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Introduction 

Leukaemia is a blood malignancy that arises from genetic 

mutations that accumulate in the hematopoietic stem cell (HSC) 

leading to unregulated differentiation and proliferation.
1, 2

The FMS-

like tyrosine kinase 3 with internal tandem duplication (FLT3-ITD) 

represents a distinct genetic mutation that characterizes acute myeloid 

leukaemia (AML).
3
 FLT3-ITD mutation induces hyperactivation of 

tumorigenic signaling including the Phosphatidylinositol 3-

kinase/Akt/mammalian target of rapamycin (PI3K/Akt/mTOR) 

pathway.
4, 5

BCR-ABL fusion gene formed by t(9; 22) chromosome 

translocation initiates chronic myeloid leukaemia (CML) 

pathogeneses.
6, 7

The BCR-ABL oncoprotein enhances the 

hematopoietic cell's ability to proliferate and survive by 

hyperactivating several signalling including PI3K/Akt/mTOR 

signalling.
8
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Chemotherapy remains the first-line therapy for leukaemia patients 

with poor outcomes and unsatisfactory survival rates.
9
Tyrosine kinase 

inhibitors (TKIs) development recently contributed to substantial 

improvements in leukaemia therapy.
8
However, most leukaemia 

patients receiving TKIs treatment fail to completely recover and 

develop drug resistance after prolonged therapy.
10

Additionally, TKIs 

treatment is associated with several unfavourable side 

effects.
11

Therefore, developing alternate therapies obtained from 

natural compounds could substantially enhance the treatment of 

leukaemia. Natural phytochemical substances are safe and efficient 

alternatives in the treatment of cancers.
12-14

 The phytochemical 

substance, thymoquinone (TQ) is a principal bioactive component in 

Nigella sativa seeds (black seeds).
15

TQ has anticancer activities in a 

variety of tumour cells.
15-21

However, the impact of TQin leukaemia 

cells remains incompletely evaluated. Molecular docking is commonly 

used in silico method for ligand-protein interaction which is used to 

find new inhibitors of tyrosine kinases involved in several signalling 

pathways and to reveal the possible mechanisms of action of both 

previously identified compounds and new drugs for cancer 

therapies.
22, 23

TKIs represent innovative therapy for various types of 

cancers. Therefore, identifying TKIs from natural sources is a 

promising approach for the identification of new TKIs.  To overcome 

resistance to the current TKIs treatment and unfavourable side effects, 

the current study aims to investigate the ability of TQ to bind to the 

active sites and inhibit the enzymatic activities ofFLT3-ITD, BCR-

ABL, PI3K, Akt, and mTOR tyrosine kinases. For this purpose, the 
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The FMS-like tyrosine kinase-3 internal tandem duplication (FLT3-ITD) represents a distinct 

genetic mutation that characterizes acute myeloid leukaemia (AML). The breakpoint cluster 

region (BCR)-Abelson murine leukaemia (ABL) (BCR-ABL) is a key initiator of chronic 

myeloid leukaemia (CML) Hyperactivation of phosphatidylinositol 3-kinase/Akt/mammalian 

target of rapamycin (PI3K/Akt/mTOR) signalling is crucial in AML and CML pathogenesis. 

The recent development of tyrosine kinase inhibitors (TKIs) contributed to substantial 

improvements in leukaemia therapy. However, most leukaemia patients fail to completely 

recover and develop drug resistance after prolonged TKI therapy. Thymoquinone (TQ), a major 

ingredient of Nigella sativa seeds, has anti-tumour properties in a variety of cancers. However, 

the anti-leukemia effect of TQ was not extensively studied. Thus, the current research aims to 

identify TQ’s ability to bind on the active sites inFLT3-ITD, BCR-ABL, PI3K, Akt, and mTOR 

tyrosine kinases. The molecular docking of TQ toFLT3-ITD, BCR-ABL, PI3K, Akt, and 

mTOR was evaluated. Midostaurin; FLT3-ITD inhibitor, imatinib; BCR-ABL inhibitor, 

wortmannin; PI3K inhibitor, AZD5363; Akt inhibitor, and rapamycin; mTOR inhibitor were 

selected as positive controls. The findings revealed that TQ interacts with high affinities with 

the active site of PI3K(-7.02Kcal/mol), Akt(-6.4Kcal/mol), mTOR(-6.58Kcal/mol), FLT3-

