino acid interactions. According to Table 5 and Figure 4, pelargonidin, apigenidin, apiforol, luteoforol, cyanidin, and chlorogenic acid have similar residual interactions with amino acid residues in the positive control drug (mefenamic acid). The interaction of luteoforol (with residues 385 TYR, 349 VAL, 352 LEU, and 527 ALA) closely resembles that of mefenamic acid (which involves residues 385 TYR, 530 SER, 349 VAL, 352 LEU, 527 ALA, and 531 LEU), followed by interactions with pelargonidin, apigenidin, apioforol, and cyanidin (which all involve residues 349 VAL, 352 LEU, 527 ALA, and 531 LEU). Similar interactions with binding site residues suggest that the compound may exhibit inhibitory activity comparable to the reference drug.^{30,31}

The anti-inflammatory activity of Stigma maydis aqueous extract

The anti-inflammatory effect of SAE was evaluated by the AUC of rat paw edema and the percentage of edema inhibition (Table 6 and Figure 2). A significant difference (p < 0.05) was observed in the total AUC of rat paw edema between the negative control group, reference drug, and treatment group. However, no significant difference was observed among the treatment doses of 125, 250, and 500 mg/kg. This comparison of total AUC indicated that a smaller AUC value for rat paw edema reflects a stronger anti-inflammatory effect of the compound. Although SAE did not show significant differences between the tested doses, all doses were still more effective than the negative control. These results are consistent with other studies that demonstrated natural compounds could exert significant anti-inflammatory effects by modulating various biochemical pathways in the body.^{15,16,32}

Protein	Ligand	Free affinity energy (kcal/mol)	Inhibition Constant (µM)
	Mefenamic acid	-9.1	0.210
	Pelargonidin	-8.1	1.191
	Apigenidin	-8.0	1.474
Cyclooxygenase-2	Apiforol	-7.8	2.154
(ID 5IKR)	Luteoforol	-7.7	2.657
	Cyanidin	-7.3	5.177
	Chlorogenic-Acid	-6.8	11.915
	Beta-ionone	-6.7	14.077

Table 4: Binding energy and inhibition constant of the ligand

Carvacrol	-6.6	16.631
1,2-dimethyl-4-ethyl-benzene	-6.5	19.648
Palmitic-acid	-6.5	19.648
Alpha-terpineol	-6.4	23.213
Thymol	-6.4	23.213
1,2,3-trimethyl-benzene	-6.3	27.425
Limonene	-6.3	27.425
Geosmin	-6.3	27.425
Cinnamic-acid-ethyl-ester	-6.3	27.425
1,2,4-trimethyl-benzene	-6.2	32.401
Gamma-nonalactone	-5.9	53.430
Geraniol	-5.8	63.124
Hordenine	-5.8	63.124
Decan-2-ol	-5.7	74.577
2-pentyl-furan	-5.7	74.577
Rhamnose	-5.4	122.980
Decan-1-ol	-5.2	171.655
Heptan-2-ol	-4.9	283.066
Hept-4-en-2-ol	-4.8	334.425
2-methyl-pentan-3-one	-4.7	395.102
Malic-acid	-4.7	395.102
Hex-1-en-3-ol	-4.4	651.539
Tartaric-acid	-4.4	651.539
3-methyl-butan-1-ol	-4.1	1074.414
2-methyl-butan-1-ol	-4.1	1074.414
2-methyl-propan-1-ol	-3.8	1771.753
Betaine	-3.7	2093.214
1,8-cineol	-3.6	2473.000
Butan-1-ol	-3.5	2921.693
Pyrrole	-3.4	3451.795
Stigmasterol	-0.6	3677.370 x 10 ²
Beta-sitosterol	-0.4	5132.845 x 10 ²
Vitexin	1.8	2010.888 x 10 ⁴
Ergosterol	3.2	2075.554 x 10 ⁵
Oleanolic-acid	21.3	2651.089 x 10 ¹⁵
Daucosterol	25.2	1767.793 x 10 ¹⁸
3'-methoxymaysin	62.7	2519.692 x 10 ⁴⁵

Additionally, data analysis of the percentage of inflammation inhibition revealed that the positive control exhibited inhibition of 41.18%, SAE at doses of 125, 250, and 500 mg/kg showed inhibition percentages of 21.63, 22.64, and 24.99%, respectively. These inflammation inhibition percentages suggest that although SAE was not as effective as the reference drug, it still holds potential as a viable anti-inflammatory agent. *Stigma maydis* aqueous extract contains flavonoid compounds (apiforol, apigenidin, cyanidin, pelargonidin, vitexin), alkaloids (betaine, hordenine, pyrrole), phenols (carvacrol, chlorogenic acid, cinnamic acid, ethyl ester, thymol), triterpenoids (beta-sitosterol, oleanolic acid, stigmasterol, ergosterol), and saponins. Flavonoids, alkaloids, and triterpenoids can act as anti-inflammatory agents. The mechanism of action of flavonoids, alkaloids, and triterpenoids in reducing inflammation involves several complex biochemical

pathways. One of the main mechanisms is to suppress cyclooxygenase (COX-2) enzyme activity, which plays an important role in synthesizing prostaglandins, compounds that trigger inflammation^{33,34,35}. Flavonoids, alkaloids, and triterpenoids also modulate inflammatory signalling pathways by inhibiting the transcription factor NF- κB , a central regulator of pro-inflammatory genes, whose activation is often triggered by cytokines like TNF- α and IL-1 β .^{35,36,37}

Meanwhile, phenolic compounds employ various mechanisms of action in addressing inflammation. Phenol has a strong antioxidant potential that protects cells from oxidative stress, often occurring during inflammatory processes. Oxidative stress frequently contributes to the inflammatory process, so reducing oxidation can alleviate inflammation. Phenol can also affect signalling pathways involved in inflammatory responses by inhibiting the activation of the mitogen-

activated protein kinase (MAPK) pathway, which plays a role in proinflammatory signal transduction. By inhibiting this pathway, phenols can reduce the expression of inflammatory cytokines and other mediators.^{39,40}

Figure 1: Crystal structure of human COX-2 (ID 5IKR) (a) and overlay of the native ligand (green) and those of the experimental ligands (blue) (b).

