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					ABSTRACT  

					ARTICLE INFO  

					Ficus thonningii is a native Southeast Nigerian tree. The leaves are medicinal, and it is reportedly  

					used in sickle cell disease (SCD) management by ethnic people of Ebonyi State, Southeast,  

					Nigeria. Previously we characterized the in vitro antisickling activity of its crude leaf methanol  

					extract and observed that it functioned via the sickle polymerization inhibition pathway and 5-  

					methoxypsolaren (5-MPS) labelled FTH1 was isolated as one of its constituents. Therefore, this  

					research aim and objectives are to comprehend in silico the mechanism of the observed in vitro  

					sickle deoxyhemoglobin (DeOxyHbS) polymerization inhibitory activity of 5-MPS. The structure  

					of the target protein (2HBS) was chosen based on advanced BLAST analysis. Molecular docking  

					and molecular dynamics simulation studies were carried out using blind docking and distant-  

					dependent dielectric assays, respectively whereas ADMET was performed using SwissADME and  

					protox-II webserver. The ability of 5-MPS to interfere with the processes that leads to DeOxyHbs  

					polymerization was evident in the binding affinity of -6.4 Kcal/mol. The MD simulation analysis  

					of the binding site amino acid residue confirmed its antisickling potentials due to observed  

					variation in perturbation between the bound (DeOxyHbS-5-MPS) and unbound (DeOxyHbS)  

					simulation studies whereas the ADMET showed that 5-MPS is a potential CYP1A2 and CYP2D6  

					inhibitor. The results suggest that 5-MPS is a potential antisickling drug candidate.  
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					Introduction  

					According to research, any harmless chemical that can bind to the  

					Low antioxidant level and related oxidative stress is the  

					result of SCD is caused by erythrocyte distortion, which results in  

					serious clinical implications such as microvascular occlusion, anemia,  

					excruciating pain, renal failure, infections, ischemia, priapism, strokes,  

					region implicated in sickling is likely to significantly modify the  

					7

					binding site and prevent sickling . Although sickling is not caused  

					solely by a single complimentary site, additional molecular binding  

					sites play an important role, therefore, interfering with any of these  

					contact points may avert sickling. Researchers have demonstrated that  

					a biomolecule's ability to prevent in vitro polymerization is dependent  

					on its efficiency and likelihood to interact with DeoxyHbS monomer’s  

					complimentary contact region, alteration of amino acid residues that  

					play a key role in HbS contact region and other critical sites’ three-  

					dimensional structures, and stabilization of the HbS molecule’s R  

					(relaxed) state 8-10. Thus, based on molecular standpoint, protein  

					aggregation is dependent on a delicate equilibrium of hydrophobic and  

					electrostatic (i.e. primarily non-contact) interactions brought about by  

					osmolytes and water 11, 12, which regulate protein activity. As a result,  

					knowing the molecular mechanisms and thermodynamics of protein  

					aggregation is crucial for developing treatment techniques and  

					designing inhibitors. Therefore, the specific aim of this research is to  

					comprehend in silico the antisickling mechanism of 5-MPS (Figure 1)  

					derived from Ficus thonningii, a renowned antisickling plant, which  

					crude leaf methanol extract function via the sickle hemoglobin  

					polymerization inhibition route 13.  

					and pulmonary hypertension 2. The condition was named for the  

					1,  

					structural change of red blood cells (RBCs) from a biconcave disc to  

					rigid elongated crescents. A point mutation in sickle cell hemoglobin  

					(HbS) causes the sixth amino acid of the β chains to convert from  

					hydrophilic glutamic acid to hydrophobic valine 3-5. This structural  

					alteration leads DeOxyHbS to aggregate into long straight rods, which  

					deforms the RBC 1. In the oxy form, HbS functions like regular  

					hemoglobin, however at low oxygen tension i.e. in the deoxy form, the  

					resultant Val6 on one hemoglobin complementary site binds  

					hydrophobically with Phe85 and Leu88 from an adjacent hemoglobin  

					1

					molecule . This action can be described by a lock and key binding  

					mechanism in which valine on the surface of the hemoglobin structure  

					connects to a complementary location on another hemoglobin molecule,  

					thereby initiating the polymerization process. Perutz's extensive  

					research into hemoglobin conformational changes reveals that oxy and  

					deoxy hemoglobin have different quaternary structures 6.  

