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Introduction  

Climate change denotes a persistent alteration in 

meteorological parameters. The global shifts in climate, attributed to 

human activities since the industrial revolution, has led to imbalance in 

the utilization of natural resource and substantial alterations in the 

earth's temperature and overall precipitation levels, presenting alarming 

consequences of climate change.1 These modifications primarily result 

from the heightened emissions of greenhouse gases. Recent 

investigations indicate that the current rate of greenhouse gas emissions 

anticipates a temperature surge of 5.3°C by 2100 unless there is 

intervention.2  
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Presently, climate change is recognized as the predominant factor 

posing a threat to global biodiversity. Furthermore, beyond the global 

warming already reaching 1.1°C over the last decade compared to the 

pre-industrial era, the impacts on ecosystems surpass both the extent 

and magnitude estimated in previous assessments.3 Global warming 

induced by humanization lead to imbalances in the exploitation of 

natural resources and to changes in meteorological parameters.4,5 

Global warming are an alarming consequence of climate change.6 These 

changes are the result of the intensification of greenhouse gas 

emissions.7 In addition to the fact that global warming in recent years 

have already reached 1.1°C compared to pre-industrial times,8 the 

impacts on ecosystems have worsened over time. 9 This will most likely 

lead to the degradation of plant and animal biodiversity, and even global 

extinction.10 Recent studies have therefore shown that these climatic 

changes affect the processes and functions of ecosystems and the 

multiple interactions between them,11 as well as the chemical 

composition of plants and essential oils.12-14 Aromatic and medicinal 

plants are widely used in traditional medicine practices in different 

communities worldwide, especially in rural areas.15 In Africa, we 

cannot talk about healing without mentioning aromatic and medicinal 

plants. Up to 80% of the population in Africa use aromatic and 

medicinal plants to prevent and treat diseases.16  

Inula viscosa have played a primordial role in the daily lives of the 

African population given its therapeutic, cosmetic and biological 
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effects.17,18 This plant was used for this study through an ethnobotanical 

study of selected medicinal and aromatic plants. The results of the study 

revealed a nuanced interplay between meteorological parameters, 

temperature rise, precipitation reduction, and the ensuing changes in the 

chemical composition of plants. This connection elegantly broaden the 

discourse on global climate change with its attendant effect on plant 

species. 

A critical issue surfaces regarding the direct and indirect effects of 

meteorological parameters on biomass production and plant chemical 

composition. This unveils the multifaceted nature of the impact of 

climate change on ecosystems, emphasizing the intricate relationships 

between climatic factors and vegetation. 

The main objective of this study is to deepen our understanding of how 

commonly used medicinal and aromatic plants respond to climate 

change. This knowledge isn't just academic; it holds tangible 

significance for local populations. The call to provide recommendations 

for adapting to climate change impacts, based on the chemical 

composition of these plants, will creates a meaningful bridge between 

global climate concerns and actionable insights for communities.  

 

Materials and Methods 

Plantation 

The transplant was carried out in the Taounate region situated in the 

northern region of Morocco (34°39'38"N 4°26'00"W, 815 m), 

encompassing a landmass of 5,616 square kilometers within the Fez-

Meknes region. The fields were cultivated a few weeks before 

transplanting. Weeds were removed every week after transplanting to 

ensure proper nutrition. 

Three samples of I. viscosa from the Taounate region were planted in a 

closed chamber for three years under different environmental 

conditions (Table 1): sample 1 (I. viscosa planted in the first year under 

normal temperature and precipitation conditions of Taounate region), 

sample 2 (I. viscosa planted in the second year, at 5°C increase in 

temperature with 50% decrease in precipitation), and sample 3 (I. 

viscosa planted in the third year, at 10°C increase in temperature with 

75% decrease in precipitation). 

 

Analysis of phytochemical constituents and mineral composition 

The leaves of I. viscosa from the three samples were subjected to 

qualitative phytochemical screening and analysis of mineral 

composition according to standard procedures.19,20 Following the 

qualitative analysis, quantitative phytochemical analysis for the major 

secondary metabolites were performed following standard 

procedures.21-23  

 

Extraction of essential oil 

The leaves of I. viscosa were dried in the shade. The dried leaves (100 

g) were subjected to hydro distillation using a Clevenger-type apparatus 

for three hours.  

 

Gas Chromatographic-Mass Spectrometric analysis (GC-MS) analysis 

of essential oil 

The chemical composition of the three essential oil samples obtained 

from I. viscosa cultivated under various climatic conditions was 

analyzed using GC-MS instrument equipped with a flame ionization 

detector (FID) and two DB-1 fused silica capillary columns. Helium 

served as the carrier gas at a flow rate of 0.8 mL/min with a temperature 

gradient 50 to 200°C at 5°C/min increment.  

