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Introduction 

Lactic acid bacteria (LAB) constitute a Gram-positive, 

catalase-negative, and non-sporulating bacterial group naturally 

occurring in diverse environments, including water, soil, plants, dairy 

products, fermented vegetables, gastrointestinal tract (GIT) of humans 

and animals.
1
 LAB has an established historical application as 

probiotics2, representing a varied spectrum of genera.
2
 The 

FAO/WHO defined probiotics as "living microorganisms that, when 

administered in sufficient quantities, provide a health benefit to the 

host" and deemed them safe with a "generally recognized as safe" 

(GRAS) designation.
3
 Researchers attribute the inclusion of LAB in 

this category to its natural preservative qualities and its ability to 

impede the proliferation of harmful bacteria in food.
4
 

The pursuit of novel probiotic strains has intensified as researchers 

seek diverse and unconventional sources to enhance the repertoire of 

health-promoting microorganisms. 
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The unique attributes of plants, characterized by a high carbohydrate 

but low protein content and a slightly acidic pH, render them an ideal 

environment for various microorganisms, including LAB.
4-6

 Plant-

derived LAB exhibits various metabolic and functional properties, 

encompassing vitamins, minerals, antioxidants, phenolics, and dietary 

fibers.
7
 The reported species diversity of LAB found on fruits and 

flowers includes genera such as Lactobacillus, Lactiplantibacillus, 

Lactococcus, Leuconostoc, Fructobacillus, Lactobacillus, 

Enterococcus, Pediococcus, Streptococcus, and Weissella.
8
 

Its status characterizes the Philippines as a mega-diverse country with 

high endemism of plants with medicinal and nutritional values.
9
 The 

'saba' banana (Musa acuminata x balbisiana, BBB Group) is the 

primary banana variety cultivated in the Philippines, making a 

substantial contribution to the local economy through extensive 

cultivation and processing into chips or crackers.
10-11

 Moreover, 

banana inflorescences have been demonstrated to offer various health 

benefits, including antioxidant properties and potential therapeutic 

effects such as antidiabetic, anticancer, and cardioprotective 

properties.
12-13

 Species of the genus Medinilla Gaudich are found 

throughout the Philippines and are cultivated primarily for their 

ornamental value.
14

 Several Medinilla species have undergone 

analysis for active phytochemical compounds antimicrobial, and 

antifungal properties prior to their use as traditional medicine in 

various Asian countries.
15-16

 

However, current scientific literature has given scant attention to the 

utilization of floral components of plants as an unconventional 

reservoir of LAB despite considerable research characterizing LAB 
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from traditional sources such as dairy products, fermented foods, and 

animal intestinal tracts. This study marks a substantial departure from 

conventional research paradigms by exploring endemic flowers in the 

country as an alternative reservoir for probiotic bacteria. The primary 

focus of this study is to isolate lactic acid bacteria (LAB) from the 

inflorescences of Musa acuminata x balbisiana and Medinilla 

cummingii Naudin, characterize their colony morphology, assess their 

carbohydrate fermentation profile using the API 50CHL system, 

identify the isolates through 16S rRNA gene sequencing, and perform 

phylogenetic analysis. 

 

Materials and Methods 

Isolation, screening, and purification of plant-derived LAB 

Inflorescence from Musa acuminata x balbisiana was collected on 

January 2024 at a private banana farm in Brgy. Panadtalan, Maramag, 

Bukidnon, Philippines (7.81259° N, 125.01134° E), and propagated 

Medinilla cummingii Naudin was collected on April 2023 at a 

residential household at Musuan, Maramag, Bukidnon, Philippines 

(7°51'36.4"N 125°02'42.3" E), stored in sterile resealable bags, and 

transported to the laboratory in an icebox for analysis. stored in sterile 

resealable bags, and transported to the laboratory in an icebox for 

analysis. The inflorescence was dissected to obtain the florets, leaving 

the pistil and stamen intact. The samples were then enriched in MRS 

broth for 48 hours at 37°C following homogenization with a vortex. 