Figure 2: Area under the curve of paw edema on SAE. DL: Distilled water; MEF: Mefenamic acid; SAE: *Stigma maydis* aqueous extract

Figure 3: Area under the curve of pain threshold of SAE. DL: Distilled water; MEF: Mefenamic acid, SAE: *Stigma maydis* aqueous extract

The analgesic potential of Stigma maydis aqueous extract The results in Table 7 and Figure 3 showed a significant difference (p < 0.05) in the total AUC pain threshold between the control and treatment groups. A significant difference (p <0.05) was found in the total AUC pain threshold between SAE at a dose of 125 mg/kg and SAE

Figure 4: Receptor-ligand interactions of four top hits of *Stigma* maydis.

at doses of 250 and 500 mg/kg, whereas no significant difference (p > 0.05) was observed between the 250 and 500 mg/kg doses. The analgesic potential of a compound can be assessed using various methods, one of which is analyzing the AUC pain threshold. The AUC is a key parameter in evaluating analgesic potential, with a lower AUC value indicating a stronger analgesic effect of the tested compound.¹⁶ The percentage of pain inhibition is also an essential parameter in assessing analgesic potency. Based on the pain inhibition percentage (Table 7), SAE demonstrated potential for pain relief compared to the control group. The analgesic effect of SAE is likely influenced by its composition of secondary metabolites, including flavonoids, alkaloids, triterpenoids, saponins, and phenols. Alkaloids, flavonoids, and terpenoids have effects as analgesics through several pathways, including their impact on the central and peripheral nervous systems. Alkaloids, flavonoids, and terpenoids can inhibit signalling pathways involved in pain transmission, such as the COX and LOX pathways, which are key factors in synthesizing prostaglandins that cause pain.^{33,34,41}

Alkaloids, flavonoids, and terpenoids also have anti-inflammatory properties that reduce pain. These compounds can reduce proinflammatory cytokines levels, such as IL-1 β and TNF- α , contributing to inflammation and pain. By lowering the levels of these cytokines, flavonoids can help relieve pain caused by inflammation.^{36,37,38} Alkaloids and triterpenoids also affect the nervous system, modulating neurotransmitter receptors in the brain. They can also interact with opioid receptors in the brain, which reduces pain perception.^{41,42} Meanwhile, saponins also exhibit analgesic activity through a different mechanism. They can influence the nervous system by altering cell membrane permeability and modulating neurotransmitter signalling. Saponins promote the release of endorphins, which act as natural analgesics. By boosting endorphin levels, saponins help reduce pain and enhance pain tolerance.⁴¹

The mechanism of action of phenols as analgesics can be explained through several pathways, including their effects on the nervous system and modulation of inflammatory processes. Phenols can inhibit inflammatory signalling pathways, such as NF- κ B and MAPK, which contribute to pain.^{39,40} They also enhance the production of anti-inflammatory compounds in the body, helping to reduce pain. Phenols increase anti-inflammatory mediators like interleukin-10 (IL-10), which counteracts pro-inflammatory effects.^{41,43} Additionally, phenols and flavonoids possess significant antioxidant activity, protecting nerve cells from oxidative stress damage. By boosting the properties of antioxidant enzymes, phenols help reduce cell damage and alleviate pain associated with oxidative stress.^{39,40,41,44}