 

Statistical analysis 

The data were presented as mean ± standard error of mean (SEM), and 

were subjected to one-way analysis of variance (ANOVA) and multiple 

comparison test using GraphPad Prism-5 software. P ≤ 0.05 was 

regarded as statistically significant.  

 

Table 1: Climatic conditions of transplantation 
 

 The seasonal average temperature in °C Seasonal average precipitation in mm 

Spring Summer Autumn Winter Spring Summer Autumn Winter 

Sample 1 16.25 34 21.25 6.75 42 21.75 70.25 55.25 

Sample 2 21.25 39 26.25 11.75 21 10.87 35.125 27.625 

Sample 3  26.25 44 31.25 16.75 14 7.25 23.41 18.41 

 

 

Results and Discussion 

Effect of temperature and precipitation on the phytochemical 

constituents of Inula viscosa leaves 

The primary metabolites (carbohydrates, proteins, amino acids, fats and 

fibre) contents of the three I. viscosa samples cultivated under different 

climatic conditions are presented in Table 2 and Figure 1. The 

percentage protein content in sample 1 was 10.13%, while samples 2 

and 3 had significantly (p < 0.001) lower protein content of 9.06% and 

7.01%, respectively. Similar trends were observed for fats, 

carbohydrates, and dietary fiber contents, all exhibiting a successive 

decline with increasing temperature and decreasing precipitation. 

Specifically, lipid content decreased successively from 1.56% in sample 

1 to 1.2% in sample 2, and 0.7% in sample 3, carbohydrates content 

decreased from 8.21% in sample 1 to 7.55% in sample 2, and 6.3% in 

sample 3, while dietary fiber decreased from 4.43% in sample 1 to 

4.01% in sample 2, and 3.2% in sample 3. 

These findings agrees with the findings from previous studies; for 

instance, Yang et al. (2022)25 reported similar results as obtained in this 

study, while others reported a decrease in the primary metabolites, 

antioxidant, and metabolic activities of plants due to a combined effect 

of water deficit and other abiotic stressors, and these changes were 

attributed to drought-induced decrease in primary metabolite content.26-

28 The consistency across these studies underscores the relevance of our 

findings and strengthens the link between temperature, precipitation, 

and metabolic changes in the studied plant. 

Table 3 and Figure 2 present the percentage amino acids content of the 

three samples of I. viscosa. Certain amino acids, including arginine, 

alanine, asparagine, glutamine, methionine, pyrrolysine, valine, 

threonine, Selenocysteine, tyrosine, and tryptophan were absent in one, 

two or the three samples, whereas, amino acids such as aspartate, 

cysteine, glycine, glutamate or glutamic acid, histidine, isoleucine, 

leucine, lysine, phenylalanine, proline, and serine were consistently 

present in all three samples (Table 3). Predominantly, phenylalanine, 

leucine, serine, and proline emerged as the key amino acids in I. viscosa 

across the three samples: Leucine (sample 1: 2.36%, sample 2: 2.03%, 

sample 3: 1.15%), Phenylalanine (sample 1: 2.45%, sample 2: 1.42%, 

sample 3: 0.3%), Proline (sample 1: 1.33%, sample 2: 1.03%, sample 3: 

0.51%), and Serine (sample 1: 2.34%, sample 2: 1.63%, sample 3: 

0.45%) (Figure 2). 
 

Table 2: Primary metabolites of the samples of I. viscosa 

cultivated under different climatic conditions 
 

Primary metabolites Inference 

 Sample 1 Sample 2 Sample 3 

Proteins + + + 

Carbohydrates + + + 

Fats + + + 

Dietary fiber + + + 

+; indicates presence of constituents 
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Additionally, the content of certain amino acids, notably, glutamate or 

glutamic acid, isoleucine, leucine, lysine, phenylalanine, proline, serine, 

tyrosine, and valine exhibited significant variations in the three samples 

with a successive decrease in samples 2 and 3, that is with a rise in 

temperature and decrease in precipitation. This observation aligns with 

previous studies that emphasized the adverse impact of climate change 

on plants, posing a serious threat to crop yields and food supply. These 

findings further corroborate the broader effect of climate change on 

plant biochemical composition.29-31  

The secondary metabolites present in the three samples of I. viscosa are 

presented in Table 4 and Figure 3. The results revealed a significant (p 

< 0.001) disparity in the extraction capacity among the solvents used, 

for the secondary metabolites with ethanol emerging as the most 

effective solvent. Ethanol extracted the highest percentage of various 

secondary metabolites, including alkaloids, flavonoids, saponins, 

tannins, and coumarins. In Sample 1, the percentage contents of 

secondary metabolites were as follows: alkaloids (13.3%), coumarins 

(4.36%), tannins (4.34%), flavonoids (6.83%), and saponins (6.33%). 