After enrichment, the samples were serially diluted and plated on 

MRS agar (Merck Millipore, Germany) supplemented with 1% 

calcium carbonate (CaCO3) (Scharlab, Spain) to stimulate LAB 

growth
17

. The plated samples were incubated at 37°C for 48 hours 

under aerobic conditions (Thermostatic Shaking Incubator, MF-I103B, 

MedFuture, China). Colonies exhibiting acid production by clearing 

around the colony were selected, purified on MRS agar plates using 

the streak plate method, and further characterized to obtain pure 

isolates
9
. 

 

Cultural, morphological and catalase evaluation 

LAB screening was conducted employing the presumptive 

methodology outlined in a previous study.
8
 Following three 

consecutive passages of the LAB isolate to achieve purification, 

discrete colonies were sub-cultured and provisionally identified based 

on cell morphology, cultural characteristics, Gram reaction (Medic 

Diagnostic Reagents, Philippines), and catalase test. 

 

Carbohydrate fermentation profiling using API 50 CHL system  

API 50 CH strips (API systems, BioMérieux, France) were used to 

characterize the carbohydrate fermentation profile of the isolates, 

following the manufacturer’s instructions. The inoculation strips were 

incubated at 37°C for 48 h under aerobic conditions (Thermostatic 

Shaking Incubator, MF-I103B, MedFuture, China) before the 

reactions were evaluated. After a 24 h and 48 h incubation period at 

37°C, results were obtained by observation of a color change in the 

indicator bromocresol purple from dark purple to yellow or greenish, 

which indicates the carbohydrate fermentation activity of the tested 

isolates.
18

 

 

Molecular identification of the LAB isolates using 16S rRNA gene  

Glycerol stocks of LAB isolates were forwarded to Macrogen, Inc., 

Seoul, South Korea, subjected to DNA sequencing (ABI PRISM 

3730XL Analyzer, Applied Biosystems) using primers that amplify 

the DNA region spanning positions 27F 

(5’AGAGTTTGATCCTGGCTCAG-3’) to 1492R (5’-

TACGGTACCTTGTTACGACTT-3’) of bacterial 16S rRNA genes. 

The. ab1 forward and reverse reads were submitted to the Philippine 

Genome Center Visayas Satellite Facility for bioinformatics analysis. 

The quality of sequences was assessed, and low-quality base pairs 

were trimmed using PreGap4 (Staden Package Program, Medical 

Research Council (MRC) Laboratory of Molecular Biology, United 

Kingdom). Consensus sequences were generated using the Gap4 

shotgun assembly approach. Homologous sequences were determined 

by submitting the consensus sequences to the National Center for 

Biotechnology Information (NCBI) BLASTN tool. The sequences, 

along with their BLASTN matches, were downloaded. The 

evolutionary relationships among the sequences were elucidated by 

constructing phylogenetic trees in MEGA 11 (MEGA Software Team, 

MEGA 11, 2021) using the Maximum- Likelihood method. The 

sequences were aligned using ClustalW of the same program, and the 

Model option identified the Kimura 2-parameter model (K2) and the 

Kimura 2-parameter model with Gamma distribution (K2+G) as the 

most suitable fit for BNA1 and MED1 isolates, respectively. An 

outgroup was selected for each sample to provide a reference point in 

the analysis 

 

Results and Discussion 

Cultural, morphological and catalase evaluation of plant-derived LAB 

Twelve (12) colonies from Musa acuminata x balbisiana and six (6) 

from Medinilla cummingii Naudin were randomly selected from the 

colonies exhibiting large clear zones around the colonies. One (1) 

LAB isolate from each plant sample with distinct morphological 

characteristics was chosen based on observation of colonies on MRS 

agar and labelled as BNA1 (from Musa acuminata × balbisiana) and 

MED1 (from Medinilla cummingii), respectively. Table 1 summarizes 

the cultural, morphological and catalase evaluation of LAB isolates. 

BNA1is a gram-positive, catalase-negative coccobacillus (Figure 1a). 

It exhibits a creamy-yellow circular colony with a mucoid or 

glistening convex elevation on MRS agar. MED1 is gram-positive, 

catalase-negative cocci (Figure 1b) and formed creamy-white circular 

colonies on MRS agar with a mucoid or glistening convex elevation 

(Table 1). 

 

 
Figure 1: LAB Cell Morphology (1000X) of a) BNA1 

exhibiting a Gram-positive coccobacilli morphology; and b) 

MED1 exhibiting a Gram-positive cocci morphology 
 

Table 1: Summary of cultural, morphological and catalase 

evaluation of LAB isolates. 
 