					*Corresponding author. E mail: ikechukwuijoma@gmail.com  

					12  

					CH  

					Tel: +2348144250562  

					3

					O

					Citation: Ijoma IK, Okafor CE, Ajiwe VIE. Computational Studies of 5-  

					methoxypsolaren as Potential Deoxyhemoglobin  

					Inhibitor. Trop Nat Prod Res. 2024; 8(10): 8835  

					https://doi.org/10.26538/tjnpr/v8i10.28  

					S

					Polymerization  

					6

					4

					2

					J

					–

					8841  

					3

					5

					7

					1

					9

					8

					11  

					10  

					Official Journal of Natural Product Research Group, Faculty of Pharmacy,  

					University of Benin, Benin City, Nigeria  

					O

					O

					O

					(C12H8O4)  

					Figure 1: Structure of 5-MPS isolated from F. thonningii  

					leaves as reported by Ijoma and Ajiwe 14  
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					hydrogen-bond contact with α1Thr38 15. Therefore, the interaction of 5-  

					MPS must have to destabilize the interdimer salt-bridge and/or  

					hydrogen bond formed by β2His97, α1Pro44, and α1Thr41 and thus  

					Materials and Methods  

					The molecular docking used AutoDock tools via Vina script. Molecular  

					dynamic simulation was carried out using Nanoscale molecular  

					dynamic (NAMD) software. Both methods were based on a procedure  

					will promote T→R transition because deoxyhemoglobin is constrained  

					24  

					by salt bridges  

					formation.  
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					described by Ijoma and Ajiwe . PDB file was used for both receptor  

					and ligand. The structure of 5-MPS was drawn using Chemsketch then  

					optimization and energy minimization of ligand was carried out using  

					Avogadro software. Autodock tool GUI (Graphical User Interface) was  

					used to create a PDBQT file for 2HBS. Ligand bonds were set to  

					rotatable. The docking procedure was based on the Lamarckian Genetic  

					Algorithm (LGA) method. The docking was performed using the blind  

					docking procedure. The docking conformation with the lowest binding  

					energy was chosen for further analysis using BIOVIA Discovery Studio  

					and PyMol 7.  

					Molecular dynamics (MD) simulation study employed the generalized  

					CHARMM27 all-force field parameters. Energy minimization was  

					done through the steepest descent algorithm under the NVT ensemble  

					followed by the NPT ensemble. On completion of the simulation, five  

					hundred structures at intervals of 1 ps each were considered for further  

					analysis using Visual molecular dynamics (VMD) and Microsoft Excel  

					7. Parameters such as root mean square deviation (RMSD), radius of  

					gyration (RoG), solvent accessible surface area (SASA), potential  

					energy (PE), electrostatic internal energy (EIE) and Van der Waal  

					(VDW) energy were calculated for both apo and holo simulations.  

					ADME prediction was evaluated using the SwissADME webserver  

					(http://swissadme.ch). The toxicity assay was profiled using the Protox-  

					II webserver (https://tox.charite.de). The crystal structure of  

					Deoxyhemoglobin S (DeOxyHbS) used was PDB file 2HBS obtained  

					from the protein data bank repository (https://rcsb.org) based on  

					advanced BLAST analysis.  