Sample 2 exhibited percentage content of alkaloids as 15.1%, 

coumarins (4.55%), tannins (4.99%), flavonoids (13.07%), and 

saponins (8.15%). While sample 3 showcased alkaloids (14.00%), 

coumarins (4.44%), tannins (4.62%), flavonoids (9.58%), and saponins 

(7.00%). 

Surprisingly, the results did not reveal a significant and consistent 

increase in secondary metabolites with changes in temperature and 

precipitation. This observation contradicts the expectation that 

alterations in abiotic factors, such as temperature and precipitation, 

would directly influence the production of secondary metabolites. 

Nevertheless, these findings align with prior research that reported 

similar outcomes, emphasizing the impact of modified abiotic factors 

on secondary metabolites.32 However, several other studies have 

established a connection between abiotic factors and secondary 

metabolite modulation.33-36 Moreover, existing literature consistently 

supports the notion that increased temperature can lead to a reduction 

in the levels of secondary metabolites.39,40 This inverse relationship, 

indicates that environmental stresses, including temperature variations, 

may impede the production of secondary metabolites. This aligns with 

the well-established understanding that environmental stressors play a 

pivotal role in influencing the biochemical composition of plants, 

offering valuable insights into the intricate relationship between plant 

physiology and external environmental conditions. 
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Figure 1: Quantitative primary metabolites (protein, 

carbohydrate, fat and dietary fiber) content of samples of I. 

viscosa cultivated under different climatic conditions 

 
 

 

 

Table 3: Qualitative Amino acid composition of samples of I. 

viscosa cultivated under different climatic conditions 
 

Amino acid Inference 

Sample 1 Sample 2 Sample 3 

Asparagine  - - - 

Alanine  - - - 

Arginine  - - - 

Aspartate + + + 

Cysteine + + + 

Glutamate or Glutamic Acid + + + 

Isoleucine  + + + 

Glutamine  - - - 

Glycine  + + + 

Histidine  + + + 

Proline  + + + 

Phenylalanine + + + 

Serine  + + + 

Leucine  + + + 

Lysine  + + + 

Methionine - - - 

Threonine - - - 

Selenocysteine - - - 

Pyrrolysine - - - 

Valine  + + - 

Tyrosine  + - - 

Tryptophan - - - 

+; indicates presence of constituents 

-; indicates absence of constituents 
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Figure 2: Quantitative amino acids content of three samples of 

I. viscosa cultivated under different climatic conditions  

*** significant difference at p < 0.001; ** significant difference 

at p < 0.01; * significant difference at p < 0.05, compared to 

sample 1. 
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Effect of temperature and precipitation on the mineral composition of 

Inula viscosa leaves 

The mineral compositions of the three I. viscosa samples cultivated 

under different climatic conditions are presented in Table 5 and Figure 

4. Analysis of the results revealed significant variations in the 

percentage mineral composition across the different samples. Calcium, 

potassium, magnesium, phosphorus, iron, and manganese were the most 

predominant elements in the three samples, while other elements 

including sodium, chlorine, sulphur, lead, selenium, copper, zinc, and 

cobalt were found in lower quantities. In sample 1, for instance, the 

percentages of calcium, potassium, magnesium, phosphorus, iron, and 

manganese were 4.25%, 9.55%, 11.6%, 3.35%, 11.2%, and 5.54%, 

respectively. Sample 2, on the other hand, exhibited calcium, 

potassium, magnesium, phosphorus, iron, and manganese contents of 

4.25%, 7.93%, 10.1%, 3.15%, 9.38%, and 3.81%, respectively, while 

sample 3 showed the predominant elements as follows; calcium 

(4.18%), potassium (5.6%), magnesium (9.01%), phosphorus (3.08%), 

iron (7.03%), and manganese (3.6%) (Figure 4). 