ITD(-6.35Kcal/mol), and BCR-ABL(-6.31Kcal/mol) and with low free binding energy to 

inhibit their enzymatic activities. In conclusion, TQ could potentially act as a TKI for FLT3-

ITD, BCR-ABL, PI3K, Akt, and mTOR tyrosine kinases suggesting that TQ could act as a 

promising multi-targeted TKI for several tyrosine kinases for AML and CML treatment.  
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molecular docking of TQ toFLT3-ITD, BCR-ABL, PI3K, Akt, and 

mTOR oncoproteins was evaluated.  

 

Materials and Methods 

Software for the molecular docking study 

The www.python.comwas accessed to download Python language 

(accessed on 15 March 2022), the http://mgltools.scripps.edu was 

accessed to download the Molecular graphics laboratory (MGL) tools 

(accessed on 15 March 2022), the http://autodock. scripps.edu was 

accessed to download AutoDock4.2 (accessed on 15 March 2022), the 

http://accelrys. com was accessed to download Bio Via Draw 

(accessed on 15 March 2022), the http://accelrys.com was accessed to 

download the Discovery studio visualizer 2017 (accessed on 15 March 

2022), and the https://acms.ucsd.edu was accessed to download the 

Chem3D (accessed on 15 March 2022).
24

 

 

Protein preparation for the molecular docking study 

The three-dimensional crystal structure from RCSB protein data bank 

for the molecular target proteins; PI3K protein (3APC), AKT protein 

(3E8D), mTOR protein (5GPG), BCR-ABL protein (5OC7), FLT3-

ITD protein (6JQR) were selected then downloaded from the Protein 

Data Bank (www.rvcsb.org/pdb).
25

Using Argus Lab, the complexes 

bonded to the receptor molecules, all the unessential heteroatoms and 

water molecules were deleted, and hydrogen atoms were ultimately 

added to the target receptor molecules.
26

 

 

Ligand preparation for the molecular docking study 

In this study, Midostaurin; an inhibitor of FLT3-ITD, imatinib; an 

inhibitor of BCR-ABL, wortmannin; an inhibitor of PI3K, AZD5363; 

an inhibitor of Akt, and rapamycin; an inhibitor of mTOR were 

selected as positive controls. 

Thymoquinone and the positive controls with the identified 

crystallography structure were available. The sdf format was prepared 

using Pubchem and then converted to PDB format using Pymol which 

was further utilized to perform the docking studies.  

The AutoDock tools were used to prepare the proteins’ starting 

structures.
27

 Water molecules were deleted from the proteins’ starting 

structures, and the Kollman charges and polar hydrogen were added to 

the proteins’ starting structures. The grid box with the size of 

126×126×126Å was set with 0.375 Å grid spacing at the binding site. 

BioVia draw was used to construct the starting structure of TQ. The 

Pubchem website was used to provide the structures of TQ and the 

positive controls, and the Autodock Tools were used to assign 

Gasteiger charges into an optimized ligand. A hundred docking runs 

with 0.8 crossover rate and 0.02 mutation rate were carried out. A 

randomly 250 placed individuals were used to set the population size.  