					Figure 2: DeOxyHbS-5-MPS binding interactions  
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					Results and Discussion  

					Molecular docking analysis  

					Figure  

					2

					shows the 2-dimensional DeOxyHbS-5-MPS binding  

					Figure 3: Interaction of DeOxyHbS-5-MPS showing binding  

					site amino acids (A) and their corresponding bond length (B)  

					interactions. Research suggest that VDW interactions are involved in  

					the uptake of oxygen by deoxyhemoglobin 6, 15. 5-MPS made significant  

					VDW interaction with βCys93 which is a vital target in the design of  

					DeOxyHbS polymerization inhibitors 16. 5-MPS interaction with  

					βcys93 stabilizes the relaxed (R) state and distorts the salt-bridge  

					interaction between β-His146 and β-Asp94 hence, destabilizing the  

					tense (T) state. Similar mechanism was reported by Nakagawa et al. 17  

					The Classical studies suggest that structural variation in histidine  

					interactions leads to changes in the solubility of deoxyhemoglobin 21, 25  

					.

					Bond formation by ligands can destabilize deoxyhemoglobin 26. But  

					since an allosteric effector can bind to the same site and produce an  

					opposite allosteric effect it implies that the direction in the shift in  

					allosteric equilibrium caused by the binding of an allosteric effector do  

					not solely depends on the molecule’s binding location but also on how  

					its interactions with the hemoglobin dimer–dimer interface favors the  

					stabilization or destabilization of that allosteric state 15 hence, binding  

					does not connote positive activity/effect. Reports have shown that  

					interaction with histidine opens up deoxyhemoglobin for oxygen uptake  

					25 thus, 5-MPS may possess oxygen regulatory functions as an effector  

					ligand because drugs have been shown to act on the allosteric  

					equilibrium of a receptor in the same path as the natural effector even  

					though they differ chemically because protein may probably offer  

					various binding sites not used in nature 27.  

					for triazole disulfide compounds. Compounds that modifies βcys93 has  

					been shown to possess antisickling potentials  

					17  

					since hemoglobin’s  

					allosteric properties, antisickling, and oxidative modulations is  

					mediated significantly by βCys93 18-20. Thus, βCys93 occupies a  

					significant and critical location at the β/α terminal and it’s critically  

					participates in the hemoglobin R → T transition. Therefore, compounds  

					that modifies the allosteric equilibrium through βCys93 interactions are  

					known to possess both antisickling and antioxidant properties 16  

					.

					Figure 3 depicts the Interaction of DeOxyHbS-5-MPS with binding site  

					amino acids and the corresponding bond length of these interactions.  

					The bond length for 5-MPS-HIS97 interaction was 2.02Å while 5-MPS-  

					LYS40 had bond length of 2.06Å and both were within typical  

					hydrogen bond interaction. 5-MPS-LYS40 bond had bond length of  

					4.62Å, 5-MPS-LYS40 had bond length of 4.80Å, 5-MPS-LEU48 had  

					bond length of 3.62Å, 5-MPS-LEU48 bond length of 3.79Å, whereas  

					5-MPS-THR41 was 3.19Å (figure 3).  

					Previous research showed that hydrophobic group such as Leu48 are  

					known to affects the solubility of hemoglobin 21. Lys40 has been  

					reported as part of the critical residue in the formation of  

					deoxyhemoglobin tetrameric interaction with each other and with all the  

					four heme groups 22 as such, interactions with Lys40 has the potentials  

					of distorting or delaying the polymerization of DeOxyHbS. Similarly,  

					Lalezari et al., 23 reported Lys, Leu, Pro, Phe, Thr, Arg, Glu and Asp as  

					some of the potential binding site residues for allosteric effector of  

					hemoglobin capable of modifying human deoxyhemoglobin solubility.  