General 

Characteristics 

LAB isolates 

 BNA1 MED1 

Growth pattern in 

MRS Broth 

Turbid Turbid 

Colony morphology 

in MRS Agar 

Mucoid/Glistening, 

Smooth, Round, Entire 

Margin, Convex colony 

Mucoid/Glistening, 

Smooth, Round, Entire 

Margin, Convex Colony 

Colony color in 

MRS agar 

Creamy-yellowish 

colonies 

Creamy-white colonies 

Gram Reaction Gram-positive, rod Gram-positive, cocci 

Growth Conditions 37°C, Aerobic 37°C, Aerobic 

Catalase test Negative Negative 

 

 

 

 1 
a b 
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BNA1 was isolated from Saba (Musa acuminata x balbisiana), a 

predominantly banana variety cultivated in the Philippines. 

Banana flowers or banana blossoms have been demonstrated to 

possess a range of biological activities that offer potential health 

benefits, including notable antioxidant properties.
19

 Several studies
20-22 

have also examined banana flowers' nutrient content, physical and 

chemical properties, and functional properties. These studies show that 

they have a lot of dietary fibers (70% or 5.74/100g), carbohydrates 

(53.78% or 9.9/100g), and protein (19.60% or 1.6/100g). Dietary 

fibers include most soluble dietary fibers (SDFs) like fructo-

oligosaccharides, galacto-oligosaccharides, inulin, and β-glucan, to 

name a few, and have positive effects on the proliferation of probiotics 

in the gut.
23

 Moreover, studies have shown that the dietary fibers 

found in banana flowers alleviate constipation and promote 

gastrointestinal well-being due to their prebiotic properties, which act 

as indigestible food constituents. These properties favorably impact 

the host organism by selectively fostering the proliferation and 

functionality of specific bacteria within the colon, thereby enhancing 

overall host health.
22, 24

 

MED1 was isolated from M. cummingii, a species of flowering plants 

in the family Melastomataceae, consisting of around 400 species of 

tropical plants native to Southeast Asia, the Pacific islands, and South 

America.
25

 The diversity of the Medinilla genus is prominent in the 

Philippines and is commonly found in lowland rainforests and 

montane forests, with some species also occurring in mossy forests 

and ultramafic forest.
26-27

 Several species of Medinilla have been used 

as traditional medicine in various Asian countries and were tested for 

active phytochemical compounds with antimicrobial and antifungal 

properties
28-29

. There are currently no available data on published 

journal articles regarding the presence of LAB in Medinilla species 

found in the Philippines. However, the Philippines has various lactic 

acid-fermented indigenous food products, which have different 

characteristics depending on the region, materials used, and process 

employed.
30

 

The LAB isolates, BNA1 and MED1, displayed characteristics typical 

of lactic acid bacteria. Typical LAB are Gram-positive due to a thick 

peptidoglycan layer in their cell walls.
31

 The absence of catalase 

activity in LAB is linked to their metabolism, as these bacteria 

predominantly ferment carbohydrates to produce lactic acid, which 

creates an acidic environment.
32

 

 