Lamarckian Genetic algorithm with 0.2 Å translational step, 5 Å 

quaternion step, and 5 Å torsion step was utilized as the searching 

algorithm. As a final result, the lowest and most populated free 

binding energies were selected.
27

 

 

Results and Discussion 

Tyrosine kinase inhibitors (TKIs) resistance and chemotherapy side 

effects remain the primary obstacles to leukaemia patients' treatment, 

despite the notable advancements in the treatment of 

leukaemia.
10

Therefore, developing novel medicinal alternatives may 

bear substantial consequences for the treatment of leukaemia. From 

our previous published data, the findings have demonstrated TQ-

induced anti-leukemia effects in AML and CML cells.
19-21, 26, 

28
Moreover, in our previous study, we demonstrated that TQ caused 

inhibition ofPI3K/Akt/mTOR pathway by reducing the gene, protein, 

and phosphorylation levels of PI3K, Akt, and mTOR in both MV4-11 

AML and K562 CML cells.
20

We also demonstrated that TQ inhibited 

JAK/STAT pathway and could potentially act as a TKI of JAK2, 

STAT3, and STAT5.
19-21, 26

In the current research, we further assessed 

TQ’s ability to act as a TKI which potentially inhibits the enzymatic 

activities of FLT3-ITD, BCR-ABL PI3K, Akt, and mTOR tyrosine 

kinases for AML and CML treatment by molecular docking study. 

FLT3 is considered a potential drug target for AML treatment, 

particularly for patients with FLT3-ITD gene mutation. Therefore, 

targeting FLT3-ITD could provide promising candidates to treat AML 

patients. In our previous published findings, we demonstrated the 

effect of TQ on the expression of FLT3-ITD in MV4-11 AML cells, 

and the results showed down regulation of FLT3-ITD in MV4-11 cells 

after treatment with TQ.
26

In the present study, FLT3-ITD oncoprotein 

was targeted by TQ using molecular docking study.  

The docked conformation of FLT3-ITD protein clearly showed 

numerous potential interactions with the active conformation of TQ 

(Figures 1). The results of the free binding energy and Ki value for 

each compound after the interaction with the studied protein are 

demonstrated in Table 1. 

The chemical interaction between FLT3-ITD protein and TQ involved 

one hydrogen bond with MET645, pi sigma bond with TYR572, Van 

der waals bond formed with LYS623, amide pi stacked bond with 

GLY622, and five alkyl bonds with PHE830, VAL624, LYS644, 

LEU646 and LEU658 with -6.35 Kcal/mol free binding energy 

(Figure 1A). 

 

Table 1: Free binding energy (FBE) and Ki values of the 

interactions between TQ and positive controls with the studied 

target proteins 
 

 FBE (Kcal/mol) Ki 

PI3K TQ Wortmannin TQ Wortmannin 

 -7.02 -10.05 7.16 μM  43.05 nM 

Akt TQ Capivasertib TQ Capivasertib 

 -6.4 -9.71  9.01 μM 75.72 nM 

mTOR TQ Rapamycin TQ Rapamycin 

 -6.58 -20.04  14.93 μM 2.06 fM 

FLT3-ITD TQ Midostaurin TQ Midostaurin 

 -6.35 -9.79 21.98 μM 67.14 nM 

BCR-ABL TQ Imatinib TQ Imatinib 

 -6.31 -9.11 23.88 μM 211.64 nM 

 

 
Figure 1: The 3D and 2D configuration of the interactions 

between FLT3-ITD protein and the studied compounds (A) 

TQ’s crystallographic structure and the 3D and 2D 

configuration of FLT3-ITD protein and TQ interactions (B) 

Crystallography structure of midostaurinand the 3D and 2D 

configuration of midostaurin and FLT3-ITD protein 

interactions. 

http://autodock/
http://accelrys/
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The chemical interactions between Midostaurin (positive control) and 

FLT3-ITD protein involved two hydrogen bonds with GLU692 and 

CYS694, a Pi anion bond with ASP698, three pi sigma bonds with 

LEU616, LEU818, and VAL624, and three alkyl bonds with ARG815, 

ALA642, and LYS644 with -9.79 Kcal/molfree binding energy 

(Figure 1B). The interaction of midostaurin with the active site of 

FLT3-ITD showed higher affinity and lower free binding energy than 

TQ. The results agree with previous findings that revealed that several 

phytochemical compounds such as glabridin and ellipticine showed 

good binding affinities to FLT3-ITD.
29

 

Although treatment with the imatinib, BCR-ABL TKI, enhanced the 

remission and survival rate of CML patients, point mutations in the 

BCR-ABL kinase domain confer imatinib resistance. Therefore, in the 

current study, the BCR-ABL pleckstrin homology (PH) domain was 

targeted to overcome imatinib resistance.
30

In our previous published 

findings, we evaluated the effect of TQ on the expression of BCR-ABL 

in K562 CML cells, and the results showed down regulation of BCR-

ABL in K562 cells after treatment with TQ.
28

 In the present research, 

BCR-ABL oncoprotein was targeted by TQ using molecular docking 

study. 