					A Study found that the FG corner residue β2His97, situated between  

					α1Pro44 and α1Thr41 in the T structure’s “switch region” adjust to  

					locate α1Thr41 and α1Thr38 in the R structure, where β2His97 initiates  

					Figure 4 illustrates the pose view of 5-MPS in the DeOxyHbS allosteric  

					core. The binding affinity of 5-MPS in 2HBS is –6.4 kcal/mol (Figure  

					4). Ross et al. 28 and Ross et al. 29 reported the binding affinity for the  

					DeOxyHbS polymerization process as -3.0kcal/mol at 37oC hence, the  

					molecular docking results show a better interaction for 5-MPS and thus  

					suggest that it can distort the polymerization process because, smaller  

					binding affinity signifies better interaction and better receptor activity  

					in vitro 30, 31. Votano and Rich, 32 showed a strong correlation between  

					DeOxyHbS solubility and dissociation constant this suggests that the  

					interactions of 5-MPS may play a key role in DeOxyHbS solubility  

					Over time, research has established that ligand binding to receptors’  

					stereochemistry is defined by accessible VDW space and, within that  

					space, by arrays of polarity interactions. However, the detailed  

					stereochemistry is geared towards maximizing the sum of the energy of  

					electrostatic interactions, by aligning effectors relative to the receptor  

					to maximize mutual polarizabilities 25. Ideally, the structure of the  
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					ligand-receptor complex affects the specificity and efficiency of the  

					target (protein) action with high binding affinity marked by lower  

					energy values, connoting better interaction between ligand and receptor  

					hence, presumably better activity 30, 31.  

					Figure 5 indicates the binding interaction of DeOxyHbS-5-MPS in the  

					presence of surrounding amino acid residues. Bonding and non-bonding  

					interactions are within 4.80Å. Summarily, the sum of binding  

					interactions of 5-MPS indicates the presence of VDW interactions as a  

					contributing factor to deoxyhemoglobin polymerization (Figure 2 and  

					Figure 5) and VDW interactions play a vital role in sickle hemoglobin  

					polymerization 33  

					hemoglobin aggregation, this observations were supported by earlier  

					work of Prabhakaran and Johnson 35. Prabhakaran and Johnson 35 at 50  

					ps MD simulation observed that HbS structure is more compact when  

					compared to HbA, they also attributed sickle hemoglobin  

					polymerization in vitro to their observation.  

					From Figure 7, RoG for DeOxyHbS-5-MPS increased from the  

					minimized starting structure value of 5.061 Å during the simulation to  

					a mean value of about 20.749Å. It was observed that DeOxyHbS  

					exhibited significant contraction when compared to DeOxyHbS-5-  

					MPS. However, a graphical examination of the trajectory showed that  

					both DeOxyHbS and DeOxyHbS-5-MPS simulations did not maintain  

					their general structural shapes during the simulation run indicating  

					possible changes in structural conformations.  

					6
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					Figure 4: Pose view of 5-MPS in DeOxyHbS allosteric core  

					Figure 6: RMSD of DeOxyHbS (black) and DeOxyHbS-5-  

					MPS (gray) simulations  

					25  

					20  

					15  

					10  

					5

					DeOxyHBS  

					0

					Figure 5: Binding interaction of DeOxyHbS-5-MPS in the  
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					Figure 7: RoG of DeOxyHbS (black) and DeOxyHbS-5-MPS  

					Molecular Dynamics  

					(gray) simulations  

					Figure 6 illustrates the plotting of the RMSD change as a function of  

					simulation time in Pico seconds (ps). After the least-squares best fit, the  

					RMSD of DeOxyHBS and DeOxyHbS-5-MPS from the beginning to  

					the end of the 500 ps production run was computed in order to assess  

					the overall behavior of the examined systems as a measure of stability.  