However, a noticeable decline in these elements were observed in 

samples 2 and 3. This decrease is unargueably influenced by the 

combined effect of elevated temperature and reduced precipitation, 

which significantly (p < 0.001) impacted all mineral compositions 

except for calcium and phosphorus. Previous research has reported that 

the content of certain minerals tends to decrease with rising 

temperatures and increasing water stress, as observed in this study.37 

These findings align with similar results of previous studies, providing 

further validation and support for the impact of climate-related factors 

on the mineral composition of plants.38 

 

Effect of temperature and precipitation on Inula viscosa leaves 

essential oil yield  

As shown in Figure 5, the essential oil yields were calculated for the 

three samples of I. viscosa. Specifically, the essential oil yield in sample 

1 was approximately 0.38%, an increased yield was observed in sample 

2, and a decreased yield in sample 3 compared to that of sample 2, but 

higher than that of sample 1. Overall, the rise in temperature and the 

decline in precipitation significantly (p < 0.001) influenced the essential 

oil yield in samples 2 and 3, with an increase in sample 2, and a 

subsequent drop in sample 3. This fluctuation may be attributed to the 

detrimental impact of water stress and drought on essential oil yield, a 

phenomenon well-supported by existing literature, where water stress 

have been reported to negatively affects essential oil yield.43,44  

Furthermore, numerous studies have demonstrated that severe water 

stress can enhance the concentration of essential oils, with the highest 

yield occurring under conditions of moderate water stress,45-50  further 

reinforcing the findings from the present study. 

 

Effect of temperature and precipitation on Inula viscosa leaves 

essential oil composition  

GC-MS analysis of the essential oils from the leaves of three samples 

of I. viscosa are presented in Figures 6, 7, and 8, along with the 

corresponding details in Table 6. The analysis identified 47 compounds 

in each sample. Notably, sample 2 was distinguished by the presence of 

compound 17(β-selienene) which was absent in samples 1 and 3, and 

the absence of compound 18 (10,11-epoxy-calamenene), which was 

present in samples 1 and 3. The GC-MS results underscore the impact 

of climatic conditions on the chemical compositions of plants, 

particularly the major compounds. 

The findings highlighted a notable variation in the chemical 

composition of I. viscosa cultivated under different climatic conditions, 

particularly the major compounds. For instance, the percentage of 

compound 28 [(E)-nerolidol] was 10.89% in sample 1, with a decrease 

to 6.90% in sample 2, and to 6.87% in sample 3. These changes in 

compound percentages are in line with established knowledge that 

stresses, including climatic conditions, can influence the content of 

various compounds within plants,51 which emphasizes the dynamic 

response of plant chemistry to environmental factors. Furthermore, the 

results from the present study reinforce the significant impact of water 

stress on the major compounds of plants, highlighting the influential 

role of environmental factors in shaping the chemical profile of plants.52 

 

 
Figure 3: Quantitative phytochemical constituents of three 

samples of I. viscosa cultivated under different climatic 

conditions 
E = Ether extract; C = Chloroform extract; ET = Ethanol extract 
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Figure 4: Mineral compositions of three samples of I. viscosa 

cultivated under different climatic conditions  
*** significant difference at p < 0.001; ** significant difference at p < 

0.01; * significant difference at p < 0.05, compared to sample 1.
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Table 4: Qualitative phytochemical constituents of three samples of I. viscosa cultivated under different climatic conditions 
 

Phytochemical  Inference 

Sample 1 Sample 2 Sample 3 

E C ET E C ET E C ET 

Coumarins + + + + + + + + + 

Flavonoids + + + + + + + + + 

Tannins + + + + + + + + + 

Saponins + + + + + + + + + 

Alkaloids + + + + + + + + + 

E = Ether extract; C = Chloroform extract; ET = Ethanol extract 

 

 

Table 5: Mineral composition of three samples of I. viscosa 

cultivated under different climatic conditions 
 

Mineral Inference 

Sample 1 Sample 2 Sample3 

Mn + + + 

Na + + + 

Cl + + + 

P + + + 

Mg + + + 

Fe + + + 

Pb + + + 

S + + + 

Co + + + 

Zn + + + 

Cu + + + 

Se + + + 

K + + + 

Ca + + + 

Ca: calcuim; P: phosphorus; K: potassium; Na: sodium; Cl: chlorine; S: 

sulfur; Mg: magnesium; Fe: Iron; Mn: manganese; Zn: zinc; Pb: Lead; 

Se: selenium; Cu: copper; Co: cobalt; 

 

Conclusion 

The results of the present study have revealed that alteration in climatic 

conditions induces a variation in the chemical composition of Inula 

viscosa. Particularly, a rise in temperature and a decrease in 

precipitation have caused a significant modification to the primary and 

secondary metabolites, the mineral composition, as well as essential oil 

yield of the plant leaves. In addition, GC-MS analysis demonstrated that 

climatic conditions have a detrimental impact on the chemical 

compositions of essential oils. Therefore, it could be affirmed that 

climate change currently has an adverse effect on the ecosystem, 

emphasizing the need to consider climate change measures to mitigate 

its detrimental effects on humanity as a whole. 
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Figure 5: Essential oil yield of three samples of I. viscosa 

cultivated under different climatic conditions. *** significant 

difference at p < 0.001; ** significant difference at p < 0.01, 

compared to sample 1 

 