Ligand hydrogen bond hydrogen bondCarbon hydrogen bondHydrogenbolic interactionsElectrostatic interactionsMefenamic acid385 TVR530 SER530 SER349 VAL349 VAL540 CALS30 SER530 SER530 SER349 VAL526 GLY120 ARGPelargonidin530 SER518 PHE349 VAL526 GLY120 ARGApigenidin530 SER518 PHE349 VAL526 GLY120 ARGApigenidin530 SER518 PHE320 LEU526 GLY120 ARGApigenidin530 SER518 PHE320 LEU526 GLY120 ARGApigenidin530 SER518 PHE120 ARG531 LEU526 GLYApiforol530 SER518 PHE120 ARG531 LEU526 GLYApiforol533 SER537 ALA531 LEU526 GLY520 ALLApiforol533 SER537 ALA531 LEU526 GLY520 ALLCyanidin120 ARG527 ALA532 LEU526 GLY520 ALLCyanidin120 ARGTYR 385349 VAL518 PHE120 ARGCyanidin120 ARGTYR 385349 VAL518 PHE520 CLUCanidin120 ARGTYR 385349 VAL518 PHE520 CLUCanidin120 ARG523 VAL527 ALA531 LEU520 GLYCanidin120 ARG523 VAL527 ALA532 LEU526 GLYS33 SER533 SER523 VAL522 LEU526 GLY522 ALES33 SER533 SER				Amino Acid Int	teractions		
hydrogen bond nord bond Unfavourable denor-donor Pi-pi Pi akylakyl Pi-pi stacked Pi - Cation Mefenamic acid 385 TYR 530 SER 349 VAL 352 LEU 353 SEL 35	Ligand	Conventional	Carbon	Hydro	Hydrophobic interactions		
Mefenamic acid 385 TYR 530 SER 349 VAL 352 LEU 352 LEU 352 LEU 351 LEU 351 LEU 351 LEU 226 GLY 120 ARG 351 LEU 223 VAL 526 GLY 120 ARG 351 LEU 523 VAL 527 ALA 531 LEU 523 VAL 527 ALA 531 LEU 523 VAL 527 ALA 531 LEU 528 GLY 120 ARG 353 LEU 528 GLY 528 VAL 527 ALA 531 LEU 526 GLY 520 ARG 528 GLY 520 ARG 528 CLY 520 ARG 528 CLY 520 ARG 528 CLY 520 ARG 528 CLY 520 ARG 523 VAL 527 ALA 531 LEU 526 GLY 520 ARG 527 ALA 531 LEU 520 CLY 527 ALA 531 LEU 527 ALA 531 LEU 527 ALA 531 LEU 526 GLY 522 MET 527 ALA 531 LEU 526 GLY 522 MET 523 VAL 533 SER 533 SER 533 SER 533 SER 533 SER 534 VAL 532 LEU 526 GLY 522 MET		hydrogen bond	nyarogen bond	Unfavourable donor-donor	Pi alkyl/alkyl	Pi-pi stacked	Pi -Cation
Signed in the second	Mefenamic acid	385 TYR	530 SER		349 VAL		
Sin Lei Sin Lei Pelurgonidin 530 SER 518 PHE 350 LEU 526 GLY 120 ARG Arjegenidin 349 VAL 518 PHE 352 LEU 526 GLY 120 ARG Apigenidin 349 VAL 518 PHE 526 GLY 526 GLY 526 GLY Apigenidin 350 LEU 526 GLY 526 GLY 526 GLY 527 ALA Apiforol 351 LEU 526 GLY 526 GLY 526 GLY 526 GLY Apiforol 385 TYR 527 ALA 526 GLY 526 GLY 526 GLY San Leu 527 ALA 521 LEU 526 GLY 526 GLY 526 GLY San Leu 527 ALA 527 ALA 527 ALA 527 ALA 527 ALA San Leu 527 ALA 526 GLY 526 GLY 526 GLY 526 GLY 526 GLY Quandin 120 ARG 17YR 385 349 VAL 518 PHE 526 GLY 526 GLY 526 GLY 526 GLY 526 GLY 527 ALA 527 ALA 527 ALA 527 ALA 527 ALA 526 GLY 526 GLY 526 GLY 526 GLY 526 GLY 527 ALA 531 LEU					352 LEU		
Pelargonidin 530 SER 518 PHE 349 VAL 352 LEU 323 VAL 527 ALA 531 LEU 526 GLY 120 ARG 352 LEU 353 LEU 120 ARG 120 ARG 120 ARG Apigenidin					527 ALA		
Pelargonidin530 SER518 PHE349 VAL 352 LEU 523 VAL 523 VAL 					531 LEU		
Apigenidin 352 LEU Apigenidin 518 PHE 320 LEU 518 PHE 321 LEU 526 GLY 521 LEU 526 GLY 522 LEU 526 GLY 523 VAL 521 LEU 520 LEU 526 GLY 521 LEU 526 GLY 522 LEU 526 GLY 521 LEU 526 GLY 527 ALA 522 LEU 520 LEU 526 GLY 521 LEU 526 GLY	Pelargonidin	530 SER	518 PHE		349 VAL	526 GLY	120 ARG
Apigenidin 523 VAL Apigenidin 518 PHE 352 LEU 526 GLY 523 VAL 520 VAL 523 VAL 520 VAL 521 LEU 526 GLY 523 VAL 521 LEU 521 LEU 526 GLY 741 A 518 PHE 751 LEU 526 GLY 741 A 518 PHE 751 LEU 526 GLY 741 A 521 LEU 751 LEU 526 GLY 752 VAL 521 LEU 752 VAL 521 LEU 752 VAL 526 GLY 752 VAL 521 LEU 752 VAL 522 LEU 526 GLY 526 GLY 751 LEU 526 GLY					352 LEU		