					Throughout the simulation trajectory, the overall RMSD of the  

					DeOxyHbS-5-MPS model was greater than that of DeOxyHbS. This is  

					anticipated to line up with the structural modification brought about by  

					5-MPS docking. Based on the plotted RMSD fluctuations, significant  

					conformational changes were observed in the trajectories which signify  

					changes in the structure of DeOxyHbS. The mean RMSD for  

					DeOxyHbS and DeOxyHbS-5-MPS was 2.541Å and 3.678Å  

					respectively showing a deviation of 1.137Å. The RMSD variations of  

					the two systems on 500 ps time scales MD simulation indicate that the  

					complex atomic coordinates in DeOxyHbS-5-MPS and the initial  

					starting structure differ hence, indicating structural perturbation due to  

					5-MPS docking  

					Figure 8 displays the computed SASA values along the MD simulation  

					trajectories for DeOxyHbS and DeOxyHbS-5-MPS. Surface tension  

					close to the protein–solvent interface as well as the hydrophobic and  

					hydrophilic interactions of the amino acids with water molecules  

					determine the values of SASA 36. An increase or decrease in SASA  

					denotes an alteration in the protein’s tertiary structure and surface  

					exposure of the amino acid residues 34. DeOxyHbS-5-MPS have larger  

					SASA compared to DeOxyHbS indicating a possible change in the  

					tertiary structure of DeOxyHbS on binding 5-MPS. The computed  

					average SASA for the DeOxyHbS-5-MPS simulation was 197.7926Å2  

					while that of the DeOxyHbS simulation was calculated as 146.267Å2  

					Figure 9 depicts the VDW and EI energies of DeOxyHbS-5-MPS and  

					DeOxyHbS for apo and holo simulations while Figure 10 shows the PE  

					plot for DeOxyHbS-5-MPS and DeOxyHbS simulations. From Figure  

					9, the VDW (upper graph) and EI energy (lower graph) were calculated  

					using the Charmm force field generated using Charmm GUI, and  

					analysis of the generated trajectory was performed using the NAMD  

					energy tool in VMD 37, 38. From the observed variation in the simulated  

					trajectory, there is an increase in the VDW energy and a subsequent  

					decrease in the EI energy in the bound region for the DeOxyHbS-5-  

					MPS simulation. The variation in VDW energy has been attributed to  

					Figure 7 shows the RoG values of DeOxyHbS and DeOxyHbS-5-MPS  

					simulations, the RoG shows the degree of protein structure compactness  

					34. The RoG value of DeOxyHbS-5-MPS was 13.922 Å, which was  

					significantly higher than that of DeOxyHbS (8.075 Å), this change was  

					attributed to the binding of 5-MPS to DeOxyHbS structure. Galamba  

					33  

					33  

					and Pipolo attributed the sickle hemoglobin aggregation to residue-  

					the distortion of the hemoglobin dimer-dimer interaction therefore,  

					residue interaction, residue-residue repulsion, PE, electrostatic  

					interactions, and VDW interactions; in their simulation, they observed  

					that close compact dimer-dimer interactions were responsible for sickle  

					although the VDW interactions are much weaker when compared to  

					electrostatic interactions however, their sum significantly influences the  

					bound regions PE (Figure 10). The decrease in the EI energy indicates  
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					that 5-MPS was able to reduce the PE of the residues in the bound region  

					through direct molecular electrostatic interaction and indirect  

					association (VDW) therefore the docking of 5-MPS to DeOxyHbS  

					reduced the EI energy of these residues and thus confirms the  

					antisickling characterization of 5-MPS in vitro. Similarly, it is  

					important to highlight that L-Glutamine, licensed for the treatment of  

					SCD is not predicated on an antisickling mechanism of this kind, which  

					may upset the electrostatic balance 39-41. The calculated PE for  

					DeOxyHbS and DeOxyHbS-5-MPS simulations were -435.725kJ/mol  

					and -597.509kJ/mol respectively. For the DeOxyHbS-5-MPS  

					simulation, the computed EI energy was -535.629kJ/mol while VDW  

					was -61.8798kJ/mol. Similarly, for the DeOxyHbS simulation the  

					computed EI energy was -334.755 while VDW was -100.97kJ/mol  

					0

					-100  

					-200  

					-300  

					-400  

					-500  

					-600  

					-700  

					-800  

					-900  

					0

					100  

					200  

					300  

					400  

					500  

					DeOx  

					yHbS  

					Time (ps)  