Carbohydrate fermentation profile using API 50 CHL system  

Table 2 summarizes the carbohydrate fermentation profiles of the 

isolates. BNA1 demonstrated robust utilization of 26 carbohydrates, 

resulting in a color change of the bromocresol purple indicator from 

purple to yellow (except for well 26 in the esculin hydrolysis test), 

while exhibiting weaker utilization of 14 carbohydrates, leading to a 

color change from purple to green (Figure 2a).  BNA1 exhibited 

robust metabolic activity towards a spectrum of 21 monosaccharides 

and their derivatives, encompassing D-arabinose, L-arabinose, ribose, 

D-xylose, L-xylose, galactose, D-glucose, D-fructose, D-mannose, L-

sorbose, rhaminose, α-methyl-D-mannopyranoside, α-methyl-D-

gluopyranoside, N-acetyl-glucosamine, and gluconate. Additionally, it 

displayed metabolic proficiency towards 4 disaccharides, namely D-

cellobiose, D-maltose, D-lactose, and sucrose; 3 polysaccharides, like 

esculin ferric citrate, D-trehalose, melezitose, and D-turanose; and 

sugar alcohols such as glycerol, D-mannitol, D-sorbitol, amygdalin, 

salicin, gentibulose, and 5-keto-gluconate. However, BNA1 

manifested weak fermentative capacity, as evidenced by the 

conversion of the indicator bromocresol purple to green when exposed 

to 7 monosaccharides, namely β-methyl-D-xyloside, D-xylose, D-

tagatose, D-fucose, L-fucose, D-arabitol, and L-arabitol; 1 

disaccharide, D-melibiose; 3 polysaccharides like starch, glycogen, 

and D-turanose; and 3 sugar alcohols, adonitol, dulcitol, and inositol.  

MED1 exhibited vigorous utilization of 21 carbohydrates, causing the 

bromocresol purple indicator to transition from purple to yellow 

(Figure 2b). In addition, MED1 demonstrated vigorous metabolic 

proficiency toward 8 monosaccharides such as L-arabinose, ribose, 

galactose, D-glucose, D-fructose, D-mannose, α-methyl-D-

mannopyranoside, and N-acetyl-glucosamine; 5 disaccharides, namely 

D-cellobiose, D-maltose, D-lactose, D-melibiose, and sucrose; 2 

polysaccharides, D-trehalose and raffinose; and 6 sugar alcohols, D 

mannitol, amygdalin, arbutin, esculin ferric citrate, salicin, and 

gentibulose. 

 

Table 2: Carbohydrate fermentation profile of BNA1 and 

MED1 using the API 50CHL system  
 

Carbohydrate BNA1 MED1 

0 Control - - 

1 Glycerol**** + - 

2 Erythritol**** - - 

3 D-arabinose* + - 

4 L-arabinose* + + 

5 Ribose* + + 

6 D-xylose* - - 

7 L-xylose* - - 

8 Adonitol**** W - 

9 ß-Methyl- D-Xyloside* W - 

10 Galactose + + 

11 D-Glucose* + + 

12 D-Fructose* + + 

13 D-Mannose* + + 

14 L-Sorbose* - - 

15 Rhaminose* + - 

16 Dulcitol**** W - 

17 Inositol**** W - 

18 D-Mannitol**** + + 

19 D- Sorbitol**** + - 

20 α-Methyl- D- mannopyranoside* + + 

21 α-Methyl- D-gluopyranoside* - - 

22 N-acetyl-glucosamine* + + 

23 Amygdalin**** + + 

24 Arbutin**** + + 

25 Esculin ferric citrate**** + + 

26 Salicin**** + + 

27 D-Cellobiose** + + 

28 D-Maltose** + + 

29 D-Lactose** + + 

30 D-Melibiose** W + 

31 Sucrose** + + 

32 D-Trehalose*** + + 

33 Inulin*** - - 

34 Melezitose*** + - 

35 Raffinose*** - + 

36 Starch*** W - 

37 Glycogen*** W - 

38 Xylitol**** - - 

39 Gentibulose**** + + 

40 D-Turanose*** + - 

41 D-lyxose* W - 

42 D-tagatose* W - 

42 D-fucose* W - 

44 L-fucose* W - 

45 D-arabitol* W - 

46 L-arabitol* W - 

47 Gluconate* + - 

48 2-Keto-Gluconate**** - - 

49 5-Keto-Gluconate**** + - 
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Figure 2: Biochemical Characterization based on API 50 CH 

System of a) BNA1 and b) MED1 after 48 h of incubation. 
 

The API 50 CH system is a commercially available tool used in 

clinical and research laboratories to identify LAB and other 

microorganisms based on their biochemical characteristics. 

LAB display diverse carbohydrate fermentation capabilities, 

commonly fermenting hexoses (e.g., glucose, galactose, mannose, and 

fructose) and disaccharides (e.g., sucrose, lactose, maltose), 

occasionally fermenting pentoses (e.g., arabinose, xylose, ribose), yet 

most LAB generally lacks the enzymes needed to ferment complex 

polysaccharides such as starch.
33

 LAB in plants gains a competitive 

advantage by swiftly utilizing abundant carbohydrates to produce 

lactic and acetic acids, thereby suppressing competing microbes.
34

 