Apigenidin 312 FUL 518 PHE Apigenidin 322 LEU 526 GLY Apiforol 323 VAL 521 LEU Apiforol 349 VAL 518 PHE Apiforol 323 VAL 521 LEU Apiforol 323 VAL 526 GLY S23 VAL 526 GLY 526 GLY S23 VAL 527 ALA 527 ALA S20 CLY 526 GLY 526 GLY S21 LEU 526 GLY 526 GLY S23 VAL 527 ALA 527 ALA S21 LEU 526 GLY 526 GLY S23 VAL 527 ALA 527 ALA S21 LEU 526 GLY 526 GLY S23 VAL 527 ALA 527 ALA S23 VAL 520 GLY 526 GLY S23 VAL 527 ALA 527 ALA S21 LEU 526 GLY 526 GLY S23 VAL 527 ALA 527 ALA S31 LEU 527 ALA 527 ALA S31 LEU 527 ALA 527 ALA S30 SER 527 ALA 527 ALA S30 SER 527 ALA 520 ALE					523 VAL		
Apigenidin 31 LEU Apigenidin 349 VAL 518 PHE 352 LEU 526 GLY 523 VAL 527 ALA 521 LEU 526 GLY 523 VAL 521 LEU 521 LEU 526 GLY 521 LEU 526 GLY 521 LEU 526 GLY 521 LEU 526 GLY 522 VAL 526 GLY 523 VAL 527 ALA 521 LEU 526 GLY 523 VAL 527 ALA 520 VAL 526 GLY 520 VAL 526 GLY 527 ALA 520 VAL 520 VAL 526 GLY 520 VAL 520 VAL 530 SER 527 ALA 530 SER 527 ALA 530 SER 527 ALA 530 SER 527 ALA					527 ALA		
Apigenidin 349 VAL 518 PHE 352 LEU 526 GLY 523 VAL 527 ALA 531 LEU 526 GLY Apiforol 349 VAL 518 PHE Apiforol 352 LEU 526 GLY S22 LEU 526 GLY 526 GLY S23 VAL 527 ALA 526 GLY S21 LEU 526 GLY 526 GLY Lueoforol 385 TYR 323 VAL 526 GLY S23 VAL 522 LEU 526 GLY 527 ALA S20 VAL 522 LEU 526 GLY 526 GLY Cyanidin 120 ARG TYR 385 349 VAL 518 PHE S21 LEU 526 GLY 526 GLY 526 GLY 526 GLY Cyanidin 120 ARG TYR 385 349 VAL 518 PHE S21 LEU 526 GLY 526 GLY 526 GLY 526 GLY S21 LEU 526 GLY 522 MET 526 GLY 522 MET Chorogenic-Acid 355 STYR 523 VAL 522 AET 526 GLY 522 MET					531 LEU		
Apiforol352 LEU 523 VAL 527 ALA 531 LEU526 GLY 526 GLY120 ARGApiforol349 VAL 522 LEU 527 ALA 531 LEU526 GLY120 ARGLuceoforol385 TYR 323 VAL349 VAL 522 LEU 527 ALA 532 LEU526 GLY120 ARGCyanidin120 ARG747 ALA 520 VAL 527 ALA 523 VAL526 GLY120 ARGCyanidin120 ARG747 ALA 520 VAL 527 ALA 520 VAL526 GLY 526 GLY120 ARGChorogenic-Acid355 TYR 523 VAL 520 SER523 VAL 523 VAL526 GLY 522 VAL526 GLY 526 GLY522 METChorogenic-Acid355 TYR 523 VAL 520 SER523 VAL 527 ALA 523 SER522 LEU 520 LEU526 GLY 526 GLY522 MET	Apigenidin				349 VAL	518 PHE	
Apiforol \$23 VAL \$27 ALA \$31 LEU \$18 PHE \$20 ARG Apiforol \$18 PHE \$26 GLY \$26 GLY \$27 ALA \$27 ALA \$31 LEU \$26 GLY \$26 GLY Luteoforol \$85 TYR \$23 VAL \$349 VAL \$32 LEU \$26 GLY Subscription \$35 LEU \$27 ALA \$22 LEU \$26 GLY \$27 ALA \$22 LEU Cyanidin \$20 ARG \$18 PHE \$22 CEU \$26 GLY \$27 ALA \$22 CEU Cyanidin \$20 ARG \$18 PHE \$22 CEU \$26 GLY \$26 GLY Cyanidin \$20 ARG \$18 PHE \$23 VAL \$26 GLY \$26 GLY Cyanidin \$20 ARG \$18 PHE \$23 VAL \$26 GLY \$26 GLY Cyanidin \$20 ARG \$18 PHE \$23 VAL \$26 GLY \$26 GLY Cyanidin \$20 ARG \$18 PHE \$23 VAL \$26 GLY \$26 GLY Chorogenic-Acid \$25 TYR \$30 SER \$23 VAL \$33 SER \$22 LEU \$26 GLY \$26 GLY					352 LEU	526 GLY	
Apiforol 349 VAL 518 PHE 120 ARG Apiforol 352 LEU 526 GLY 526 GLY S23 VAL 521 LEU 526 GLY 521 LEU S23 VAL 521 LEU 526 GLY 521 LEU Luteoforol 385 TYR 349 VAL 526 GLY 526 GLY Luteoforol 385 TYR 349 VAL 526 GLY 526 GLY Cyanidin 120 ARG TYR 385 349 VAL 518 PHE 526 GLY Cyanidin 120 ARG TYR 385 349 VAL 518 PHE 526 GLY Cyanidin 120 ARG TYR 385 349 VAL 518 PHE 526 GLY 526 GLY Chorogenic-Acid 355 TYR 523 VAL 527 ALA 526 GLY 522 MET Chorogenic-Acid 355 TYR 523 VAL 522 LEU 526 GLY 522 MET					523 VAL		
Apiforol 31 LEU 349 VAL 518 PHE 120 ARG 352 LEU 526 GLY 526 GLY 527 ALA 521 LEU 527 ALA 531 LEU 531 LEU 10 ARG 385 TYR 311 LEU 532 LEU 526 GLY 10 ARG 323 VAL 349 VAL 526 GLY 526 GLY 10 ARG 120 ARG TYR 385 349 VAL 518 PHE 526 GLY 10 ARG TYR 385 349 VAL 518 PHE 526 GLY 526 GLY 10 ARG TYR 385 349 VAL 518 PHE 526 GLY 526 GLY 10 ARG TYR 385 349 VAL 518 PHE 526 GLY 526 GLY 10 ARG 523 VAL 527 ALA 520 KET 526 GLY 522 MET 11 Chorogenic-Acid 355 TYR 523 VAL 523 VAL 522 MET 11 Chorogenic-Acid 355 TYR 523 VAL 522 AET 522 MET 11 Chorogenic-Acid 355 TYR 523 VAL 522 AET 522 MET					527 ALA		