Table 6: Chemical composition of the essential oils of  three samples of I. viscosa cultivated under different climatic conditions 
 

S/N Compound name Retention 

index HP5 

Literature 

Retention Index 

Percentage composition (%) 

Sample 1 Sample 2 Sample 3 

1 1,8-dehydro-cineole 992 991 0.09 0.21 0.17 

2  n-nonanal 1104 1100 0.09 0.34 0.21 

3 para-mentha-1,5-diene-8-ol 1168 1170 0.06 1.92 0.64 

4 α-terpineol 1191 1188 1.09 2.45 1.20 

5 α-copaene 1376 1376 3.28 4.23 2.45 
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6 (E)-β-damascenone 1384 1384 2.37 3.35 1.97 

7 (Z)-β-damascenone 1388 1387 0.93 0.03 0.04 

8 1-tetradecene 1392 1389 1.88 0.56 1.79 

9 α-cedrenes 1418 1419 4.01 1.95 2.49 

10 (E)-caryophyllene 1443 1441 1.43 2.05 1.78 

11 the aromatics 1454 1455 0.09 1.78 1.11 

12 geranylacetone 1460 1460 1.61 2.09 1.43 

13  allo-aromaticdendrines 1472 1467 1.19 2.05 1.94 

14  cis-support adiene 1475 1477 0.04 0.73 1.05 

15  β-chamigrenes 1476 1479 1.49 0.51 1.09 

16  γ-muurolene 1485 1490 0.05 0.90 1.07 

17 β-selienene 1490 1491 - 0.57 - 

18  10,11-epoxy-calamenene 1490 1492 3.98 - 2.85 

19  δ-selienene 1493 1493 2.43 1.89 1.56 

20 cis-β-guaiene 1498 1500 1.67 0.98 1.78 

21 α-muurolene 1501 1501 1.09 0.07 1.05 

22 epizonarene 1505 1505 0.71 0.02 1.03 

23  α-cuprenene 1523 1523 2.89 1.89 3.80 

24  δ-cadinene 1535 1538 0.01 0.81 1.08 

25  α-cadienene 1540 1540 1.96 2.82 2.07 

26 α-copaen-11-ol 1542 1545 1.35 0.05 2.32 

27 α-calacorene 1565 1563 7.08 26.07 11.90 

28 (E)-nerolidol 1581 1580 10.89 6.90 6.87 

29  caryophylleneoxide 1592 1589 2.28 1.95 2.92 

30 1-hexadecene 1597 1596 3.05 1.81 1.06 

31  phokienol 1600 1600 1.95 1.81 1.85 

32  guaiol 1616 1619 10.3 1.68 1.39 

33 isongifolan-7-α-ol 1627 1628 0.06 1.38 1.09 

34 1-epi-cubenol 1627 1631 2.63 0.05 2.93 

35 muurola-4,10(14)-diene-1-β. 1630 1632 1.92 3.06 3.92 

36  gymnomitron 1641 1640 0.05 1.54 1.01 

37 epi-α-cadinol 1648 1651 1.45 1.29 2.27 

38  cedr-8(15)-en-9-α-ol 1653 1653 9.17 4.75 7.98 

39 α-eudesmol 1656 1654 1.39 0.98 1.01 

40 α-cadinol 1669 1667 0.02 0.43 0.04 

41 14-hydroxy-(Z)- . 1673 1669 0.91 1.47 1.61 

42 14-hydroxy-9-epi-(E)- . 1684 1681 1.03 1.19 1.17 

43  ishwarone 1695 1699 0.03 0.48 0.03 

44  epi-nootkatol 1745 1747 0.04 0.69 0.98 

45 8-α-11-elemodiol 1769 1767 0.06 2.03 1.72 

46  β-costol 1769 1768 1.27 1.28 1.09 

47 13-hydroxy-valencene 1792 1790 2.79 2.69 2.89 

   Total 94.91 96.84 95.37 
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Figure 6: Gas chromatogram (GC) of essential oil extracted from sample 1 

 

 
Figure 7: Gas chromatogram (GC) of essential oil extracted from sample 2 

 

 
Figure 8: Gas chromatogram (GC) of essential oil extracted from sample 3 
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