Their evolutionary trajectory, characterized by reduced genome size, 

crucially enables niche adaptation, albeit at the expense of metabolic 

efficiency, particularly in electron transfer processes, facilitating their 

adaptation to iron-limited ecological niches associated with plants or 

animals.
35

 Microorganisms inhabit various parts of plants, including 

leaves, stems, flowers, fruits, and the root-soil interface, with the 

numbers of microorganisms ranging from 10
3
 to 10

8
 cells g

−1
 on the 

aerial portions and up to 10
11

 cells g
−1

 in the rhizosphere.
36

 Flowers, 

fruits and raw vegetables have not been extensively studied as sources 

of LAB due to their high carbohydrate content and slightly acidic 

pH.
37

 However, the microbial composition varies depending on 

intrinsic and extrinsic conditions of the plant matrix.
38-39

 Plant-

associated LAB species can break down sugars derived from complex 

plant polysaccharides, tolerate high levels of antimicrobial plant 

phenolic compounds and use hydroxycinnamic acids as external 

electron acceptors, with some species possessing a rudimentary 

electron transport chain that allows them to perform aerobic 

respiration.
7,36

 

 

Molecular identification of the LAB isolates using 16S rRNA gene  

The consensus sequences of BNA1 have a total length of 878 bp 

(GenBank Acc. No. PP627039), while MED1(GenBank Acc. No. 

PP627037) is 1,524 bp. Table 3 summarizes the top BLASTN hits for 

both isolates. BNA1 showed 100% homology to Lactiplantibacillus 

plantarum and 99.89% homology to Lactiplantibacillus 

pentosus,while MED1 showed 99.47% homology with Enterococcus 

feacium. BNA1 was found to cluster with Lactiplantibacillus pentosus 

with 87% bootstrap support (Figure 3), while MED1 grouped with 

Enterococcus faecium with a bootstrap support of 92% (Figure 4). 

BLASTN analysis of the 16S rRNA gene successfully identified 

BNA1 as Lactiplantibacillus. However, BNA1 has only one (1) base 

pair difference with the sequence of Lactiplantibacillus pentosus or 

Lactiplantibacillus plantarum. There is difficulty in differentiating 

these two species using 16s rRNA
40

 due to the high sequence identity 

of these two Lactiplantibacillus species
41 

and in phenotype 

characterization
42

. Phylogenetic analysis reveals that BNA1 is more 

closely linked to Lpb. Pentosus, but this could not be verified in this 

study. The bacterial genus Lactiplantibacillus has been observed to 

exhibit significant plasticity, as evidenced by its high levels of 

phenotypic and genetic variety, allowing it to adapt effectively.
40

 For 

example, the genes responsible for sugar metabolism exhibit 

significant variability in response to environmental factors.  

Therefore, it is crucial to identify conserved gene areas that remain 

consistent regardless of environmental fluctuation. It is advisable to 

conduct additional analysis utilizing another housekeeping gene, such 

as the mutL, to be a superior molecular marker to the 

previously described
41 

housekeeping genes for 

distinguishing Lpb. plantarum species cluster. The use of 

housekeeping genes like recA, pheS, dnaK, and rpoAgenes,
40

 which 

can help delineate the two species, is also recommended. 

Despite the difficulty in identifying BNA1, it has a promising 

potential as a LAB. There are over 60 genera of LAB identified, and 

these include the most common genera used for food fermentation: 

Lactococcus, Leuconostoc, Pediococcus, Streptococcus, 

Enterococcus, Weisella, and Lactobacillus which was recently 

reclassified into 25 genera.
43

 However, it is essential to note that 

recent revisions in the classification have redefined several 

Lactobacillus species, including L. pentosus, now grouped under the 

genus Lactiplanctibacillus.
36

 

 

 
Figure 3: Phylogenetic tree of isolate BNA1 and strains of 

related species based on 16S rRNA gene sequences. The tree 

was reconstructed using the maximum-likelihood method. The 

maximum-likelihood tree is inferred using the K2 substitution 

model. Node labels indicate bootstrap support values based on 

1000 bootstrap replicates. 
 

 
Figure 4: Phylogenetic tree of isolate MED1 and strains of 

related species based on 16S rRNA gene sequences. The tree 

was reconstructed using the maximum-likelihood method. The 

maximum-likelihood tree is inferred using K2+G substitution 

model. Node labels indicate bootstrap support values based on 

1000 bootstrap replicates. 