Apiforol349 VAL 352 LEU 352 LEU 352 VAL 351 LEU 352 LEU518 PHE 352 CLU 352 LEU 352 LEU120 ARGLuteoforol385 TYR 323 VAL349 VAL 352 LEU 352 LEU 352 LEU526 GLY					531 LEU		
352 LEU 526 GLY 523 VAL 527 ALA 527 ALA 531 LEU 532 LEU 532 LEU Luteoforol 385 TYR 323 VAL 349 VAL 526 GLY 527 ALA 526 GLY 532 LEU 526 GLY Cyanidin 120 ARG TYR 385 349 VAL 518 PHE 527 ALA 526 GLY 526 GLY 526 GLY Cyanidin 120 ARG TYR 385 349 VAL 518 PHE 527 ALA 526 GLY 526 GLY 526 GLY S11 LEU 526 GLY 526 GLY 526 GLY S11 LEU 526 GLY 526 GLY 522 MET Chlorogenic-Acid 355 TYR 523 VAL 522 LEU 526 GLY 522 MET S11 LEU 530 SER 527 ALA 522 MET 522 MET	Apiforol				349 VAL	518 PHE	120 ARG
S23 VAL S27 ALA S27 ALA S27 ALA S31 LEU S32 LEU S23 VAL S26 GLY S23 VAL S26 GLY S23 VAL S26 GLY S27 ALA S27 ALA S27 ALA S26 GLY S27 ALA S26 GLY S27 ALA S26 GLY S27 ALA S18 PHE S23 VAL S18 PHE S23 VAL S26 GLY S27 ALA S27 ALA S31 LEU S26 GLY S27 ALA S27 ALA S31 LEU S26 GLY S27 ALA S21 LEU S27 ALA S21 LEU S31 LEU S26 GLY S31 LEU S26 GLY S30 SER S27 ALA S33 SER S21 LEU S26 GLY S22 MET					352 LEU	526 GLY	
S27 ALA 531 LEU 532 LEU Luteoforol 385 TYR 349 VAL 526 GLY 323 VAL 527 ALA 527 ALA Cyanidin 120 ARG TYR 385 349 VAL 518 PHE 352 LEU 526 GLY 526 GLY 526 GLY Cyanidin 120 ARG TYR 385 349 VAL 518 PHE S52 LEU 526 GLY 526 GLY 526 GLY S51 LEU 526 GLY 520 SER 527 ALA S50 SER 527 ALA 352 LEU 526 GLY 522 MET					523 VAL		
S31 LEU 532 LEU S32 VAL 349 VAL 526 GLY S23 VAL 352 LEU Cyanidin 120 ARG TYR 385 349 VAL 518 PHE S23 VAL 526 GLY 526 GLY 526 GLY Cyanidin 120 ARG TYR 385 349 VAL 518 PHE S23 VAL 526 GLY 526 GLY 526 GLY S31 LEU 527 ALA 527 VAL 527 ALA Chlorogenic-Acid 355 TYR 523 VAL 352 LEU 526 GLY 522 MET Chlorogenic-Acid 355 TYR 523 VAL 352 LEU 526 GLY 522 MET					527 ALA		
Luteoforol 385 TYR 349 VAL 526 GLY 323 VAL 352 LEU 352 LEU Cyanidin 120 ARG TYR 385 349 VAL 518 PHE S22 LEU 526 GLY 526 GLY 526 GLY Cyanidin 120 ARG TYR 385 349 VAL 518 PHE S22 LEU 526 GLY 526 GLY 526 GLY S31 LEU 527 ALA 527 ALA 527 ALA Chlorogenic-Acid 355 TYR 523 VAL 522 LEU 526 GLY S30 SER 527 ALA 352 LEU 526 GLY 522 MET					531 LEU		
Luteoforol 385 TYR 349 VAL 526 GLY 323 VAL 352 LEU 352 LEU Cyanidin 120 ARG TYR 385 349 VAL 518 PHE S25 Z LEU 526 GLY 526 GLY 526 GLY Cyanidin 120 ARG TYR 385 349 VAL 518 PHE S25 Z LEU 526 GLY 526 GLY 526 GLY S27 ALA 527 ALA 527 ALA 521 LEU Chlorogenic-Acid 355 TYR 523 VAL 522 VAL S30 SER 527 ALA 353 SER 526 GLY 522 MET					532 LEU		
323 VAL 352 LEU Cyanidin 120 ARG TYR 385 349 VAL 518 PHE 352 LEU 526 GLY 523 VAL 527 ALA S77 ALA 527 ALA S11 LEU 526 GLY S10 SER 527 ALA S13 SER 521 LEU	Luteoforol	385 TYR			349 VAL	526 GLY	
Cyanidin 120 ARG TYR 385 349 VAL 518 PHE 352 LEU 526 GLY 526 GLY 530 VAL 527 ALA Chlorogenic-Acid 355 TYR 523 VAL 530 SER 527 ALA 353 SER 527 ALA		323 VAL			352 LEU		
Cyanidin120 ARGTYR 385349 VAL 352 LEU 523 VAL518 PHE 526 GLYChlorogenic-Acid355 TYR 530 SER523 VAL527 ALA 527 ALA 527 ALA 533 SER522 MET					527 ALA		
352 LEU 526 GLY 523 VAL 527 ALA 531 LEU 526 GLY Chlorogenic-Acid 355 TYR 523 VAL 352 LEU 530 SER 527 ALA 353 SER 521 VAL	Cyanidin	120 ARG		TYR 385	349 VAL	518 PHE	
523 VAL 527 ALA 531 LEU Chlorogenic-Acid 355 TYR 523 VAL 530 SER 527 ALA 530 SER 527 ALA 353 SER					352 LEU	526 GLY	
Substrain					523 VAL		
527 ALA 527 ALA 531 LEU Chlorogenic-Acid 355 TYR 523 VAL 352 LEU 526 GLY 522 MET 530 SER 527 ALA 353 SER 526 GLY 522 MET							
Chlorogenic-Acid 355 TYR 523 VAL 352 LEU 526 GLY 522 MET 530 SER 527 ALA 353 SER					527 ALA		
Chlorogenic-Acid 355 TYR 523 VAL 352 LEU 526 GLY 522 MET 530 SER 527 ALA 353 SER 525 SER 525 SER 525 SER					531 LEU		
530 SER 527 ALA 353 SER	Chlorogenic-Acid	355 TYR	523 VAL		352 LEU	526 GLY	522 MET
353 SER		530 SER	527 ALA				
			353 SER				