					350  

					300  

					250  

					200  

					150  

					Figure 10: PE plot for DeOxyHbS-5-MPS (gray) and  

					DeOxyHbS (black)  

					Admet analysis  

					100  

					Table 1 depicts the physicochemical, Pharmacokinetics, drug-likeness,  

					lead-likeness, and medicinal chemistry properties of the assayed  

					compound. 5-MPS showed no violation for the Lipinski, Ghose, Veber,  

					Egan, and Muegge rules indicating its drug-like characteristics  

					however, the lead-likeness filter had one violation owing to molecular  

					weight being < 250. Also, it showed one violation of BRENK alert  

					because of the presence of coumarin hence, 5-MPS may probably be  

					chemically and metabolically unstable 42as well as supposedly toxic 43  

					however, this may not be of serious concern because the structural  

					moiety producing the alert i.e. coumarin however, this should be  

					factored into prioritization of 5-MPS for drug-likeness attributes. 5-  

					MPS showed a bioavailability score of 55% indicating its chances to  

					reach the systemic circulation.  
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					Figure 8: SASA of DeOxyHbS (black) and DeOxyHbS-5-  

					MPS (gray) simulations  
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					Table 2 reveals the predicted toxicity of 5-MPS. 5-MPS was inactive  

					on hepatotoxicity, immunotoxicity, and cytotoxicity parameters while  

					active on carcinogenicity and mutagenicity (Table 2). Evidence from  

					our in silico results corroborates the classification of 5-MPS as a  

					mutagenic and carcinogenic agent 43. Similarly, in vitro, 5-MPS has  

					been implicated as a potent cytochrome P450 inhibitor 44 as evidenced  

					by Table 1. Also, the reduced function of CYP2D6 has been  

					DeOxyH  

					bS  

					implicated as a contributory factor in painful episodes in SCD 45  

					.

					Time (ps)  

					Based on oral toxicity 5-MPS was classified as not toxic with LD50 of  

					Figure 9: VDW and EI energies of DeOxyHbS-5-MPS (gray)  

					8000mg/kg (Table 3).  

					and DeOxyHbS (black)  

					Table 1: ADME analysis of 5-MPS showing the physicochemical, Pharmacokinetics, drug-likeness, lead-likeness and medicinal  

					chemistry properties of 5-MPS  

					Physicochemical properties  

					Lipophilicity  

					Water solubility  

					Pharmacokinetics  

					Drug-likeness  

					Medicinal  

					chemistry  

					PAINS:  

					Formula:  

					C12H8O4  

					LogPo/w (iLOGP):  

					Moderately soluble  

					GI absorption:  

					High  

					Lipinski:  

					Yes; 0 violation  

					Ghose:  

					2.29  

					LogPo/w (XLOGP3):  

					1.93  

					0 alert  

					Molecular weight:  

					216.19g/mol  

					No. of heavy atoms:  

					16  

					BBB permeant:  

					Yes  

					Brenk:  

					Yes; 0 violation  

					Veber:  

					1 alert; coumarin  

					Leadlikeness:  

					No; 1 violation:  

					MW < 250  

					LogPo/w (WLOGP):  

					2.55  

					P-gp substrate:  

					No  

					Yes; 0 violation  

					No. of aromatic heavy atoms:  

					LogPo/w (MLOGP):  

					CYP1A2 inhibitor:  

					Egan:  

					Synthetic  

					13  

					1.18  

					Yes  

					Yes; 0 violation  

					accessibility:  

					2.90  

					No. of rotatable bond:  

					LogPo/w (SILICOS-  

					CYP2C19 inhibitor:  

					Muegge:  

					1

					IT):  

					No  

					Yes; 0 violation  

					2.88  
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					No. H-bond acceptors:  

					Consensus LogPo/w:  

					CYP2C9 inhibitor:  

					Bioavailability  

					score:  

					4

					2.16  

					No  

					0.55  

					No. of H-bond donors:  

					CYP2D6 inhibitor:  