 1 

 2 
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Table 3: Phylogenetic neighbors of LAB isolates on the basis of similarity to the 16S rRNA sequence against BLASTN database. 
 

Scientific Name Accession Number Max Score Total Score Query Cover E value Percent Identity 

BNA1 

Lactiplantibacillus plantarum MK332083.1 1581 1581 99% 0.0 100% 

Lactiplantibacillus plantarum MK332073.1 1581 1581 99% 0.0 100% 

Lactiplantibacilluspentosus MH762173.1 1578 1578 100% 0.0 99.89% 

Lactiplantibacillus plantarum MK333781.1 1578 1578 100% 0.0 99.89% 

Lactiplantibacillus plantarum MK332099.1 1578 1578 100% 0.0 99.89% 

MED1 

Enterococcus faecium  MK757982.1 2688 2688 99% 0.0 99.47% 

Enterococcus faecium MT023667.1 2682 2682 99% 0.0 99.41% 

Enterococcus faecium KM095647.1 2667 2667 98% 0.0 99.40% 

Enterococcus faecium KY930926.1 2664 2664 99% 0.0 99.21% 

Enterococcus faecium MK418583.1 2661 2661 98% 0.0 99.33% 

 

Lactiplantibacillusspecies, characterized as homofermentative lactic 

acid bacteria (LAB), demonstrate efficient fermentation of diverse 

carbohydrates, including phenolic acids, facilitated by enzymatic 

processes such as esterase, decarboxylase, and reductase; moreover, 

these species are distributed across fermented foods, dairy items, 

insect-related habitats such as plants, and occasionally inhabit the gut 

microbiota of vertebrates, exhibiting a nomadic ecological pattern.
44

 

Among the abundant Lactiplantibacillus species, Lpb. plantarum 

stands out as a highly versatile strain with valuable characteristics, 

commonly present in various fermented food items and is extensively 

utilized in industrial fermentation and the processing of raw food and 

has been classified as “generally recognized as safe” (GRAS) and 

holds the status of qualified presumption of safety (QPS).
45

 However, 

attention has increasingly focused on other members of the 

Lactiplantibacillus genus, notably Lpb. pentosus, initially described in 

1921 and formerly categorized as Lactobacillus pentosus (Lb. 

pentosus),
46

 exhibits notable proficiency in efficiently utilizing 

pentose sugars such as xylose and arabinose for lactic acid production. 

Lpb. pentosus was distinguished from Lpb. plantarum strains are 

based on distinct genotypic features, characterized by rod-shaped cells 

with rounded ends, typically occurring singly, in pairs, or short chains, 

consistent with LAB traits.
47

 Additionally, Lpb. pentosuscan 

hydrolyze various carbohydrates,
47

 including amygdalin, l-arabinose, 

arbutin, cellobiose, d-fructose, galactose, p-gentiobiose, gluconate, d-

glucose, glycerol, N-acetylglucosamine, lactose, d-mannose, mannitol, 

maltose, melibiose, raffinose, ribose, salicin, sorbitol, sucrose, 

trehalose, and d-xylose, alongside the hydrolysis of esculin, aligning 

with the API 50 CH findings of test isolate BNA1 in the present 

investigation. The congruence between the morphological and 

biochemical characteristics of BNA1 and Lpb. pentosus indicates the 

classification of BNA1 within the Lpb. pentosusstrains. Several 

studies have highlighted the probiotic potential of Lpb. pentosus, 

emphasizing its resilience in acidic environments, resistance to bile 

salts and antibiotics, potent antimicrobial activity against pathogens, 

non-hemolytic behavior, ability to auto-aggregate and co-aggregate 

against pathogens, strong adhesion to intestinal cells, biofilm 

formation, production of exopolysaccharides
48-51 

aligning with the 

criteria set by EFSA and FAO/WHO for identifying lactic acid 

bacteria as viable probiotic candidates.  In alignment with the 

outcomes of in vitro assessments, various researchers have conducted 

genomic analyses on select strains of Lpb. pentosus, revealing the 

presence of genes encoding bile salt hydrolases, adhesins, 

moonlighting proteins, exopolysaccharide (EPS) synthesis machinery, 

absence of transferable antibiotic resistance genes, and the presence of 

biosynthetic pathways for seven amino acids, alongside the capacity to 

ferment a broad array of carbohydrates.
52-54

 