Table 5: Amino acid interaction of COX-2 with phytoconstituents of *Stigma maydis*.

Table 6: Effects of SAE against carrageenan-induced paw edema model in rats

AUC of Paw Edema (mL.Hours)							Percentage of inflammation	
	1 h	2 h	3 h	4 h	5h		inhibition (%)	
Carr + DL 10 mL/kg	5.35 ± 0.1	6.50 ± 0.13	7.25 ± 0.13	7.80 ± 0.13	8.00 ± 0.15	35.38ª	-	
Carr + MEF 45 mg/kg	3.82 ± 0.07	4.36 ± 0.09	4.35 ± 0.07	4.12 ± 0.05	3.89 ± 0.04	20.81 ^b	41.18	
Carr + SAE 125 mg/kg	4.35 ± 0.09	5.91 ± 0.07	6.15 ± 0.11	5.81 ± 0.23	5.01 ± 0.21	27.73°	21.63	
Carr + SAE 250 mg/kg	3.89 ± 0.16	5.29 ± 0.12	6.18 ± 0.19	6.11 ± 0.29	5.28 ± 0.22	27.51°	22.24	
Carr + SAE 500 mg/kg	4.04 ± 0.16	5.79 ± 0.13	6.16 ± 0.22	5.29 ± 0.19	4.59 ± 0.14	26.54 ^c	24.99	

SAE: Stigma maydis aqueous extract; Values are expressed as mean \pm SD; The letters a, b, and c indicate differences between treatments (p < 0.05).

Table 7: Analgesic effect of SAE and mefenamic acid in Randall-Selitto assay

Treatment	Total AUC of Pain Threshold	Percentage of pain inhibition
	(mg.Hours)	(%)
DL 10 mL/kg	304.00 ^a	-
MEF 45 mg/kg	420.75 ^b	27.75
SAE 125 mg/kg	393.08°	22.66
SAE 250 mg/kg	409.33 ^d	25.73
SAE 500 mg/kg	412.83 ^d	26.36

SAE: Stigma maydis aqueous extract; The letters a, b, and c indicate differences between treatments (p < 0.05).

Conclusion

The present study demonstrated that the aqueous extracts of *Stigma maydis* possess notable anti-inflammatory and analgesic activities. Both *in silico* and *in vivo* findings support the potential of *Stigma maydis* compounds, including flavonoids, alkaloids, and phenols, in modulating inflammation-related pathways, especially COX-2 inhibition. While the anti-inflammatory effects were moderate compared to standard NSAIDs, the analgesic properties showed significant promise, especially at higher doses. These findings suggest *Stigma maydis* as a viable candidate for natural anti-inflammatory and pain-relief therapies, warranting further research into its mechanisms and clinical applications.

Conflict of Interest

The authors declare no conflict of interest.

Authors' Declaration

The authors hereby declare that the work presented in this article is original and that any liability for claims relating to the content of this article will be borne by them.

Acknowledgments

The authors would like to express their deepest gratitude to the authority of the University of Islam Malang for funding this research (Grant number: 073/G164/U.LPPM/K/B.07/I/2024).

References

 Aksentijevich M, Lateef SS, Anzenberg P, Dey AK, Mehta NN. Chronic inflammation, cardiometabolic diseases and effects of treatment: psoriasis as a human model. Trends Cardiovasc Med. 2020; 30(8): 472-478. <u>https://doi.org/10.1016/j.tcm.2019.11.001</u>

- Ronchetti S, Migliorati G, Delfino DV. Association of inflammatory mediators with pain perception. Biomed Pharmacother. 2017; 96: 1445-1452. <u>https://doi.org/10.1016/j.biopha.2017.12.001</u>
- De la Cruz-Ahumada CJ, Topete-Reyes JF, Mena-Ramírez JP, Guzmán-Flores JM, Guzmán-González JI, Ramírez-De los Santos S. Inflammatory Determinants and Associated Morbidity in Hemodialysis Patients. J Pers Med. 2023; 13(9):1311. <u>https://doi.org/10.3390%2Fjpm13091311</u>
- Bindu S, Mazumder S, Bandyopadhyay U. Non-steroidal anti-inflammatory drugs (NSAIDs) and organ damage: A current perspective. Biochem Pharmacol. 2020; 180: 114147. <u>https://doi.org/10.1016%2Fj.bcp.2020.114147</u>
- Sohail R, Mathew M, Patel KK, Reddy SA, Haider Z, Naria M, Ayesha Habib A, Abdin ZU, Chaudhry WR, Akbar A. Effects of non-steroidal anti-inflammatory drugs (NSAIDs) and gastroprotective NSAIDs on the gastrointestinal tract: a narrative review. Cureus, 2023; 15(4): e37080. https://doi.org/10.7759%2Fcureus.37080
- Hasanudin K, Hashim P, Mustafa S. Corn silk (*Stigma maydis*) in healthcare: a phytochemical and pharmacological review. Molecules. 2012; 17(8): 9697-9715. https://doi.org/10.3390/molecules17089697
- Samee A, Amir RM, Ahmad A, Ali M, Afzal T, Zahoor Z, Asad M, Abbas M, Ali A, Fatima H. A nutraceutical approach towards corn silk. Int J Sci Res. 2023; 5(1): 093-097. <u>https://doi.org/10.53430/ijsru.2023.5.1.0006</u>
- Lee CW, Seo JY, Kim SL, Lee J, Choi JW, Park YI. Corn silk maysin ameliorates obesity in vitro and in vivo via suppression of lipogenesis, differentiation, and function of adipocytes. Biomed Pharmacother. 2017; 93: 267-275. <u>https://doi.org/10.1016/j.biopha.2017.06.039</u>
- Ryuk JA, Ko BS, Moon NR, Park S. Protection against neurological symptoms by consuming corn silk water extract in artery-occluded gerbils with reducing oxidative stress, inflammation, and post-stroke hyperglycemia through the gut-brain axis. Antioxidants. 2022; 11(1): 168. https://doi.org/10.3390/antiox11010168