					Yes  

					0

					Molar refractivity:  

					58.75  

					CYP3A4 inhibitor:  

					No  

					TPSA:  

					Log Kp:  

					52.58Å2  

					-6.25cm/s  

					TPSA: Topological polar surface area; GI: gastrointestinal; BBB: Blood brain barrier; P-gp: P-glycoprotein; CYP: cytochrome P450; PAINS: pan assay  

					interference structures; MW: molecular weight;  

					Table 2: Protox-II predicted toxicity of 5-MPS  

					Classification  

					Target  

					Prediction  

					Probability  

					Organ toxicity  

					Hepatotoxicity  

					Inactive  

					0.79  

					Toxicity end points  

					Carcinogenicity  

					Immunotoxicity  

					Active  

					Inactive  

					Active  

					0.84  

					0.83  

					0.75  

					0.85  

					1.0  

					Mutagenicity  

					Cytotoxicity  

					Inactive  

					Active  

					Tox21-Nuclear receptor signaling pathways  

					Aryl hydrocarbon receptor  

					Androgen receptor  

					Inactive  

					Inactive  

					Inactive  

					Inactive  

					Inactive  

					Inactive  

					0.99  

					1.0  

					Androgen receptor ligand binding domain  

					Aromatase  

					0.99  

					0.90  

					0.99  

					0.99  

					Estrogen receptor alpha  

					Estrogen receptor ligand binding domain  

					Peroxisome proliferator activated receptor  

					gamma  

					Tox-21 stress response pathway  

					Nuclear factor (erythroid-derived 2)-like  

					2/antioxidant responsive element (nrf/ARE)  

					Heat shock factor response element (HSE)  

					Mitochondria membrane potential (MMP)  

					Phosphoprotein (tumor suppressor) p53  

					ATPase family AAA domain-containing  

					protein 5 (ATAD5)  

					Inactive  

					0.99  

					Inactive  

					Inactive  

					Inactive  

					Inactive  

					0.99  

					0.92  

					0.98  

					0.90  

					Table 3: Protox-II predicted oral toxicity of 5-MPS  

					Predicted LD50  

					Predicted toxicity class  

					Average similarity  

					Prediction accuracy  

					8000mg/kg  

					6

					100%  

					100%  

					modifying βcys93 by increasing the RoG of DeOxyHbS resulting in the  

					modification of its tertiary structure, this generally results in the overall  

					decrease in the potential energy at the bound region of 5-MPS resulting  

					in sickle polymerization inhibition/reversal. Our observations suggest  

					that 5-MPS may be a useful drug candidate for the inhibition of sickle  

					hemoglobin polymerization, improve erythrocyte solubility, or act as a  

					potential deoxyhemoglobin S allosteric effector however, the ADMET  

					properties should be factored in while considering its drug-like uses.  

					Future studies should carry out in vivo, ex vivo, and clinical trials on  

					the assayed compound and its synthetic analogue.  

					Conclusion  

					The antisickling mechanism of 5-MPS was studied in silico. It was  

					reviewed that it binds to DeOxyHbS and interacts with βcys93. Also,  

					compounds that modify βcys93 are viable antisickling agents, thus  

					implying that it may possess the ability to potentially modify βcys93.  

					Similarly, molecular dynamic simulations studies showed an overall  

					increase in the RMSD, SASA and RoG of DeOxyHbS-5-MPS relative  

					to DeOxyHbS which suggest that 5-MPS perturbs DeOxyHbS  

					structure, modifies its tertiary structure and makes it less compact.  

					Furthermore, the EI energy, VDW, and PE for DeOxyHbS-5-MPS were  

					also, lower than DeOxyHbS. This depicts 5-MPS’s ability to reduce the  

					PE of the amino acids at the bound region of DeOxyHbS including  

					βcys93. ADMET analysis suggests that 5-MPS is potentially mutagenic  

					and carcinogenic. Summarily, the mechanism of 5-MPS is through  
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