The docked conformation of BCR-ABL protein clearly showed 

numerous potential interactions with the active conformation of TQ 

(Figures 2).The chemical interactions between TQ and BCR-ABL 

pleckstrin homology domain demonstrated a pi donor hydrogen bond 

to THR82 and three alkyl bonds to MET81, LYS866 and ARG862 

with -6.31 Kcal/mol free binding energy (Figure 2A). The chemical 

interactions between imatiniband BCR-ABL protein demonstrated a 

hydrogen bond to ARG723, carbon-hydrogen bond with GLU769, 

MET836 and ASP851, three alkyl bonds with PRO830 and LEU718, 

and pi sulfur and pi sigma bonds with MET832 with -9.11 Kcal/mol 

free binding energy (Figure 2B). The interaction of TQ with the active 

site of BCR-ABL revealedless affinity and higher free binding energy 

than imatinib.The results agree with previous findings that revealed 

that two ZINC natural compounds, ZINC08764498 and 

ZINC12891610, have potential binding affinities toward BCR-ABL 

oncoprotein.
31

 

The docked conformation of PI3K, Akt, and mTOR proteins clearly 

showed numerous potential interactions with TQ’s active 

conformation (Figures 3, 4, and 5).  

 

 
Figure 2: The 3D and 2D configuration of the interactions 

between BCR-ABL protein and the studied compounds (A) 

TQ’s crystallographic structure and the 3D and 2D 

configuration of TQ and BCR-ABL interactions(B) 

Crystallography structure of imatinib and the 3D and 2D 

configuration of imatinib and BCR-ABL protein interactions 
 

 

The chemical interaction between TQ and PI3K showed a pi sigma 

bond with ILE933, a Pi sulfur bond to CYS883, a pi lone pair to 

THR886, and five alkyl bonds to VAL930, ARG894, HIS909, 

ILE899, and PHE938 with a free binding energy of -7.02 Kcal/mol 

(Figure 3A). Wortmanninand PI3Kchemical interactions revealed 

three hydrogen bonds toSER623, LEU629, and GLU628, Pi anion 

bond formed with GLU622, carbon-hydrogen bond to LEU583, and 

three alkyl bonds to CYS590, CYS627, and MET387 with -10.05 

Kcal/ mol free binding energy (Figure 3B). TQ and PI3Kchemical 

interactions revealed lower affinity and greater free binding energy 

than wortmannin and PI3Kchemical interactions. 

 

 
Figure 3: The 2D and 3D configuration of the interaction 

between PI3K protein and the studied compounds (A) TQ’s 

crystallographic structure and the 2D and 3D configuration of 

TQ and PI3K protein interactions (B) Crystallography 

structure of wortmannin and the 2D and 3D configuration of 

wortmannin and PI3K protein interactions 
 

 
Figure 4: The 2D and 3D configuration of the interactions 

between Akt protein and the studied compounds (A) TQ’s 

crystallographic structure and the 2D and 3D configuration of 

TQ and Akt protein interactions (B) Crystallography structure 

of capivasertib and the 2D and 3D configuration of 

capivasertiband Akt protein interactions. 
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Figure 5: The 2D and 3D configuration of the interactions 