- Singh J, Inbaraj BS, Kaur S, Rasane P, Nanda V. Phytochemical analysis and characterization of corn silk (Zea mays, G5417). Agronomy. 2022; 12(4): 777. <u>https://doi.org/10.3390/agronomy12040777</u>
- Chaves JO, De Souza MC, Da Silva LC, Lachos-Perez D, Torres-Mayanga PC, Machado APDF, Carneiro TF, Espinosa MV, Peredo AFG, Barbero GF, Rostagno M A. Extraction of flavonoids from natural sources using modern techniques. Front Chem. 2020; 8: 507887. <u>https://doi.org/10.3389/fchem.2020.507887</u>
- Bitwell C, Indra SS, Luke C, Kakoma MK. A review of modern and conventional extraction techniques and their applications for extracting phytochemicals from plants. Sci Afr. 2023; 19: e01585. <u>https://doi.org/10.1016/j.sciaf.2023.e01585</u>
- Dubale S, Kebebe D, Zeynudin A, Abdissa N, Suleman S. Phytochemical screening and antimicrobial activity evaluation of selected medicinal plants in Ethiopia. J Exp Pharmacol. 2023; 15: 51–62. https://doi.org/10.2147/JEP.S379805
- Ortiz CLD, Completo GC, Nacario RC, Nellas RB. Potential inhibitors of galactofuranosyltransferase 2 (GlfT2): molecular docking, 3D-QSAR, and in silico ADMETox studies. Sci Rep. 2019; 9(1): 17096. https://doi.org/10.1038/s41598-019-52764-8
- Falodun A, Okunrobo LO, Uzoamaka N. Phytochemical screening and anti-inflammatory evaluation of methanolic and aqueous extracts of *Euphorbia heterophyla* Linn (Euphorbiaceae). Afr J Biotechnol. 2006; 5(6): 529-531. https://doi.org/10.5897/AJB2006.000-5043
- Purnomo Y, Tilaqza A. Analgesic and anti-inflammatory activities of *Urena lobata L*. leaf extracts. Indones J Pharm. 2022; 33(4): 566-574. <u>https://doi.org/10.22146/ijp.2145</u>
- Rahman MM, Rahaman MS, Islam MR, Rahman F, Mithi FM, Alqahtani T, Almikhlafi MA, Alghamdi SQ, Alruwaili AS, Hossain MS, Ahmed M, Das R, Emran TB, Uddin MS. Role of phenolic compounds in human disease: current knowledge and future prospects. Molecules. 2021; 27(1): 233. https://doi.org/10.3390%2Fmolecules27010233
- Roy A, Khan A, Ahmad I, Alghamdi S, Rajab BS, Babalghith AO, Alshahrani MY, Islam S, Islam MR. Flavonoids a bioactive compound from medicinal plants and its therapeutic applications. Biomed Res Int. 2022; (1): 5445291. <u>https://doi.org/10.1155%2F2022%2F5445291</u>
- Heinrich M, Mah J, Amirkia V. Alkaloids used as medicines: Structural phytochemistry meets biodiversity—An update and forward look. Molecules. 2021; 26(7): 1836. <u>https://doi.org/10.3390%2Fmolecules26071836</u>
- Timilsena YP, Phosanam A, Stockmann R. Perspectives on saponins: food functionality and applications. Int J Mol Sci. 2023; 24(17): 13538. https://doi.org/10.3390/ijms241713538
- Chen X, Li H, Tian L, Li Q, Luo J, Zhang Y. Analysis of the physicochemical properties of acaricides based on Lipinski's rule of five. J Comput Biol. 2020; 27(9): 1397-1406. <u>https://doi.org/10.1089/cmb.2019.0323</u>
- Purnomo Y, Tilaqza A, Zubair MS, Mustopa AZ. Immunopotentiator of terpenoid from *Hibiscus tiliaceus* leaf fraction as candidate of vaccine adjuvants with in silico study. S Afr J Bot. 2024; 172: 19-30. https://doi.org/10.1016/j.sajb.2024.06.051
- Purnomo Y, Tilaqza A. Inhibitory Potential of Pulutan (Urena lobata) Leaf Extract on Inducible Nitric Oxide Synthase as Anti-inflammatory Agent: In Vitro and In Silico Approaches. Trop J Nat Prod Res. 2024; 8(8): 8195 – 8201 .https://doi.org/10.26538/tjnpr/v8i8.41
- Lipinski CA, Lombardo F, Dominy BW, Feeney PJ. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv Drug Deliv Rev. 2012; 64: 4-17. <u>https://doi.org/10.1016/j.addr.2012.09.019</u>