On the other hand, MED1 was definitively identified as Enterococcus 

faecium using 16S rRNA gene. Enterococcus is a genus of lactic acid 

bacteria that includes 50 species which are Gram-positive, 

facultatively anaerobic cocci or short rods which are found in a wide 

range of environmental ecosystems, including the gastrointestinal 

tracts of humans and animals, soil, water, and plant environments.
55

 

The Enterococcus genera are known for their capacity to convert 

carbohydrates into lactic acid through fermentation and have been 

extensively studied for their potential as probiotics and their role in 

food fermentation processes; however, certain species within this 

genus may exhibit pathogenic traits require careful consideration in 

both clinical and industrial contexts.
56 

E. faecium SF68 

and E. faecalis Symbioflor1 are widely recognized and extensively 

studied as probiotics within the enterococcus genera.
57 

The strain 

Enterococcus faecalis Symbioflor 1 clone DSM 16431 was obtained 

from the intestinal tract of a healthy adult in the 1950s and specifically 

employed to address various conditions such as urinary tract 

infections, sinusitis, bronchitis, and irritable bowel syndrome.
55,58

 

Studies have revealed the capacity of E. faecalis as a probiotic, 

encompassing the generation of biomass and metabolites for the 

development of flavor and aroma, effective antimicrobial activity 

against specific pathogens, resilience to acid and bile salt, strong 

adhesion properties to epithelial cells, and anticancer properties.
57

 In a 

previous study,
59

 the researchers used API 50 CH to identify the E. 

faecalis LD33. They found that the isolate was able to ferment 21 

different carbohydrates, including glycerol, ribose, galactose, D-

glucose, D-Fructose, D-Mannose, D-Mannitol, D-Sorbitol, α-Methyl- 

D-glucopyranose, N-acetyl-glucosamine, amygdalin, arbutin, esculin 

ferric citrate, salicin, D-Cellobiose, D-Maltose, D-Lactose, sucrose, D-

Trehalose, and Melezitose. Interestingly, 16 of the 21 carbohydrates 

fermented by the E. faecalis LD33 strain matched the results obtained 

from the API 50 CH test conducted on MED1 (Table 2). Moreover, 

the majority of studies examining the probiotic potential of E. faecalis 

have focused on its virulence factors, antibiotic resistance genes, 

ability to cause disease, and a lack of recognition as Generally 

Recognized as Safe (GRAS) nor recommended by the Qualified 

Presumption Safety (QPS) which hinder its use in food, animal, and 

human health applications.
56,60,61

 

Furthermore, the phylogenetic analysis of the 16s rRNA sequences of 

the isolates showed low (87% – 92%) in bootstrap support, but their 

grouping with the genus Lactiplantibacillus for BNA1 and genus 

Enterococcus for MED1 is seen. BNA1 is grouped with Lpb.pentosus, 

but this does not confirm its species identity because of the low 

bootstrap support, which confirms previous reports on the difficulty of 

delineating species of this genus. As a general rule, if the bootstrap 
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value for a given interior branch is 95% or higher, then the topology at 

that branch is considered "correct".
62

 
 

Conclusion  

The isolates in this study are determined to belong to the LAB group, 

explicitly belonging to Lactiplantibacillus and Enterococcus genera, 

respectively. However, the investigation using 16S rRNA has shown 

limited ability to discriminate between species within the 

Lactiplantibacillus genus. Notwithstanding this issue, the isolates 

demonstrated the ability to undergo fermentation of a diverse array of 

carbohydrates, encompassing monosaccharides, disaccharides, 

polysaccharides, and sugar alcohols. These characteristics warrant 

future exploration into the isolates' potential for prebiotic utilization, 

probiotic properties, and safety assessment.  

Additionally, it is strongly advised to employ additional sequencing 

methods. These include Housekeeping Gene Sequencing, Multilocus 

Sequence Analysis (MLSA), and Whole Genome Sequencing (WGS). 

These methods are necessary to accurately and precisely detect and 

identify the LAB isolates. Furthermore, these allow for analyzing of 

the genes associated with their probiotic potential and safety. Such 

genes include virulence genes and antibiotic resistance genes. 
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