between mTOR protein and the studied compounds (A) TQ’s 

crystallographic structure and the 2D and 3D configuration of 

TQ and mTOR protein interactions (B) Crystallography 

structure of rapamycin and the 2D and 3D configuration of 

rapamycin and mTOR protein interactions 
 

TQ and Akt chemical interactions revealed a hydrogen bond to 

THR313, carbon-hydrogen bond to ASP275, pi sigma bond to 

LEU317, and five alkyl bonds to VAL321, ALA318, VAL331, 

ILE276, and TYR316 with -6.4 Kcal/mol free binding energy (Figure 

4A). Capivasertiband Aktchemical interactions demonstrated three 

hydrogen bonds to GLU279, GLU236, and TYR438, a pi sigma bond 

to VAL166, a carbon-hydrogen bond with ASP293, and a pi anion 

bond with ASP440 with -9.71 Kcal/mol free binding energy (Figure 

4B).  The interactions of TQ with the active site of Aktrevealedless 

affinity and greaterfree-binding energy thancapivasertib.  

The chemical interaction between TQ and the mTOR 

FKBP12Rapamycin binding (FRB) domain revealed two hydrogen 

bonds to ARG2086 and TRP2101, sulfur bond to MET2089 and 

MET2047, pi T shaped bond with TYR2038 and PHE2048 and five 

alkyl bonds formed with TYR2088, VAL2044, LEU2097, TYR2104 

and ALA2100 with -6.58 Kcal/mol free binding energy (Figure 

5A).Rapamycin, and the FRB domain of mTOR chemical interactions 

revealed three hydrogen bonds to LYS170, ASP146, and ILE179, 

carbon-hydrogen bonds to VAL171, THR2098, and GLU2032, and 

alkyl bonds formed with LEU2031, PHE2108, PHE2039, ALA206, 

ILE208, PHE145, TRP175, TYR135 and LEU162 with -20.04 

Kcal/mol free binding energy (Figure 5B). The interaction of 

rapamycin with the active site of mTORshowed higher affinity and 

lower free binding energy thanTQ.  

The findings of this research are consistent with previous research that 

indicated that the peptides contained in the natural products (sea 

cucumber Cucumariafrondosa) showed several interactions with a 

high affinity toward the active sites of PI3K and Akt to inhibit their 

enzymatic activities.
23

 The results also agree with previous research 

that showed that several compounds derived from marine natural 

products bind to the active site of mTOR to inhibit its activity.
32

 In 

addition, the results were consistent with previous research that 

indicated that the phenolic compounds (pinoresinol, apigenin, luteolin, 

o. aglycone, and oleuropein) derived from Olea europaea showed 

binding affinities towards PI3K, Akt, and mTOR.
22

 

Even though TQ showed a slightly higher free binding energy than the 

positive controls selected in this study, it showed a multi-targeted 

tyrosine kinase inhibitory effect by inhibiting the enzymatic activities 

of several tyrosine kinases with low side effects compared to the 

currently available TKIs. Interestingly, these results indicate 

promising potential effects of TQ acting as a multi-targeted TKI for 

several tyrosine kinases involved in the pathogenesis of leukaemia. 

Taken together, TQ could potentially act as a TKI for FLT3-ITD, 

BCR-ABL, PI3K, Akt, and mTOR tyrosine kinases suggesting that 

TQ could act as a promising multi-targeted TKI for several tyrosine 

kinases in myeloid leukemia treatment. 

 

Conclusion 

The ability of TQ to act as a TKI forFLT3-ITD, BCR-ABL, PI3K, 

Akt, and mTORtyrosine kinases for AML and CML treatment was 

evaluatedby molecular docking study. Based on our current results, 

the anti-leukaemia effects of TQ are induced by binding to the active 

sites of FLT3-ITD, BCR-ABL, PI3K, Akt, and mTORtyrosine kinases 

with high affinity and low free binding energy to inhibit their 

enzymatic activity, which identifies TQ as a potential multi-targeted 

TKI for several tyrosine kinases with low side effects compared to the 

currently available TKIs used for the treatment of leukaemia. The 

findings of this research indicate TQ as a potential therapeutic agent 

for AML and CML patients.To further reveal the tyrosine kinase 

inhibitory properties of TQ, the molecular docking of TQ to other 

tyrosine kinases as well as assessing the protein and phosphorylation 

levels of other tyrosine kinases needs to be investigated. 
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