- Juvale IIA, Hamid AAA, Abd Halim KB, Has ATC. Pglycoprotein: New insights into structure, physiological function, regulation and alterations in disease. Heliyon. 2022; 8(6): e09777. <u>https://doi.org/10.1016/j.heliyon.2022.e09777</u>
- Geldenhuys WJ, Mohammad AS, Adkins CE, Lockman PR. Molecular determinants of blood-brain barrier permeation. Ther Deliv. 2015; 6(8): 961-971. https://doi.org/10.4155/tde.15.32
- Chandrasekaran B, Abed SN, Al-Attraqchi O, Kuche K, Tekade R. Computer-aided prediction of pharmacokinetic (ADMET) properties. In *Dosage form design parameters*. Academic Press; 2018. 731-755p. <u>https://doi.org/10.1016/B978-0-12-814421-3.00021-X</u>
- Zuo HL, Huang HY, Lin YCD, Cai XX, Kong XJ, Luo DL, Zhou YH, Huang HD. Enzyme Activity of Natural Products on Cytochrome P450. Molecules. 2022; 27(2): 515. <u>https://doi.org/10.3390/molecules27020515</u>
- Ahmad I, Kuznetsov AE, Pirzada AS, Alsharif KF, Daglia M, And Khan H. Computational pharmacology and computational chemistry of 4-hydroxyisoleucine: Physicochemical, pharmacokinetic, and DFT-based approaches. Front Chem. 2023; 11: 1145974. https://doi.org/10.3389/fchem.2023.1145974
- Du X, Li Y, Xia YL, Ai SM, Liang J, Sang P, Ji XL, Liu SQ. Insights into protein–ligand interactions: mechanisms, models, and methods. Int J Mol Sci. 2016; 17(2): 144. https://doi.org/10.3390/ijms17020144
- Lu W, Zhang J, Huang W, Zhang Z, Jia X, Wang Z, Shi L, Li C, Wolynes PG, Zheng, S. Dynamic Bind: Predicting ligand-specific protein-ligand complex structure with a deep equivariant generative model. Nat Commun. 2024; 15(1): 1071. https://doi.org/10.1038/s41467-024-45461-2
- 32. Purnomo Y, Wahyuningsih D, Tilaqza A. Anti-inflammatory potency of pulutan (*Urena lobata*) leaf extract and its fractions by protein denaturation inhibition assay. Res J Pharm Technol. 2023; 16(11): 5406-5409. https://doi.org/10.52711/0974-360X.2023.00875
- Al-Khayri JM, Sahana GR, Nagella P, Joseph BV, Alessa FM, Al-Mssallem MQ. Flavonoids as potential antiinflammatory molecules: A review. Molecules. 2022; 27(9): 2901. https://doi.org/10.3390/molecules27092901
- Wu YL, Han F, Luan SS, Ai R, Zhang P, Li H, Chen LX. Triterpenoids from *Ganoderma lucidum* and their potential anti-inflammatory effects. J Agric Food Chem. 2019; 67(18): 5147-5158. https://doi.org/10.1021/acs.jafc.9b01195
- Cui J, Jia J. Natural COX-2 inhibitors as promising antiinflammatory agents: an update. Curr Med Chem. 2021; 28(18): 3622-3646. https://doi.org/10.2174/0929867327999200917150939
- 36. Cui Y, Jiang L, Yu R, Shao Y, Mei L, Tao Y. β-carboline alkaloids attenuate bleomycin induced pulmonary fibrosis in mice through inhibiting NF-kb/p65 phosphorylation and epithelial-mesenchymal transition. J Ethnopharmacol. 2019; 243: 112096. https://doi.org/10.1016/j.jep.2019.112096
- 37. Zhou Y, Zhong B, Min X, Hou Y, Lin L, Wu Q, Shi J, Chen X. Therapeutic potential of isobavachalcone, a natural flavonoid, in murine experimental colitis by inhibiting NF- $\kappa\beta$ p65. Phytother Res. 2021; 35(10): 5861-5870. https://doi.org/10.1002/ptr.7246
- Chen M, Qin Y, Ma H, Zheng X, Zhou R, Sun S, Huang Y, Duan Q, Liu W, Wu P, Xu X, Sheng Z, Zhang K, Li D. Downregulating NF-κβ signalling pathway with triterpenoids for attenuating inflammation: in vitro and in vivo studies. Food Funct. 2019; 10(8): 5080-5090. https://doi.org/10.1002/ptr.7246
- 39. Zhang L, Ravipati AS, Koyyalamudi SR, Jeong SC, Reddy N, Smith PT, Bartlett J, Shanmugam K, Münch G, Wu MJ. Antioxidant and anti-inflammatory activities of selected medicinal plants containing phenolic and flavonoid

9280

compounds. J Agric Food Chem. 2011; 59(23): 12361-12367. https://doi.org/10.1021/jf203146e

- Lopez Corona AV, Valencia-Espinosa I, González-Sánchez FA, Sánchez-López AL, Garcia-Amezquita LE, Garcia-Varela R. Antioxidant, anti-inflammatory and cytotoxic activity of phenolic compound family extracted from raspberries (*Rubus idaeus*): A general review. Antioxidants. 2022; 11(6): 1192. <u>https://doi.org/10.3390/antiox11061192</u>
- Silva-Correa CR, Campos-Reyna JL, Villarreal-La TVE, Calderón-Peña AA, Blas MVG, Aspajo-Villalaz CL, Razco JLC, Guarniz WAS, Guerrero-Espino LM, Julio H. Potential activity of medicinal plants as pain modulators: a review. Phcog J. 2021; 13(1): 248-263. http://dx.doi.org/10.5530/pj.2021.13.35
- 42. Wang TX, Wu GJ, Jiang JG. Natural products with analgesic effects from herbs and nutraceuticals used in traditional Chinese medicines. Curr Mol Med. 2020; 20(6): 461-483. https://doi.org/10.2174/1566524019666191205111937
- Liu W, Cui X, Zhong Y, Ma R, Liu B, Xia Y. Phenolic metabolites as therapeutic in inflammation and neoplasms: Molecular pathways explaining their efficacy. Pharmacol Res. 2023; 193: 106812. <u>https://doi.org/10.1016/j.phrs.2023.106812</u>
- Nurrosyidah IH, Mertaniasih NM, Isnaeni. The effect of red passion fruit (*Passiflora edulis Sims.*) fermentation time on its activity against Extended Strain *Methicillin-Resistant* (ESBL) *Escherichia coli* and *Methicillin-Resistant Staphylococcus aureus* (MRSA). J Basic Clin Physiol Pharmaco. 2021; 32(4): 723-727. https://doi.org/10.1515/jbcpp-2020-0408